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Hema A. Murthy,Member, IEEE,Françoise Beaufays,Member,
IEEE, Larry P. Heck,Member, IEEE,and Mitchel Weintraub

Abstract— This paper addresses the issue of closed-set
text-independent speaker identification from samples of speech
recorded over the telephone. It focuses on the effects of acoustic
mismatches between training and testing data, and concentrates
on two approaches: 1) extracting features that are robust against
channel variations and 2) transforming the speaker models to
compensate for channel effects.

First, an experimental study shows that optimizing the front
end processing of the speech signal can significantly improve
speaker recognition performance. A new filterbank design is
introduced to improve the robustness of the speech spectrum
computation in the front-end unit. Next, a new feature based on
spectral slopes is described. Its ability to discriminate between
speakers is shown to be superior to that of the traditional
cepstrum. This feature can be used alone or combined with
the cepstrum.

The second part of the paper presents two model
transformation methods that further reduce channel effects.
These methods make use of a locally collected stereo database
to estimate a speaker-independent variance transformation for
each speech feature used by the classifier. The transformations
constructed on this stereo database can then be applied to
speaker models derived from other databases.

Combined, the methods developed in this paper resulted in
a 38% relative improvement on the closed-set 30-s training
5-s testing condition of the NIST’95 Evaluation task, after
cepstral mean removal.

Index Terms— Channel compensation, channel robustness,
front-end features, front-end optimization, text-independent
speaker verification, variance transformation.

I. INTRODUCTION

I N MANY applications of automatic speaker recognition
(ASR), a communication channel separates the user from

the recognition system (e.g., identity verification for bank-
ing transactions over the phone, voice recognition for smart
voice mail systems, voice identification for building access,
identification of specific speakers in multimedia recordings).
In most cases, the communication channel is allowed to
change between different calls to the system, and the data
collected to train the speaker models is only representative
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of a small fraction of all the acoustic conditions that can
be met during testing. The resulting mismatch between the
training and testing data greatly affects the performance of
ASR systems (e.g., [1]). This paper focuses on reducing
the effects of acoustic mismatches on speaker recognition
over the telephone. We propose two approaches to tackle the
problem: extracting speech features that are robust to channel
effects, and transforming the speaker models to make them
less sensitive to acoustic mismatches.

A. Feature Extraction Problem

Although the exact factors in a speech signal that are
responsible for speaker characteristics are not exactly known,
it is a fact that humans are able to distinguish among speakers
based on their voices. Studies on interspeaker variations and
factors affecting voice quality have revealed that there are
various parameters at both the segmental and suprasegmental
levels that contribute to speaker variability [2]–[6]. Despite
the fact that one cannot exactly quantify interspeaker vari-
ability in terms of features, current speaker identification
systems perform very well with clean speech. However, the
performance of these systems can decrease significantly under
certain acoustic conditions, such as noisy telephone lines [7].

In the last few years, much of the speaker identification
research has been devoted to modeling issues (e.g., [8]–[13]),
and significant performance improvements have been reported
from developing sophisticated speaker models. Comparatively
fewer papers have addressed the equally important issue of ro-
bust feature extraction for the purpose of speaker identification.
Many current speaker recognition systems rely on spectral-
based features, in particular the mel-cepstrum. A notable
exception is the work by Janowskiet al. [14], where a new
set of features based on amplitude and frequency modula-
tion of speech formants and high-resolution measurement of
fundamental frequency is used in addition to the standard
filterbank-based cepstrum to perform speaker identification
over a degraded channel. A drawback of this approach is that it
requires an estimate of potential formant locations, which can
be problematic. In addition, the performance of the system
improves only when the new features are combined with the
traditional mel-cepstrum.

In this paper, we first show experimentally that speaker
recognition performance strongly depends on the front-end
unit that preprocesses the speech signal. We demonstrate that
the front end can be optimized to consistently and significantly
improve the system performance. We also describe a new
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filterbank design that improves the robustness of the speech
spectrum computation. We then derive a new feature based
on spectral slopes that may be used either individually or
in combination with the mel-cepstrum. Numerical results are
provided to illustrate the performance gain brought by these
algorithms.

B. Model Transformation Problem

The second part of this work aims at developing transfor-
mation algorithms that render the speaker models more robust
to acoustic mismatches.

Many ASR systems rely on cepstral mean subtraction
(CMS) [15] to compensate for channel effects [10], [16]. It
is well-known, however, that channel mismatches can still
be a significant source of errors after CMS. Preliminary
experiments reported in Section III-B confirm this point.
For this reason, more sophisticated cepstrum transformation
methods have been proposed in the literature. In [17] and
[18], cepstral compensation vectors are derived from a
stereo database and applied to the training data to adjust
for environmental changes. The compensation vectors depend
either on the SNR or on the phonetic identity of the frames.
In [19], an affine transformation of the cepstral vectors is
estimated from a stereo portion of the database under study,
and then applied to the training data.

The effect of transmission channels on speech has also been
addressed in the context of speech recognition, where acoustic
mismatches increase the confusability between phones and
lead to word recognition errors. However, few of the algo-
rithms developed for speech recognition can be readily applied
to the problem of speaker recognition. For example, adaptation
algorithms that adjust the features or the models to better
represent the test data (e.g., [20]–[23]) are hard to use in
speaker recognition: if the speaker models are adapted with
the test data, they all eventually converge toward the same
model, and the speaker discrimination capability is lost. Other
speech recognition algorithms have addressed the mismatch
issue by assuming thata priori knowledge about the mismatch
is available: some algorithms require stereo data representing
both conditions (e.g., [24], [25]), others need samples of
similar sounds across different channels (e.g., [26]). These
approaches are hard to implement in speaker recognition
because of the practical difficulty of requiring each speaker
to record large amounts of speech over multiple channels. In
the case of telephone speech, this problem could be alleviated
by clustering the channels in two or three categories. For
example, a natural choice would be carbon button versus
electret handsets [27]. The ASR system would then require
a handset detector [28], [29] in order to select one or the
other transformation. In this work, however, we prefer to
assume that noa priori knowledge about the mismatch is
provided or extracted from the speech waveform, and we show
that significant improvement can be achieved without such
knowledge.

