Robust Test Generation and Coverage for
Hybrid Systems*

A. Agung Julius’, Georgios Fainekost, Madhukar Anand?,
Insup Lee?, George J. Pappas’t

"Dept. Electrical and Systems Engineering
#Dept. Computer and Information Sciences
University of Pennsylvania
200 South 33rd Street, Philadelphia PA-19104
United States of America
Email:{agung, fainekos,anandm, lee,pappasg}@seas.upenn.edu

Abstract. Testing is an important tool for validation of the system de-
sign and its implementation. Model-based test generation allows to sys-
tematically ascertain whether the system meets its design requirements,
particularly the safety and correctness requirements of the system. In
this paper, we develop a framework for generating tests from hybrid sys-
tems models. The core idea of the framework is to develop a notion of
robust test, where one nominal test can be guaranteed to yield the same
qualitative behavior as a other tests that are close to it. Our approach
offers three distinct advantages. 1) It allows for computing and formally
quantifying the robustness of some properties, 2) it establishes a method
to quantify the test coverage for every test case, and 3) the procedure
is parallelizable and therefore, very scalable. We demonstrate our frame-
work by generating tests for a navigation benchmark application.

1 Introduction

As engineering systems gain more functionality and complexity, there is a need
for sound discipline in their design, development and deployment. In particular,
ensuring the safety and correctness of these large and complex systems is be-
coming increasingly hard. In recent years, a slew of model-based design efforts
have been developed to address these problems. The promise of the model-based
design paradigm is to develop design models and subject them to analysis, sim-
ulation, and validation prior to their implementation. Performing analysis early
in the development cycle allows one to detect and fix design problems sooner and
at a lower cost. There has been a lot of work in the hybrid systems community
towards analysis, validation and verification of systems developed from hybrid
control models.(c.f., [1-8]) .

* This research is supported by the National Science Foundation Presidential Early
CAREER (PECASE) Grant 0132716.

! This list is by no means exhaustive. However, it does capture a broad spectrum of
techniques that have been developed in the community to answer the reachability
and verification problems.

Testing has been used in practice to check the conformance of an implemen-
tation to its specification. Although testing cannot provide formal guarantees
on correctness and reachability as is possible with verification, disciplined use of
testing, coupled with coverage criteria can be a great aid to system validation.

Testing amounts to running or simulating the operation of the system for a
finite period of time. It is comparable to taking a snapshot of the operation of
the system. As we are interested in gaining some information about the system,
testing is done repetitively with varying testing parameters, so as to simulate
as many scenarios of operation as possible. By testing parameters, we mean
the parameters that characterize the run of a test. For example, if we have an
autonomous system of which we can only influence initial condition, then the
testing parameter is the initial condition. If we have more degree of freedom in
executing the system, for example, if we can also adjust some parameters in the
system, then these can be regarded as testing parameters as well. The ultimate
goal of testing is to cover the entirety of the set of testing parameters.

When the set of testing parameters is an infinite set, it is obvious that we
cannot exhaustively test each of the testing parameters. However, it is possible
that one testing parameter is representative of many others. A testing parameter
is said to be robust if a slight (quantifiable) perturbation of the parameter is
guaranteed to result in a test with the same qualitative properties (for example,
safety and correctness). It is obvious that robustness can lead to a significant
reduction in the set of testing parameters. In fact, ideally, we would like to be able
to reduce an infinite set of testing parameters into a finite set, and quantify the
coverage by the undergone tests. In this paper, we develop develop a framework
where the robustness of a test can be formally quantified and computed. The
framework is then applied to test a navigation benchmark problem [9].

Prior work on generating tests from hybrid systems models has mainly fo-
cused on randomized testing or monitoring to see if the implementation conforms
to the model. Esposito and others [10, 11] use Rapidly exploring Random Trees
(RRT) to generate test cases from hybrid systems models. The approach of van
Osch [12] is to test for input-output conformance by providing inputs to the im-
plementation and comparing its output to its model. In [13], the author presents
a case-study that identifies a minimal set of test scenarios required to determine
with some confidence interval if the system meets the specification by casting
the test generation problem as a optimal control problem. Therefore, this ap-
proach suffers from the drawback that it is only applicable in scenarios when the
optimal control problem can be solved efficiently. Other existing publications in
this area include [14], where a simulation of the hybrid model to generate test
suites based on a coverage criteria, and [15], where test generation from Ex-
tended Finite State Machines (EFSM) models to test a temporal logic property
was introduced.