The technique that we propose compensates for channel
mismatches by transforming the speaker models. It makes
use of an auxiliary database containing stereo recordings to

compute what we refer to as asynthetic variance distribution.
This distribution can then be used to derive a transformation
that is applied to the variances of speaker models built with
training data from other databases. Two such transformations
are proposed. They essentially increase the variances of the
speaker models by an appropriate amount to render the speaker
models more robust to channel effects. These transformations
can be applied to different speech features, and have been
tested both with cepstrum-based models and with models
based on the new feature described in the paper.

The experiments reported in this paper deal with closed-set
speaker recognition, i.e., with the problem of identifying one
speaker among a known set of speakers. In the last section of
the paper, we show that the methods developed for closed-set
identification extend to open-set speaker recognition, that is to
the problem of determining whether a test speaker belongs to
the training set, and of identifying him if he does.

II. DATABASES USED IN THIS STUDY

The focus of our effort is to ensure that the algorithms we
develop are general and work on different telephone databases.
To establish that this is the case, we used several corpora in
this study. These corpora span different mismatch conditions,
contain different amounts of training and testing data, were
collected by different institutions, and illustrate different kinds
of speech, from read digits to unconstrained conversational
speech.

A. Switchboard NIST95 Evaluation Database

This database is a subset of the Switchboard corpus [30],
collected by the Linguistic Data Consortium. It consists of
conversational telephone speech and was used as a bench-
mark for the NIST’95 (National Institute of Standards and
Technology) Evaluation [31]. The database consists of 26
speakers, 13 male and 13 female. We experimented with the
30-s training, 5-s testing condition. The training data consists
of three 10-s segments taken from different conversations.
The test data consists of 36 5-s segments per speaker. The
36 segments were taken from six different conversations.
About 50% of the conversations from which the test data was
extracted were conducted on the same telephone handset as the
training conversation. We used this database as a benchmark
throughout our work.

B. Switchboard-45 Database (SB45)

We assembled the Switchboard-45 database from the
Switchboard corpus by choosing 45 speakers, 19 male and 26
female, who were not in the NIST95 database. The training
data varies from 20–40 s per speaker and the testing data
consists, for each of the speakers, of approximately 100
segments of lengths greater than 2 s. The test data was
extracted from different conversations than the training data.

C. SRI-Digits Database

The SRI-digits database contains the voices of ten male SRI
employees. The text of the data consists of spoken digits only.
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The data was collected from 20 to 23 telephone handsets, all
connected to the same internal telephone line. Six sets of three
calls were made from each handset. The three calls in each set
contain repetitions of the same number.

This database provides a lot of flexibility for designing
experiments to test our system on different training environ-
ments. We set up four different training conditions, namely,
train on one handset (SRI-1), train on all handsets (SRI-2), and
train on multiple handsets [SRI-3, SRI-4 (different handsets
were used in SRI-3 and SRI-4)]. The test data was kept
identical throughout the experiments. For each speaker, 180
test segments are available. Except for the data set SRI-2, the
telephone units used in training were never used in testing.

D. Stereo-ATIS Database

The Stereo-ATIS database contains read sentences con-
cerning flight-related issues. The sentences were recorded
simultaneously with a Sennheiser close-talking microphone
and over a local telephone line. The database was collected at
SRI and contains the voices of 13 male speakers. Each speaker
read ten sets of about 30 sentences. Each set of sentences was
recorded with the same telephone line but with a different
handset. Sentences are on average 4 s long. The amount of
data used for training and testing was varied according to the
experiments. Because it contains stereo speech, this database
is ideally suited for controlled experiments. It was exten-
sively used in the development of the channel compensation
algorithms.

E. NIST96 Evaluation Database

This database is a subset of the Switchboard corpus. It
contains the 156 male speakers to be recognized in the
NIST’96 Evaluation task (target speakers). We experimented
with the following condition: The training data for each
speaker consists of 2 min of speech extracted from a single
conversation, the test data consists of a total of 1357 segments
of 30 s each (8.7 segments per speaker, on average). The
test segments were extracted from conversations recorded over
telephone channels not seen in training. This is thus a highly
mismatched database. It was used to check the performance of
the model transformation method with a large pool of speakers.

III. B ASELINE SYSTEM AND PRELIMINARY EXPERIMENTS

A. Description of the Baseline System

The speaker recognition system used as a baseline for this
work consists of a series of Gaussian mixture models (GMM’s)
modeling the voices of the speakers to be identified, along
with a classifier that evaluates the likelihood of unknown
speech segments with respect to these models. In closed-set
problems (speaker identification), the classifier hypothesizes
the identity of an unknown test speaker by determining which
model maximizes the likelihood of the test utterance. In open-
set problems, the classifier compares the likelihood scores to
some threshold to reject the test segments that poorly match
all the trained models, and otherwise hypothesizes speaker
identities based on likelihood maximization.

In both training and testing, the speech waveforms are
digitized and preprocessed by a front-end unit that extracts a
set of mel-frequency cepstral coefficients from each frame
of data. The parameters that control the front-end processing
(e.g., frequency range, filter shape, filter resolution) are seta
priori but can be modified if desired. Cepstral mean subtraction
can be applied (optionally) to each utterance to eliminate
some of the spectral shaping occurring in the communication
channel.

For each speaker, a GMM is built using the speaker’s
training data to estimate the prior probabilities, means, and
variances of the Gaussians. The number of Gaussians,,
is the same for each speaker, and is chosen depending on
the amount and nature of the training and testing data. The
generation of a GMM starts with the choice of a random
vector quantization (VQ) codebook. The codebook is then
iterated on, using the Lloyd algorithm [32]. At each VQ
iteration, the Gaussians containing the largest number of data
points are split, and the Gaussians containing the fewest
data points are eliminated. After convergence of the VQ
codebook, Gaussians are fitted to the codewords, and their
parameters are adjusted using a few expectation-maximization
(EM) iterations [32].

When presented with a speech segment from an unknown
speaker, the classifier scores all the sufficiently high energy
frames of the segment against all speaker models, accumulat-
ing the log-likelihoods of the speech frames for each model.
A hard decision is then made as to which model summed up
the highest log-likelihood, and this model is hypothesized as
belonging to the speaker who uttered the test segment.

B. Preliminary Experiments

Preliminary experiments were performed with the baseline
system to measure the effect of channel mismatches and
cepstral mean subtraction on speaker recognition error rates.
These experiments are performed with a 16-coefficient mel-
cepstrum feature.

Using the Stereo-ATIS database described previously, a set
of 64-Gaussian GMM’s was built with 40 s of Sennheiser-
recorded speech per speaker. The system was then tested with
4-s Sennheiser utterances (lines three and four in Table I) and
with the telephone recordings of the same utterances (lines one
and two). For comparison, ten sets of 64-Gaussian GMM’s
were built with speech recorded from ten different telephone
units, and the models were tested with speech from the
same telephone units. The performances of these ten matched
telephone–telephone systems were averaged and reported in
line five of Table I.

The results reported in the table show that although CMS
reduces the error rate significantly in the mismatched system
(from 33% to 16%), its error rate with CMS remains more
than three times higher than that of the corresponding matched
Sennheiser system (16% versus 5%). Other researchers (e.g.,
[33], [34]) have reported similar results: CMS eliminates
convolutional effects but it does not eliminate additive noise
and does not take into account channel nonlinearities and
nonstationarities.
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TABLE I
SPEAKER IDENTIFICATION ERROR RATES WITH MATCHED AND

MISMATCHED DATA (STEREO-ATIS, 40-S TRAINING, 4-S TESTING,
TELEPHONE EXPERIMENTS PERFORMED WITH TEN DIFFERENT HANDSETS)

In addition, CMS can eliminate some of the speaker charac-
teristics as exemplified by the matched Sennheiser experiments
(lines three and four). This result, which may be attributed
to the cancellation of vocal-tract information by the highpass
filtering in CMS, is to be expected also from techniques such
as RASTA preprocessing [33].

Finally, comparing lines three and five in Table I confirms
that, more than the presence of a telephone unit between the
speaker and the ASR system, it is the possible mismatch
between training and testing conditions that results in poor
speaker-ID performance.

In another series of experiments with the Stereo-ATIS data-
base, we measured the average distortion between Sennheiser-
recorded cepstral coefficients and their telephone stereo record-
ings. The distortion measure for cepstral coefficient, is
defined as

where and denote, respectively, theth cepstral co-
efficients of a frame of Sennheiser-recorded data and of
its telephone stereo-recording; and and denote the
standard deviations of the Sennheiser and telephone cepstral
coefficients. The average is taken over all the telephone
units and all the speakers in the database, and is estimated
from all the frames of several sentences of each speaker-
telephone combination. Fig. 1 shows the average distortion

versus the cepstral coefficient index, with and without
cepstral mean subtraction. Again, cepstral mean subtraction
helps decreasing the effects of the channel, although the
distortion remains significant after CMS. The figure also shows
that the channel effects are more noticeable on higher-order
cepstral coefficients. This may be due to the fact that the
overall speech energies in these coefficients are lower than
those in lower-order cepstral coefficients, and that noise effects
are therefore relatively more important.

Because this work focuses on speaker recognition un-
der mismatched conditions, CMS was systematically applied
throughout the paper (unless otherwise specified) as a first
step to eliminate channel effects.

Fig. 1. Average distortion between Sennheiser-recorded cepstral coefficients
and their telephone stereo recordings (Stereo-ATIS, ten sentences per tele-
phone unit and per speaker, ten telephone units, 13 speakers).

IV. FEATURE EXTRACTION FOR SPEAKER IDENTIFICATION

In this section, we discuss some issues regarding the ex-
traction of features for speaker recognition. We show that
the performance of an ASR system depends strongly on the
parameters describing the front-end unit that processes the
incoming speech. To make the front end more robust over a
large range of parameters, we redefine the filterbank based on
which the cepstrum feature is computed. We then demonstrate
experimentally that a large performance improvement can be
obtained by optimizing the front-end parameters. We report
detailed experimental results and suggest intuitive explanations
wherever possible.

We then introduce a new feature: the spectral slope. We
show that the spectral slope (after reoptimization of the front-
end parameters) discriminates better between speakers than the
cepstrum. In addition, we argue that the two features contain
relatively orthogonal information, and we show that combining
them further improves the system performance.

A. Description of the Baseline Front End

The baseline front end used in this work first transforms
the speech signal to the frequency domain via a fast Fourier
transform (FFT). The frequency scale is then warped according
to the mel-scale to give a higher resolution at low frequencies
and a lower resolution at high frequencies. Specifically, we
implemented the bilinear transformation proposed by Acero
[35]

atan

where the constant controls the amount of
warping. The frequency scale is then multiplied by a bank of

filters whose center frequencies are uniformly distributed
in the interval Min Max , along the warped frequency axis.
The width of each of these filters ranges from the center
frequency of the previous filter to the center frequency of the
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TABLE II
BANDWIDTHS OF THE FRONT-END FILTERS AS A

FUNCTION OF THE FILTER CENTER-FREQUENCIES

next filter. The filter shape is trapezoidal, and can vary all the
way from triangular to rectangular. The shape of a particular
set of filters is encoded in a constant that measures the
ratio of the small to the large side of the trapezoid (
means triangular filters, means rectangular filters). The
filterbank energies are then computed by integrating the energy
in each filter, and a discrete cosine transform (DCT) is used to
transform the filterbank log-energies into cepstral coefficients.
Cepstral mean subtraction is applied to each training and
testing utterance.

B. Perceptually Motivated Filterbank Design

Because the bandwidths of the mel-warped filters are chosen
based on the number of filters, the filterbank energy estimates
can be very poor at certain frequencies when the frequency
scale is warped, especially if the number of filters is large.
Ideally, one should nonuniformly sample the Fourier transform
during the computation of the FFT to compensate for the
warped frequency scale. Alternatively, one can make the
bandwidth of each filter a function of frequency (as opposed
to a function of the distance between center frequencies of
adjacent filters as in the baseline design). The question is how
this function should be chosen.

In [36], Klatt proposed a bank of 30 filters based on auditory
perception criteria. Because Klatt’s parameters are derived for
a fixed filterbank size, his design could not be ported directly to
our system. Instead, we approximated Klatt’s coefficients with
the function given in Table II. To provide more flexibility to
the system, an additional parameter, the bandwidth scale,
was introduced in the front end to uniformly scale the filter
bandwidths, i.e.,

where is the bandwidth specified in Table II.