2 Problem formulation

In this paper, we consider a standard model of hybrid systems, H = (X, L,
E, Inv, F'), where X is the continuous state space of the system, £ is the finite
state of discrete states (locations), E is the set of transitions, Inv : £ — 2% is
the invariant set of a location, and F' : X x £ — X is the vector field that defines
the continuous dynamics in each location.

A transition e € FE is a 4-tuple (I,I’,g,7), where | € L is the origin of
the transition, I’ € L is the target of the transition and that each location,
g C dInv(l) is the guard of the transition, which is a subset of the boundary of
the invariant set of location [, and r : ¢ — Inv(l’) is the reset map that resets
the continuous state at the new location. We assume that the reset map r is
continuous.

In this paper, we shall assume that the following statements are true. The
state space is R™. The invariant sets are closed. We denote the open interior of
an invariant set as Inv(l). The differential equation

dz
E = F(l‘(t),l),

admits a unique solution for every location [€ L, i.e. it satisfies the Lipschitz
conditions. The transitions are deterministic? in the sense that the guards of all
outgoing transitions from a location are disjoint. The system does not deadlock
or possess Zeno behavior.

In analyzing the safety of the system, we assume that there is a subset
Unsafe C X x L of unsafe states. A trajectory of the hybrid system corre-
sponds to an unsafe execution if it intersects with the unsafe set.

Ezample 1 (Navigation Benchmark [9]). As a case study in this paper, we con-
sider a slightly modified version of the navifation benchmark proposed by Fehnker
and Ivancic [9]. The benchmark studies a hybrid automaton H with m x n dis-
crete locations and 4 continuous variables x1, 2, v1, vo, which form the state
vector is @ = [x1 w9 v1 v2]T. We will refer to the vectors [z1 w2]T and [v1 vo]” as
the position and the velocity of the system. The structure of the hybrid automa-
ton can be better visualised in Fig. 1. The invariant set of every (i,j) location
is an 1 x 1 box that constraints the position of the system, while the velocity
can flow unconstraint. The guards in each location are the half-spaces that point
outwords from the location invariant.

Each location has affine constant dynamics with drift. In detail, in each
location (i, j) of the hybrid automaton, the system evolves under the differential
equation & = Az — Bu(i,j) where the matrices A and B are

02 3 9 s 3
A=1]00-12 01 and B=|_72 o1
00 0.1 —1.2 0.1 —1.2

2 We limit the discusssion in this paper to deterministic guards. However, the frame-

work presented here is also applicable to nondeterministic systems and reactive sys-
tems.

3 3
Unsafe 2 ' 4 Unsafe
2 : 2
& ' 4 \3 \ 4 &
1 : 1
— —
2 2 Goal
0 0
0 1 2 3 0 1 2 3
(@ (b)

Fig. 1. A graphical representation of the benchmark hybrid automaton. The upper left
box is the invariant set for the location (1,1). (a) The constant input vector in each
location. (b) Sample trajectories.

and the input is u(i, j) = [sin(7C (i, 5)/4) cos(rC(i,5)/4)]T. The array C is one
of the two parameters of the hybrid automaton that the user can control and it
defines the number of locations in the hybrid automaton and the vector input
in each discrete location. Here, we consider the following input arrays
a=[131] a=[3i¢] o=|531]
224@ 220U 11G

where U denotes the unsafe set and G the goal set. The other user-input
parameter is the set of initial conditions Xy x Ly C X x L. The requirement for
‘H is that all of its trajectories starting in Xy x Ly should avoid the unsafe set
and eventually reach the goal set. Sample trajectories of the system appear in

1.(b).

Example 1 describes what is a typical verification problem for hybrid systems.
The goal of such verification algorithms is to prove that there cannot exist a
trajectory that would falsify the hybrid automaton assumptions, i.e. safety and
reachability. In this paper, we try to answer a different problem in an attempt
to overcome the theoretical and practical difficulties of exhaustive verification.
Here, the goal is not complete coverage of the set of initial conditions, but the
computation of a (possibly) quick estimate of which part of the initial conditions
is safe and/or unsafe for a bounded horizon using only a small number of tests.
One of the most important aspects of such a testing methodology is that it
should be completely transparent to the user with few or none at all parameters
to tune.

Problem 1 (Testing the benchmark example). Given the benchmark example as
above H with a set of initial conditions Xy x Ly, a bounded horizon 7 > 0 and
an unsafe Unsafe and/or Goal set, develop a strategy for picking test points to
cover the set of initial conditions.

As mentioned in the previous section, we want to be able to cover the whole
set of initial conditions with finitely many test points. Obviously, this require the

construction of robust neighborhoods around the test points, such that a single
test point can be used to represent its entire robust neighborhood, as it has the
same qualitative properties. By qualitative properties, we mean the sequence of
locations that are visited and the safety property.

3 Robust testing for hybrid systems

In this section we discuss the computation of robust neighborhood of initial
condition. First, we are going to review the idea of bisimulation function for
dynamical systems [16]. The concept of bisimulation function introduced in the
above mentioned references is more general than what we are going to review
here, since we are going to consider systems without input.

Consider a bisimulation function between a dynamical system

E.dz

.E:F(x),meX (1)

and itself. Such a function ¢ : X x X — R, satisfies the following requirements

P(z1,72) > 0, (2)
8¢($1,£L’2) a¢($1,x2)
Tf(xl) + Tf(@) <0, (3)

for every x1,x0 € X.
Denote the continuous flow of the dynamical system X as £ : Ry x X — X,
that is, £(t, zp) satisfies the differential equation

8§(t, :L'O)

o = J(E(t.20)), £(0,20) = xo. 4)

The bisimulation function is nonincreasing with respect to the flow.

Remark 1. Tt is obvious that the zero function is a bisimulation function for any
dynamical systems. In the subsequent discussion, we exclude this trivial function.

Proposition 1. [16] For any 29,29 € X, the bisimulation function evaluated
along the flows of the initial conditions x9 and x3 is nonincreasing, i.e.

¢(€(t173;‘(1)),§<t1,33(2)>) > ¢<£(t2’x(l))’§(t27xg))’ (5)
for any ts > t1 > 0.

We denote the e—neighborhood of x € & with respect to a bisimulation
function ¢ as By(z,¢).

By(z,e) ={y € X | d(x,y) < e}.

The following corollary is a direct consequence of Proposition 1.

Corollary 1. For any z,y € X, if y € By(x,€) for some € > 0, then
£(t,y) € By(&(t,), €), (6)

for every t > 0.

Thus, the e—neighborhood defined by the bisimulation function ¢ is invariant
with respect to the flow of the dynamical system. If we define the (directed)
metric dy(z(-),y(-)) between state trajectories of the system X with respect to
the bisimulation function ¢ as

dg((-), y()) == sup o(z(1), y(t)),

t>0

then the corollary above is equivalent to

d¢(§(~,$)7§(-,y)) < ¢($>y)7 (7)

for any z,y € X.
Hereafter we shall assume that bisimulation functions are symmetric, that is,

o(z,y) = ¢y, z). (8)

A bisimulation function that is symmetric and forms a metric on the space X
is called a contraction map. Such functions are used in contraction analysis in
relation to the stability of the system [17,18].

In the case that the dynamics is affine,

F(x)= Az + b,
zeR", Ae R be R,

we can propose that the bisimulation function assumes the form
(w1, m2) = (21 — $2)TM($1 —),

where M is a positive semidefinite matrix. Thus, the bisimulation function de-
fines a Euclidian metric in a (linearly) transformed space. It can be shown that
such a bisimulation function exists if and only if the system is stable.

In the following, we are going to construct robust testing neighborhoods using
the level sets of a bisimulation function. For that, we need a few definitions.

Definition 1. For any location | € L we define the set of outgoing transitions
from 1 as Out(l). For any transition e = (1,1, g,r) € Out(l), we define the active
part of the guard g, g®* C g that can be reached from inside Inv(l), i.e. we
exclude from g the points where the vector field F(-,1) points inward. Similarly,
we define Unsafe®t as the portion of the boundary of the unsafe set that is
reachable from the safe portion of the state space.