C. Optimization of the Front-End Parameters
for the Filterbank-Based Cepstrum

A number of parameters affect the computation of the
cepstrum, as follows:

number of cepstral coefficients
number of filters in the filterbank

Max –Min effective voice bandwidth
frequency warping constant:1.0 to 1.0

TABLE III
FRONT-END PARAMETERS FOR THEMEL-CEPSTRUM FEATURE, BEFORE

OPTIMIZATION, FOR THE NIST95 DATABASE (30-S TRAINING, 5-S TESTING)

shape of the filters: 1.0 (rectangle), 0.0–1.0
(trapezoid), 0.0 (triangle)
scale factor for the bandwidth: 0.0–1.0.

From a signal processing perspective, defines the reso-
lution that is required in the cepstral domain, defines the
resolution that is required in the frequency domain, Minand
Max define the effective voice bandwidth, defines the
resolution at different frequencies, and defines the shape
of the filters. But how do these parameters affect the classifier
performance?

A series of preliminary experiments showed that the values
of most front-end parameters had a large impact on the
classifier performance. For example, varying the filter shape
while keeping the other parameters constant would make the
error rate vary between 26–29%. Other researchers observed
similar results (e.g., [37] describes an experimental study on
the influence of filterbank design and parameters on isolated
word recognition).

Since it is not clear how each individual front-end parameter
affects the classification error rate, we performed an extensive
optimization of all the front-end parameters, using the NIST95
database. To ensure that the optimized parameters were not
specific to that database, we collected the sets of parameters
that gave the best performance on NIST95 and tested them
on a series of other databases. The front-end parameters that
resulted in the best performance across all the databases were
then chosen as the new front-end for the speaker-identification
system using that feature.

The optimization method we used is based on successive
line searches. At each iteration, all the parameters but one
are held constant, and the speaker classification error rate
is evaluated for different values of the remaining parameter
(line search). The value that leads to the lowest error rate
is retained. The optimized parameter is then fixed, and the
next parameter is optimized. The procedure continues until the
error rate reaches a local minimum. The front-end parameters
used to initialize the optimization procedure (see Table III)
resulted from partial optimizations done previously in our
laboratory. These initial parameters were those used in the
baseline system.

Table IV gives the list of experiments that were conducted
to evaluate the performance of the system for different front-
end parameters. The filterbank used in these experiments is
that described in the previous section.

Fig. 2 illustrates the performance of the system for different
parameter values. Each figure shows the speaker-ID error
rate as a function of one parameter. For each value of this
parameter, a series of experiments was performed by varying
the other parameters and measuring the resulting speaker-ID
error rates. The lowest error rate over each set of experiments
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(a) (b)

(c) (d)

Fig. 2. Optimization of the front-end parameters for the mel-cepstrum feature, when varying: (a)Bs, (b) Nc, (c) Nf , (d) Minf and Maxf (NIST95,
30-s training, 5-s testing).

was retained and plotted against the parameter of interest.
From Fig. 2(a), we observe that the performance is best for
ranging from 0.8–1.0. It was also observed in the experiments
on that the performance was uniformly poor for
and (not displayed in Fig. 2).

The overall performance of the system uniformly improves
as the number of cepstral coefficients increases, up to 17.
Beyond , the error rate begins to increase [Fig. 2(b)].
It is likely that for low orders of cepstral coefficients, speaker
information dominates in the representation but, as the number
of cepstral coefficients increases, the channel information
begins to dominate (see Section III).

Fig. 2(c) shows the result of varying with fixed at
17. Although the accuracy of the estimates of the cepstral
coefficients depends upon the number of filters used in the
computation of the filterbank energy coefficients, the error rate
does not vary significantly with . This may be because the
filter bandwidths are independent of the number of filters;
adding more filters is thus equivalent to interpolating the
filterbank log-energies and does not add to the resolution of
the spectrum.

From Fig. 2(d), we observe that the performance of the
system is quite sensitive to Minand Max . The error rate
is uniformly high when the effective voice bandwidth is
decreased significantly.

Table V gives the parameters of the best front end using
the cepstrum feature, for the NIST95 database. Comparing
Tables III and V, we see that the improvement in error rate
due to the parameter optimization and to the modification of
the filterbank computation is 25.6% relative.

Since the performance of the system varies significantly
with the choice of front-end parameters, the next test that must
be performed is to determine whether this performance gain
holds up on different databases. From the set of experiments
performed in Table IV, approximately 50 of the best systems
were chosen and the performance of these systems was eval-
uated on the SRI-digits and Switchboard-45 databases. The
parameter values that resulted in the best performance varied
across the different databases. The system that resulted in the
best average performance was chosen as the new front end for
the speaker-ID system using the cepstrum as a feature. The
front-end parameters for this system happen to be identical to
those obtained for NIST95 alone (Table V).

D. Filterbank-Based Spectral Slope Along Frequency

We have discussed in a previous section how we computed
the filterbank-based cepstrum. The information contained in
the cepstrum corresponds to the overall shape of the spectrum.
It is likely to be dominated by the first formant since the
first formant has the highest energy, due to the effect of
the glottal roll-off. It is well known that formants and their
transitions are very important for the perception of speech.
In psychophysical studies performed by Klatt [38], it was
observed that when formant locations are changed, the sounds
perceived by listeners are different from what was intended.
The same study shows that humans perceive the same sound
when the relative amplitudes of the formants are modified in
different instantiations of the sound.

Although various algorithms have been developed to es-
timate formant frequency locations in running speech (e.g.,
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TABLE IV
EXPERIMENTS PERFORMED ON THEFRONT-END PARAMETERS FOR THE

MEL-CEPSTRUM FEATURE (NIST95, 30-S TRAINING, 5-S TESTING)

[39]–[41]), the formant-extraction problem is nontrivial. Ma-
chines tend to make gross errors in estimating formant lo-
cations: spurious peaks are introduced and true peaks are
often missed. We therefore looked for a new measure that
would emphasize the locations of formants without actually
estimating them.

Filterbank-based spectral slope is a metric that can do this.
When comparing the slopes of two spectra of the same sound,
the amplitude differences are not captured, while the locations
and bandwidths of resonances are captured. The spectral slope
can also be related to the shape of the glottal pulse. If we
assume a source-system model for speech production, the
spectra corresponding to the system ride on top of the spectra
corresponding to the source. Even if the peak locations are
the same for different speakers, the slope information can give
information about the tilt in the spectrum, the spectral tilt being
related to the shape of the glottal pulse.