See Fig. 2 for an illustration of the definition of active guard, and of the
proposition below.

o B(p(ﬁﬂr dm in)

Fig. 2. An illustration for Definition 1 and Proposition 2. The line on the left is a
guard go. Its part with lighter shade, g5 is the active part, where the vector field
points outward. The guard ¢; is active everywhere, as the vector field there points
outward. The boundary of the unsafe set in this picture is active, as the vector field
point into the unsafe set.

Proposition 2. Let g € Inv(l) for some location | € L, and that the state tra-
jectory &(t, xo) lies entirely in Inv(l)\Unsafe for t < 7. Suppose that Out(l) =
{e1,ea, - ,e,} and g; is the guard of e;, i = 1,...,n. Let T be the time when
the state trajectory hits g1, which is the guard of a transition ey. Suppose that
we have a bisimulation function ¢ for the continuous dynamics in location I. We
also suppose that there is a positive time lag € > 0 such that

(T +e,20) ¢ Inv(l).

We define
dour = J0f G(E(T +2,0),9),
di= dnf G 70) 0) i =23
Dunsafe = 03225% yEIn'u(l)%WnIfnsafe“c‘ P(E(t 20), 9),

dmin = min{dout7 dunsafe7 d27 dS; T dn}7
2i=inf (6> 0 | By(€(r — 6, 20), duin) C Inw(D)} .

The following statement holds. For any x(, € Bg(xo,dmin) N Inv(l), the state
trajectory &(t, xy) exits Inv(l) through transition ey at timet € [T —&,7+¢] and
1s safe at least until it exits location .

Proposition 2 provides us with a way to compute a neighborhood around
the initial state xg, consisting of initial states that have the same qualitative
behavior as zy. Namely, they lead to a trajectory that exits the location [by

performing the same transition, and is safe at least until it performs the transi-
tion. In addition to that, we also obtain a timing guarantee, in the form of a time
interval where the transition is guaranteed to occur, if the initial state is varied
within the computed neighborhood. The next step is to design algorithm that
uses Proposition 2 repetitively to deal with testing trajectories with multiple
transitions.

Given a hybrid system H = (X, L, E, Inv, F'). We denote the continuous flow
at every location [€ L as &(-,-), and we assume that we have a bisimulation
function for the dynamics in location ! € L, which is ¢;(-,-). A testing trajectory
is a sequence (z;,1;, €;, Ti)i=o0,... ;v such that:

—l; € Lyx; € Inv(l;),e; € Out(l;), ; > 0, for every ¢ € {0,1,... N},
— If we define e; = (l;,li11,9i,7i), then &, (7, 2:) € gi, xig1 = 1i(&, (73, 74)),
&, (t,x;) € Inv(ly) for all t € [0,7;), for every ¢ € {0,1,... N — 1},

We define T' := Zﬁ\:)l T;, which is the time where the trajectory enter the
final state. The length of the test is 7"+ 7. Given a testing trajectory, the
algorithm for constructing a robust tube around a nominal trajectory is given
as follows.

Algorithm 1 The following are the steps:

1. Define the avoided set as the union of the unsafe set and active parts of all
the outgoing guards from Iy, i.e.>

Dy := Unsafe** UgeOut(iy, g™t 9)

2. Compute (or obtain a lower bound on)

N e .
dmin = tlglgv yngfN ¢lN (&N (t,xN),y). (10)
8. Define the allowed guard
An_1 =1y (rvo1(gn—1) N By, (@, dYiy)- (11)

This is the set of states on the guard of the transition between In_1 and Iy
that is reset into the dY, — neighborhood of x (with respect to the bisimu-
lation function ¢,).

4. Define the avoided set
Dy_1:= (Unsafe® Ugeour(iy_,, 9°“)\AN—1. (12)
5. Pick a time lag ey—1 > 0 such that
Sin o (TN-1 +en—1,2n-1) ¢ Inv(In_1).
We present an algorithm for picking a good time lag later in this paper.