A spectral slope metric was suggested by Klatt [38] and
used by Hanson and Wakita [42] for isolated word recognition.
In the latter study, the slope is computed indirectly, using
the relationship between the derivative of the spectrum and
the weighted cepstrum. This principle can be applied to
the filterbank-based cepstra only when the number of filters
is infinite (and nonoverlapped) and the number of cepstral
coefficients is infinite. Neither of these conditions is true in
practice. We therefore propose a technique based on the metric
suggested by Klatt [38] but where the slopes are computed
differently.

As with the cepstrum feature, the speech signal is trans-
formed to the frequency domain via an FFT, and the frequency
scale is warped. The spectrum is then multiplied by a bank
of filters similar to that used for the baseline cepstrum. In a
first implementation, the spectral slope was computed as the

TABLE V
BEST FRONT END FOR THE CEPSTRUM FOR THE

NIST95 DATABASE (30-S TRAINING, 5-S TESTING)

TABLE VI
EXPERIMENTS PERFORMED ON THEFRONT-END PARAMETERS FOR THE

SPECTRAL SLOPE FEATURE (NIST95, 30-S TRAINING, 5-S TESTING)

difference between the log-energies of two consecutive filters.
The best performance with this system on the NIST95 database
resulted in a 31.7% error rate.

This system was then improved in three ways. First, the
original filterbank was replaced with the perceptual filterbank
of Section IV-B. Then, CMS was introduced in the filterbank
slope computation to reduce channel effects. This was done
by taking the DCT of the filterbank log-energies, eliminating
the first cepstral coefficient, , and computing the inverse
DCT of the remaining cepstral coefficients. The spectral slopes
were then computed from the transformed filterbank. Last, the
slope computation was made more robust to small variations
in the filterbank log-energies by using a three-point regression
technique (least mean squares fit to a straight line) instead of
a simple difference between adjacent filters. This new system
was optimized as detailed below.

E. Optimization of the Front-End Parameters
for the Spectral Slope

The front-end parameters were reoptimized for the spectral
slope feature and tested on all the databases. In the context
of the spectral slope, we also found that the performance
of the system varied significantly with the choice of front-
end parameter values. Again, successive line searches were
performed on the NIST95 database (Table VI) to select the
best front end. Fig. 3 shows the optimization of the front
end for different parameters. From the experiments on
[Fig. 3(a)] we notice that the performance of the system is
uniformly good for a choice of between 0.6 and 1.0.

Fig. 3(b) shows the results of the optimization of . From
Fig. 3(b), it appears that the system with 28 filters works best
for . The parameters of the system that worked best
on the NIST95 database are given in Table VII. We did not
perform experiments on Min and Max since the results
on the cepstrum did more or less indicate that the entire
voice bandwidth is important. We tested the performance of



MURTHY et al.: TEXT-INDEPENDENT SPEAKER IDENTIFICATION 561

(a) (b)

Fig. 3. Optimization of front-end parameters for the spectral slope feature, when varying: (a)Bs and (b)Nf (NIST95, 30-s training, 5-s testing).

TABLE VII
BEST FRONT END FOR THE SPECTRAL SLOPE, FOR THE

NIST95 DATABASE (30-S TRAINING, 5-S TESTING)

approximately 50 of the best systems on the SRI-digits and
Switchboard-45 databases. The system that resulted in the best
average performance was identical to the best NIST95 system.

F. Discussion

The experiments we have described indicate that the perfor-
mance of the speaker-ID system fluctuates significantly with
the choice of the front-end parameters. This fluctuation could
be due to one of two reasons: 1) the features are very sensitive
to the front-end parameters and 2) the models generated are
sensitive to small changes in parameter values. It is possible
that the probability density functions used to represent the
features are not Gaussian. However, given that each element
of the feature is represented by a Gaussian-mixture density
function, a poor fit between the model and the data is unlikely.
The variation across databases should thus be attributed to
the variation in channel characteristics across the different
databases and to the sensitivity of the front-end parameters
to the channel characteristics. The new features with the new
front end are still sensitive to channel variations. In Section V,
we address this issue from a modeling point of view, and
show that the new features along with modified models can
significantly improve the performance of the system.

G. Combining Different Features

In most of the experiments we performed on speaker iden-
tification, using the cepstrum or the spectral slope resulted in
similar performance. If the two features carry complementary
information, their combination can be expected to perform
better than either feature alone. To verify this hypothesis, we
combined the two features by taking, for each test utterance,
the arithmetic average of the normalized log-likelihoods of
the observations obtained for each feature individually. The
normalization factor for each feature is simply the length of
the feature vector. This prevents the feature vector with the

highest number of components from dominating the overall
score.

The performances of the systems using each of the features
individually and the combined features across all databases are
shown in Table VIII. Note that the combined systems did work
uniformly better than either feature alone, except on SRI-3
where the spectral slope could not benefit from the additional
information brought by the cepstrum.

H. Extension to Speech Recognition

The techniques described in the previous sections were
tested on aspeech recognitiontask. We determined two new
sets of front-end parameters for speech recognition by Viterbi
aligning the transcriptions of a few hours of Switchboard
speech, modeling each context-independent phone with a
GMM, and finding the front-end parameters that minimized
the phone classification error rate for the cepstrum and spectral
slope features. These front ends were then used to perform
a speech recognition experiment on the 1995 development
set of the large vocabulary continuous speech recognition
(LVCSR) evaluation on the Spanish Callhome database. This
database consists of unconstrained conversational speech over
the telephone, contains many different dialects of Spanish,
and has notoriously high recognition error rates [43]. Results
are summarized in Table IX. Cepstral mean subtraction was
applied at the sentence level, in all the experiments.

Table IX shows that optimizing the front-end parameters
brought a 3.6% absolute reduction in word error rate (WER)
over a state-of-the-art speech recognizer, which is a significant
improvement given the difficulty of the task. However, the
improvement brought by the spectral slope in speaker recog-
nition problemsdoes not carry overto the context of speech
recognition. This confirmsa posteriori that the spectral slope
conveys information that is specific to the speaker, e.g., the
glottal roll-off (see Section IV-D), rather than to the speech.