3 Notice that for simplicity, we abuse the notation and associate the transition with
its guard.

6. Compute (or obtain a lower bound on)

N— . .
dminl ‘= min < inf ¢1N_1(le_1(TN—1 + 5N—1,$N—1)a y),
YEGN -1

t<TN-1+en-1YEDN-1

inf inf ¢1N1(§ZN1(t7mN—1)7y)> :

7. Define
En—1:=inf {5 >0 | B¢N—1(€IN—1(TN—1 -9, xN—l)vdgizl) - IM(IN—l)} .

8. Repeat steps 3 - 7 to obtain A;, D;,&;, d

min>’

€, 1=0,1,...,N —2.
The result of this iteration have the following property.

Theorem 2. Given a testing trajectory of a hybrid system (x;,1;,€;,7;)i=0,... N,
let d°; , €, &,i=0,1,...,N — 1 be obtained from the iteration in Algorithm

m
N-1
€= E g, €=
i=0
0

1. Define

Any testing trajectory that starts in By, (xo,d, ;) has the following properties.
(1) It follows the same sequence of locations, (I;)i=o0,... . N and it enters the final
location Iy att € [T —&,T + ¢,

(ii) The trajectory is safe at least until T time unit after it enters Iy .

2

Il
o
m>
.

i

An essential part of Algorithm 1 is the generation of the time lags €; (see Step
5). First of all, notice that a small &; is more desirable than a larger one. This
is because ¢; is a measure in the slackness in the timing when the trajectories
in the tube hit the desired guard (see Theorem 2). The idea is to construct ¢;
as small as possible, but large enough so that by introducing this time lag, we
are sure that all the trajectories in the constructed tube hit the desired guard
within the time interval [;, ; + &;]. In order to do this, we can replace Steps 5
and 6 in Algorithm 1 with the following steps.

Step 5°. Compute

SN—1 . . .
dmin = tgl'/glf,l yEani,l ¢1N—1 (glN—l (tv "EN*I)7 y)

Step 5”. Compute

EN_1 = min <inf {e | inf ¢y, &y (TN +e,2N-1),Y) > cfﬁi;l,
YEGN -1

G (TN-1+€,xn-1) € Inv(In-1)} , Emax)-

Step 6°. If eny_1 < €max then dg;ll = dﬁ;l, otherwise
ay.l=sup inf iy (& (Tn—1 Fe,2N-1),Y).

0<e<emax YEIN-1

In Step 5’ we compute the largest level set that fits within the allowed set.
In Step 5”7, we want to find the minimum time lag such that the computed level
set lies entirely beyond the desired guard (and hence outside of the invariant set
Inv(ln_1)). See Fig. 2 for an illustration. Because such time lag might not exist,
or is too large, we can establish a maximum allowed value for the time lag, €ax.
If such time lag is found and is smaller than e,,y, then this value is used. If it
is not found, then we compute the largest level set that can be fit outside of the
invariant set. This is done in Step 6.

4 Test generation and coverage strategies

In the benchmark problem that we are working on, our goal is to cover the given
set of initial states with robust neighborhood. In the previous section, we have
presented an algorithm for computing the robust neighborhood around a given
initial state. What needs to be done next, is to select subsequent initial states
from the given set, so as to (eventually) cover the whole set and/or to provide a
quantitative measure of coverage based on the executed tests. The strategy for
selecting the test points is called the test generation.

An important issue in test generation is the notion of coverage, which qualifies
the number and type of tests generated. There are a number of coverage criteria
based on the test requirement, which can be categorized into two classes: initial
state coverage and structural coverage. The first type of coverage criteria is
concerned with covering the set of initial states and then characterize each test
case that has been generated. The second class of coverage criteria is concerned
with analyzing the structural coverage of a test case, such as mode coverage,
transition coverage, and sequence coverage. This notion of coverage can capture
more system requirements than just the initial states. The main challenge here is
how to generate tests so as to meet a particular coverage criteria. In this paper,
we only consider the coverage of the initial state space and leave the prospect of
using our approach to analyze structural coverage as future work.

There are a number of strategies for initial state coverage:

Randomized Strategy: The first strategy we present to explore the set of
initial states is to pick a point randomly. A formal analysis might be intractable,
or hard, in case the state space is high dimensional and nonlinear. Consequently,
a randomized strategy would be an attractive option to exploring the state space
and checking for properties such as system safety.

Greedy Strategy: Under this strategy, we first pick a point and run the testing
algorithm on it. Then, we subtract the computed robust ball around the initial
point from the state space and pick the center of the maximum ball that can be
fit into the remainder space as the next test point.

Tessellation-based Strategy: Picking points at random may not ensure uni-
form coverage. One possible strategy to ensure uniform coverage is to use tes-
sellation of the initial state space based on an appropriate metric.

Maximal Dispersal-based Strategy: Picking points so as to maximize the
dispersion of the points [19]. This strategy involves the generation of Voronoi

diagram in the set of initial states. The goal is to pick the points incrementally
so as to maximize the radius of a nonoverlapping ball that can be inserted in
the set. The method that we use in analyzing the benchmark problem (see the
following section) is based on this strategy.

5 Numerical Results and Discussion

In this section, we present some numerical results using our prototype MATLAB
implementation of the robust testing algorithm. The experimental results will
helps us discuss the strengths and weaknesses of our approach.

One of the advantages of using robust testing methodologies is that we can
obtain an estimate of the degree of coverage of initial conditions that we have
achieved. Theoretically, this can be done by computing the volume of the in-
tersection of the robustness ellipsoid £ with the polytope that defines the set
of initial conditions Xy. Nonetheless, this is not feasible computation-wise when
the robustness ellipsoid £ is not contained inside the set of initial conditions.
Therefore, we compute the maximum ellipsoid that fits inside the intersection
of £ and Aj. This can lead to a significant under-approximation of the actual
covered space (see Example 3).

The following testing problem provides some inside on the principles behind
our testing algorithm. The planar choice of initial conditions help us visualize
the coverage of initial conditions, since the same is not possible when testing a
4D set of initial conditions.

Ezample 2. The first case that we consider is testing the navigation benchmark
for array C) for the set of initial conditions Xy = [1,2] x [1,2] x {—0.2} x {0}
with £y = {(2,2)} (green region in Fig. 3). Here instead of using the Maximal
Dispersal-based Strategy, we create a grid of 25 points which serve as initial
conditions for each simulation. The resulting simulations appear in Fig. 3.(a).
The red ellipsoids centered at the initial conditions denote the projections of the
4D ellipsoids on the position plane z1 — zo. In Fig. 3.(b), we present the covered
space of initial conditions after 25 simulations. Here, the ellipsoids are the inter-
section of the corresponding 4D ellipsoids with the position plane. The red and
blue ellipsoids denote covered initial conditions whose corresponding trajectories
followed different discrete paths. Note that there exists a clear partition of A}
into two subsets of initial conditions that initiate trajectories that traverse dif-
ferent discrete paths. In this case, our proposed under-approximation algorithm
for coverage computed 48% of covered initial conditions.

The next example indicates that thin sets of initial conditions and robustness of
the system with respect to the specifications (unsafe and/or goal set) make the
testing problem easy.

Ezxample 3. Consider again C7, but now with the following set of initial condi-
tions Xy = [2.2,2.8] x [1.2,1.8] x {—0.2} x {0} with £o = {(2,3)}. This set of
initial conditions has been verified to be safe with respect to the unsafe set in [9].

1.8

1.6

~ 1.4

1.2

0.8

@ (bl).s 2

Fig. 3. Result after 25 simulations for the problem instance of Example 2.

Xl Xl
3 . .
2.5
1.8
2
1.6
<15 =
1.4
1

0.5]

0

0 05 1 15 2 25 3 2 22 24 26 28 3
(a) (b)

Fig. 4. Result after 9 simulations for the problem instance of Example 3.

Using the testing algorithm we can cover the set of initial conditions with only 9
simulations (Fig. 4.(a)). In Fig. 4.(a) the ellipsoids represent the intersection of
the corresponding 4D ellipsoids with the position plane, while in Fig. 4.(b) we
present the under-approximation of the aferementioned ellipsoids with ellipsoids
that fit inside Xy. Numerically, we compute a coverage estimate of 72%.