V. MODEL-BASED CHANNEL COMPENSATION METHODS

In the previous section, we addressed the problem of acous-
tic mismatches between training and testing data from a
feature-extraction viewpoint. In this section, we propose a
model-based channel compensation method that aims at re-
ducing remaining channel effects. The framework for which
this method was developed assumes that—as in many speaker
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TABLE VIII
PERCENT ERROR RATES WITH THE INDIVIDUAL AND COMBINED FEATURES ON DIFFERENT DATABASES [NIST95: 30-S TRAINING,
5-S TESTING; SRI-1, 2, 3, 4 1-MIN TRAINING, 3-S TESTING (SRI-1: MISMATCHED, 1 HANDSET TRAINING, SRI-2: MATCHED,

TRAIN ON ALL HANDSETS, SRI-3, 4: MISMATCHED, TRAIN ON MULTIPLE HANDSETS); SB45: 30-STRAINING, 2-S TESTING]

TABLE IX
PERCENT WORD ERROR RATES FOR THEDEVELOPMENT SET OF

THE SPANISH CALLHOME LVCSR’95 EVALUATION . DIFFERENT

FRONT ENDS AND SPEECH FEATURES ARE COMPARED

identification applications—training data are collected from
only a few telephone units, whereas the system is expected
to recognize the speaker’s voice from many other handset-line
combinations.

In terms of Gaussian mixture modeling, a change in acoustic
environment translates into a modification of the means and
variances of the clusters of features representing the speaker’s
voice. As a consequence, the speaker’s test data are not well
modeled by the Gaussians built to fit the training data, and
speaker misidentifications are likely to occur.

Deriving model transformations that counteract these pa-
rameter changes is made difficult by the fact that collecting
data from many different telephone lines for each speaker in
the database is often impractical. Whereas in speech recogni-
tion a large variety of acoustic environments can be obtained
by pooling speech from different speakers using different
units, in speaker recognition each model must be trained with
data from only one speaker. In this context, a more practical
approach is to collect multi-telephone data from a few patient
speakers, analyze these data, and try to apply the resulting
observations to other databases.

The method we propose essentially performs channelcom-
pensation,as opposed to channeladaptation.It aims at ren-
dering the speaker models more robust to channel mismatches
by appropriately increasing their variances while keeping their
means unchanged. The variance increases are different along
each cepstral coefficient. They are meant to account for the
unknown shifts in the means occurring with the features
when the channel changes, as well as for possible variance
modifications. Fig. 4 illustrates this conceptually in a two-
dimensional (2-D) feature space. If G1 is a cluster of features
observed on the training data collected from a given telephone
unit, the same speech frames transmitted by another unit might
look like G2 or G3 or G4. Since our baseline system uses

Fig. 4. Clusters of data points in a 2-D feature space.

Gaussian mixture models, we can think of G1 as one Gaussian
of a speaker’s GMM. The exact mean and variance changes
from G1 to G2, G3, or G4 are generally unknown at the time
of testing. Instead of trying to estimate them from the data,
we replace G1 with G, a Gaussian that “covers” the possible
regions where we may expect the data to lie when transmitted
by different telephone lines. The variances of the G clusters
of all the speaker models form what we refer to as asynthetic
variance distribution.This variance distribution can then be
used to derive variance transformations for other databases.

As argued in the next section, this approach can also to
some extent compensate for two other factors: the typically
limited amount of training data and the limited size of the
speaker models.

A. Amount of Training Data and Model Size

In matched conditions, the performance of a speaker identi-
fication system largely depends on the amount of training data
available: the more data there are, the better the speaker’s
voice can be modeled, and the lower the error rate is. This
observation also holds for mismatched systems as illustrated
in Fig. 5. In this experiment, we used increasing amounts
of Sennheiser data from the Stereo-ATIS database to build
four GMM’s having, respectively, 64, 128, 256, and 512
Gaussians. We then tested the models with two sets of data:
one contained Sennheiser utterances, the other contained the
stereo recordings of the same sentences, recorded from various
telephone units. The two test sets were kept unchanged as
the amount of training data increased. Fig. 5 compares the
performance of the matched and mismatched systems and
shows that even if mismatched with the test data, more training
data significantly decreases the speaker-ID error rate. It also
shows that larger amounts of training data allow models
with more Gaussians to outperform smaller models (this is
especially visible for the matched system and for the 64- and
512-Gaussian curves in the mismatched system).
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Fig. 5. Speaker-ID error rate as a function of the amount of training
data (Stereo-ATIS, 4-s testing). The upper four curves illustrate the
Sennheiser-telephone system performance, the lower four correspond to
the matched Sennheiser–Sennheiser system (� � � = 64 G, –.–.= 128 G, - -
= 256 G, —= 512 G).

Fig. 6. Average variance alongc2 of four Gaussian speaker models versus
the amount of data used to build the models (� � � = 64 G, –.–.= 128 G, -
- = 256 G, —= 512 G).

The amount of data used to build a GMM and its number
of Gaussians is directly reflected by the variance distribution
of the Gaussians. For illustrative purposes, we computed, for
each GMM built in the previous experiment, the average along
each cepstral coefficient of the variances of the Gaussians in
the GMM. The averages along are plotted in Fig. 6. The
figure shows that, for a given amount of data, the Gaussians
of large GMM’s have lower variances since they model fewer
data points. It also shows that, for a given model size, the
average variance increases with the amount of training data.
This occurs because the EM algorithm effectively tries to
minimize the variances of the Gaussians in the model, which
can better be achieved when there are fewer data points per
Gaussian.

This observation suggests that artificially increasing the
variances of GMM’s may be useful to compensate for the
lack of training data, and to allow larger models to be built.
We will see this assumption verified in our experiments.

B. Synthetic Variance Distribution

Using the Stereo-ATIS database, which (see Section II) con-
tains Sennheiser-recorded speech and telephone-transmitted
speech recorded in stereo mode, a synthetic variance distribu-
tion can be computed as illustrated in Fig. 4. The Sennheiser
utterances of the database are used to build the G1 clusters,
and their telephone stereo recordings are used to estimate the
variances of the G clusters. Because lower-order cepstral coef-
ficients typically have a larger dynamic range than higher-order
coefficients, the variance distribution is estimated separately
for each direction of the cepstral feature space.

The algorithm for computing the synthetic variance distri-
bution can be summarized as follows.

1) Set apart a few Sennheiser sentences from each speaker
and build with them a set of -Gaussian GMM’s that
will be used as frame classifiers.