The previous example also shows that even though by visual inspection we can
verify that we have tested all the set of initial conditions, numerically we do not
have an accurate way to quantify that. Next, we show the main strength of the
testing framework, i.e. easy detection of robustly unsafe systems.

Ezample 4. Consider the map Cy with initial conditions Xy = [0,1] x [2,3] x
[—1,1] x [-11] and Lo = {(1,1)}. This was proven to be unsafe with just 10
simulations (see Fig. 5). Notice the complicated hybrid dynamics.

Finally, we apply our framework to a more demanding example.

Ezample 5. Here, we use map C5 with initial conditions Xy = [0.1,0.1]x[0.1,0.1] x
[—0.1,0.5] x [-0.05,0.25] and Lo = {(3,1)}. This example was proven to be safe
in [20] using the verification toolbox PHAVer [7]. Our testing algorithm was able
to cover 7% of the initial conditions after 300 simulations.

On-going research goes into better estimating the covered set of initial con-
ditions. Finally, one of the main advantages of our robust testing framework is

-0,
05 0 05 1 15 2 25 3 35

Fig. 5. The testing framework can potentially detect the unsafety of the system with
just one test. Legend: green - initial conditions, red - unsafe set, cyan - goal set.

that it can be effectively parallelized by simply assigning a different simulation
trace to each CPU.

6 Concluding remarks

In this paper, we present an algorithm for test generation for hybrid systems. The
algorithm is based on a computational method for robust testing. We implement
the algorithm to verify a navigation benchmark problem [9]. One advantage of
our algorithm, compared to some other tools, is that we do not need to tune any
parameters beforehand.

As future research agenda, we have identified a number of potential direc-
tions. For example, we would like to develop a framework for robust testing of
linear temporal logic properties [21], or develop a probabilistic notion of robust
testing by using the idea of stochastic bisimulation function [22]. The algorithm
that we present in this paper is also able to provide a timing guarantee for the oc-
currence of the transitions. Although, this feature is not exploited in the example
we present in this paper, it can potentially be applied in automatic translation of
hybrid automata into timed automata. Such a translation is useful, for example
in verification and observer design for hybrid systems [23].

References

1. Dang, T., Maler, O.: Reachability analysis via face lifting. In: Hybrid Systems:
Computation and Control. Volume 1386 of LNCS., Springer Verlag (1998) 96-109

2. Kurzhanski, A.B., Varaiya, P.: Ellipsoidal technique for reachability analysis. In:
Hybrid Systems: Computation and Control. Volume 1790 of LNCS., Springer Ver-
lag (2000) 202-214

3. Mitchell, I., Tomlin, C.J.: Level set methods in for computation in hybrid systems.
In: Hybrid Systems: Computation and Control. Volume 1790 of LNCS., Springer
Verlag (2000) 310-323

4. Alur, R., Dang, T., Ivancic, F.: Reachability analysis of hybrid systems via predi-
cate abstraction. In: Hybrid Systems: Computation and Control. Volume 2289 of
LNCS., Springer Verlag (2002) 35-48

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

Han, Z., Krogh, B.H.: Reachability analysis of hybrid control systems using
reduced-order. In: Proc. American Control Conference. (2004) 1183-1189

Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier cer-
tificates. In: Hybrid Systems: Computation and Control. Volume 2993 of LNCS.,
Springer Verlag (2004) 477-492

Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech.
In: Hybrid Systems: Computation and Control. Volume 3414 of LNCS., Springer
Verlag (2005) 258273

Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Hybrid
Systems: Computation and Control. Volume 3414 of LNCS., Springer Verlag (2005)
291-305

Fehnker, A., Ivancic, F.: Benchmarks for hybrid systems verification. In: Hybrid
Systems: Computation and Control. Volume 2993 of LNCS., Springer Verlag (2004)
326-341

Esposito, J.M.: Randomized test case generation for hybrid systems:metric selec-
tion. In: Proc. 36th Southeastern Symposium of System Theory. (2004)

Branicky, M.S., Curtiss, M.M., Levine, J., Morgan, S.: RRT's for nonlinear, discrete,
and hybrid planning and control. In: Proc. IEEE Conf. Decision and Control,
Hawaii, USA (2003)

van Osch, M.: Automated model-based testing of x simulation models with TorX.
In: Quality of Software Architectures and Software Quality. Volume 3712 of LNCS.,
Springer Verlag (2005) 227-241

Esposito, J.M.: Automated test trajectory for hybrid systems. In: Proc. 35th
Southeastern Symposium of System Theory. (2003)

Tan, L., Kim, J., Lee, I. Testing and monitoring model-based gener-
ated program. FElectronic Notes in Theoretical Computer Science 89 (2003)
http://www.elsevier.nl/locate/Intcs/volume89.html.

Hong, H.S., Lee, 1., Sokolsky, O., Ural, H.: A temporal logic based theory of
test coverage and generation. In: TACAS ’02: Proceedings of the 8th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems,
London, UK, Springer-Verlag (2002) 327-341

Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous sys-
tems. accepted for publication on IEEE Trans. Automatic Control (March 2005)
Lohmiller, W., Slotine, J.J.E.: On contraction analysis for nonlinear systems. Au-
tomatica 34 (1998) 683-696

Aylward, E., Parillo, P.A., Slotine, J.J.E.: Algorithmic search for contraction met-
rics via sos programming. In: Proc. American Control Conference, Minneapolis,
USA (2006)

LaValle, S.M.: Planning algorithms. Cambridge University Press (2006)
Makhlouf, I.B., Kowalewski, S.: An evaluation of two recent reachability analysis
tools for hybrid systems. In: Proc. IFAC Conf. Analysis and Design of Hybrid
Systems, Alghero, Italy, IFAC (2006) 377-382

Fainekos, G.E., Girard, A., Pappas, G.J.: Temporal logic verification using sim-
ulation. In: Proceedings of FORMATS. Volume 4202 of LNCS., Springer (2006)
171-186

Julius, A.A.: Approximate abstraction of stochastic hybrid automata. In: Hybrid
Systems: Computation and Control. Volume 3927 of LNCS., Springer Verlag (2006)
318-332

D’Innocenzo, A., Di Benedetto, M.D., Di Gennaro, S.: Observability of hybrid
automata by abstraction. In: Hybrid Systems: Computation and Control. Volume
3927 of LNCS., Springer Verlag (2006) 169-183

Appendix

Proof of Proposition 2. See Fig. 2 for an illustration. By construction of dp,,,
we can infer that for any 0 <t <7 + ¢,

B¢(§(t7x0)7dmin) N Q?Ct = @,Z =2,3,...,n,
By (&(t, 20), dmin) N Unsafe® N Inv(l) = (.

We then invoke Corollary 1 and infer that any state trajectory originating in
Bg(x0, dmin) Will not be unsafe nor touch the active guards g¢<*, i = 2,3,...,n,
within the time interval [0, 7 +¢]. We also know that the neighborhood By (§(7+
€,%0),dmin) lies entirely outside of Inv(l), beyond g;. This implies that any
trajectory starting in By (2o, dmin) N Inv(l) crosses g1 before ¢t = 7 + €. Finally,
since the neighborhood Bg(&(t, o), dmin) does not touch any active guard, for
t € [0,7 — &), we also know that the trajectories will not touch any active guard

before time t = 7 — &.

Proof of Theorem 2. The proof relies on repeated application of Proposition
2. Using the proposition once, we can establish that any testing trajectory that
starts in By, (z9,d2;,) has the following properties.

(i) The first transition is from Iy to I3 and it takes place at t € [7g — €9, 7o + €0],
(ii) The trajectory is safe in ¢t € [0, 79 + €0},

In addition to that, by applying Corollary 1 we also know that

(iii) The transition happen when the portion of the guard in Ay is hit*,

(iv) After the transition, the continuous state is reset into By, (21, dhs,)-

By repeatedly applying the reasoning above, we can conclude that the tra-
jectory will reached Iy at t € [T — &, T + €] and that it is safe at least until that
time. However, since we know that the original testing trajectory is safe at least
until 7y time units after it enters the final location [, we can apply Corollary
1 and conclude that the same safety property applies for any trajectory in the

location I that starts within B¢lN (zn, dein).

4 This is because we can exclude the possibility that the trajectory hits the guard
outside of Ag in t € [0, 70 + €o].