2) For each speaker in the database:

a) use the speaker’s GMM to label each frame of the
speaker’s remaining Sennheiser data with the index
of the Gaussian that maximizes its log-likelihood,
that is, classify the Sennheiser frames into clus-
ters;

b) for each Gaussian in the GMM (for each cluster):

i) compute the mean, , and the variance, , of
the Sennheiser frames clustered by this Gauss-
ian;

ii) compute the variance, , of the stereo record-
ings of these frames. These stereo recordings
comprise frames recorded on various telephone
units (ten in total in Stereo-ATIS). To compen-
sate for the shift in the means occurring between
the Sennheiser and telephone data, the variance

is computed with respect to the mean of
the Sennheiser frames rather than with respect
to the mean of the telephone frames,.

The variances, , form the desired synthetic vari-
ance distribution.

We used boldface symbols for the means and variances to
emphasize that these are vectors of(the number of cepstral
coefficients) elements. The synthetic variance distribution is
thus -dimensional.

We built such a synthetic variance distribution from the
Stereo-ATIS database, keeping 30 sentences from each of the
13 speakers in the database to train a set of 64-Gaussian GMM
classifiers, and using the other 270 sentences per speaker to
derive the synthetic variance distribution. The feature used
was the 17-dimensional cepstrum.

Fig. 7 displays pairs of variances (, ) computed along
two different cepstral coefficients, and . Each plot
contains 13 64 points (the number of speakers in the
database times the number of Gaussians in the speaker GMM).
The data points in each plot were normalized to have zero
mean and unit variance.

Fig. 7 shows that 1) as we expected, most of the telephone
variances are larger than the corresponding Sennheiser vari-
ances and 2) the variances along show more dispersion
than those along . This is not unexpected since we have
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(a) (b)

Fig. 7. Pairs of normalized variances,�2
T

versus�2
S

, along c1 (left) and c17 (right).

TABLE X
SPEAKER-ID PERCENT ERROR RATE FOR DIFFERENT MODEL SIZES (SRI-DIGITS, 1-MIN TRAINING ON

ONE OF TWO TELEPHONE LINES, 4-S TESTING ON TEN DIFFERENT LINES, 1800 TEST SEGMENTS TOTAL)

observed in Section III that higher-order cepstral coefficients
are more sensitive to channel effects.

C. Affine Transformation of the Variances

In first approximation, the data points in each plot of Fig. 7
can be fitted with a straight line. The coefficients of these
straight lines define anaffine transformationof the Sennheiser
variances onto the telephone variances. Speaker models trained
from databases containing speech collected from a single
acoustic environment (single handset, single telephone line)
can benefit from this transformation to modify their variances
and increase their acoustic coverage.

Expressing the affine transformation as , where
refers to the cepstral coefficient, and and represent,

respectively, the variance of a cluster of Sennheiser frames
and the variance of the corresponding telephone frames, the
parameters and can be estimated from the data, using a
least mean squares fitting:

where and denote, respectively, the vari-
ance of the Sennheiser and telephone data for theth Gaussian
of speaker ’s model, along cepstral coefficient, and where

indicates the average over and , i.e., over all the
Gaussians of all speakers.

The variance transformation equations are then described by

where represents the variance to be transformed (more
specifically the variance of theth Gaussian of speaker’s
model, along ), and represents the same vari-
ance after transformation.

1) Results of Experiments:The affine transformation de-
veloped on Stereo-ATIS was applied to the SRI-digits database
described in Section II. Gaussian mixture models were trained
with 1 min of speech collected from one telephone line (lines
one or two) and tested with multiline data. Table X compares
the error rates with and without variance transformation for
different model sizes. (The last two lines in Table X will be
explained in Section V-D.) Although the transformations were
derived from Stereo-ATIS, they significantly improved the per-
formance on this new database. As we argued in Section V-A,
increasing the model variances also allowed us to increase the
model sizes.
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TABLE XI
SPEAKER-ID PERCENT ERROR RATE FOR DIFFERENT MODEL SIZES, WITH DIFFERENT VARIANCE TRANSFORMATION SCHEMES

(SRI-DIGITS, 1-MIN ONE-LINE TRAINING OR 2-MIN TWO-LINE TRAINING, 4-S TEN-LINE TESTING, 1800 TEST SEGMENTS TOTAL)

One problem with the affine transformation method is that it
implicitly assumes that training data are provided by a single
acoustic environment. If, instead, training data are collected
from a few different telephone lines, one might expect these
data to cover more of the feature space and the reduced
mismatch to require a different variance transformation. As
stereo data are hard to collect from two or more telephone
units simultaneously, another method must be developed to
deal with this situation.

D. Translation to a Fixed Target

For analysis purposes, the affine transformation can be
simplified into a scaling part modeled by the slope or
a translation part modeled by the offset. Table X shows
the error rates obtained by setting the slope to one and
estimating the offset using the least means squares, and the
error rates obtained by setting the offset to zero and estimating
only the scaling part of the transformation. The table shows
clearly that the most significant part of the transformation is
due to its additive offset component. This can be justified
intuitively: in first approximation, the speech coming out of
a telephone line can be represented in the cepstral domain
as a random process resulting from the sum of a clean
speech contribution and a channel effect. Since the signals
are additive, so are their variances. Thus, the translation term
in the variance transformation corresponds to an estimate of
the average channel variance. The full affine transformation,

with its scaling term, refines this model by taking into account
nonadditive effects.

The translation to a fixed targetmethod takes advantage
of this observation to simplify and generalize the variance
transformation and allow it to deal with multiline training
and, as a by-product, to compensate for limited amounts of
training data.

In this method, the synthetic variance distribution is seen as
a “fixed target” to be reached by the variances of the speaker
models. The variances of the speaker models are translated
by an amount such as to make their mean equal to the
mean of the synthetic variance distribution. Mathematically,
the transformation can be described as

where

Provided that the synthetic variance distribution is computed
with a large amount of training data (i.e., large enough to reach
the asymptote in Fig. 6), the translation termalso corrects
the speaker model variances, , for being underestimated
because of a lack of training data.

In addition to its capability of compensating for small
amounts of training data, this method extends easily to training
conditions including more than one line since it does not make
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any assumption about the training conditions (as opposed to
the affine transformation method).

1) Results of Experiments:The affine transformation and
fixed target translation were compared in a set of experiments
performed on the SRI-digits database, with one- and two-
line training conditions. The fixed target translation method
consistently outperformed the affine transformation method.
Results are summarized in Table XI.

Next, a series of experiments was performed to check
that the improvement brought by the fixed target transla-
tion holds for larger sets of speakers. We used, to this
effect, the NIST96 database (see Section II), which contains
mismatched data from 150 male speakers. Speaker-ID ex-
periments were performed with 10, 25, 50, 100, and 150
speakers, with and without variance transformation. Whenever
possible, we averaged the outcomes of several experiments
to improve the precision of the error rate estimates. (For
example, 15 ten-speaker experiments were averaged to obtain
the ten-speaker error rate. For the 25-, 50-, 100-, and 150-
speaker error rates, respectively, six, three, one, and one
experiments were performed and averaged. This way, all
the training and testing sentences were used exactly once
to determine the error rate for each number of speakers.)
The results of these experiments are displayed in Fig. 8. The
figure shows that the improvement brought by the variance
transformation is essentially independent of the number of
speakers. Transforming the model variances improves the
match between the speaker models and the test data, ir-
respectively of the number of speakers to be in the data-
base.

E. Variance Transformation with Multiple Features

So far, we assumed that the cepstrum was the only feature
used for speaker identification. The following experiment
shows the performance on the NIST95 database of a system
combining the optimized features from Section IV with the
fixed target variance transformation. Two 64-Gaussian GMM’s
were built from the cepstra and spectral slopes of the NIST95
training data, using the optimized front ends summarized
in Tables V and VII. Two sets of variance transformations
were computed for the same features and the same front
ends, with Stereo-ATIS data. The transformations were applied
to the NIST95 GMM’s, and testing was done as described
in Section IV-G, that is, by maximizing the sum of the
normalized likelihoods of the two classifiers. The results,
summarized in Table XII, show that the combined system
reduced the error rate from 24.89% to 20.83%, a 16.31%
relative error rate reduction (note that the baseline for this
experiment, 24.89% error rate, assumes that the front end is
already optimized).

F. Extension to Open-Set Speaker Recognition

All the results presented in this paper were for closed-
set speaker identification. Another important problem is that
of open-set speaker recognition, where “target” speakers are
to be identified and “imposter” speakers are to be rejected.
Open-set speaker recognition involves many issues that are

Fig. 8. Speaker-ID error rate as a function of the number of speakers in the
database, with and without variance transformation (NIST96, 2-min training,
30-s testing, mismatched training and testing).

TABLE XII
COMPARISON OFSPEAKER-ID PERCENT ERROR RATE WITH DIFFERENT SYSTEMS,

ON NIST95 (30-S TRAINING, 5-S TESTING, 64 GAUSSIANS PERMODEL)

beyond the scope of this work, however, we would like to
close this paper with the results of an experiment we made on
open-set recognition, and which shows that the performance
improvement that we observed on closed-set identification
holds up in the case of open-set speaker recognition. This
experiment was conducted on NIST95 and extends Table XII
to the case of open-set recognition. The target speakers for
this experiment were the 26 speakers from the closed-set
experiment. To these, 80 imposter speakers were added. The
target speakers were modeled with 64-Gaussian models. Two
speaker-independent background models were built (one com-
puted from the cepstrum feature, the other from the cepstral
slope feature) with data from the SB45 database. These models
had, respectively, 2400 and 800 Gaussians. The likelihood
scores produced by the target models where normalized by the
likelihood scores from the speaker-independent background
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TABLE XIII
COMPARISON OFOPEN-SET SPEAKER RECOGNITION ERROR-RATE WITH DIFFERENT SYSTEMS, ON NIST’95 (30-SECOND TRAINING, 5-SECOND TESTING)

model, and likelihood maximization combined with a rejection
threshold was used to identify or reject test utterances. The
results of this experiment are summarized in Table XIII,
where properties such as the closed-set error rate, the miss
rate with a 3% false alarm rate, and the false acceptance
rates with 10% and 1% miss rates are reported. The com-
bination of the modified features along with the variance
transformations significantly improved all the criteria that we
evaluated.

VI. CONCLUSION

We have attempted to compensate for channel effects in
speaker identification by optimizing the front-end parame-
ters, modifying our filterbank computation, introducing a new
feature, and transforming the speaker models. Although it
has been shown that significant improvements are obtained,
we have only scratched the surface. In the context of fea-
ture extraction, the performance gain is obtained by using
only system features (filterbank-based cepstrum and filterbank-
based cepstral slope). There is a need to develop robust
source-feature extraction algorithms. In the context of model
transformation, the fixed-target compensation algorithm has
resulted in a significant performance gain, but it has certainly
not completely compensated for channel effects. This approach
should be extended to speaker-dependent and microphone-
dependent transformations, which can be expected to give
further improvements.

ACKNOWLEDGMENT

The authors wish to thank L. Neumeyer, Z. Rivlin, and A.
Sankar from SRI International, R. McGowan who was visiting
SRI from the Haskins Laboratories during this work, and M.
Hochberg from Nuance Communications for many insightful
discussions and comments.

REFERENCES

[1] D. A. Reynolds, “Large population speaker identification using clean
and telephone speech,”IEEE Signal Processing. Lett.,vol. 2, pp. 46–48,

Mar. 1995.
[2] G. Doddington, “Speaker recognition—Identifying people by their

voices,” Proc. IEEE,vol. 73, Nov. 1985.
[3] G. Fant, A. Kruckenberg, and L. Nord, “Prosodic and segmental speaker

variations,”Speech Commun.,vol. 10, pp. 521–531, 1991.
[4] D. H. Klatt and L. C. Klatt, “Analysis, synthesis and perception of

voice quality variations among female and male talkers,”J. Acoust.
Soc. Amer.,vol. 87, pp. 820–857, 1990.

[5] D. G. Childers and C. K. Lee, “Voice quality factors, analysis, synthesis
and perception,”J. Acoust. Soc. Amer.,vol. 90, pp. 2394–2410, 1991.

[6] M. Narendranath, H. A. Murthy, B. Yegnanarayana, and S. Rajendran,
“Transformation of formants for voice conversion using artificial neural
networks,”Speech Commun.,vol. 16, pp. 207–216, 1995.

[7] D. A. Reynolds, “Speaker identification and verification using Gauss-
ian mixture speaker models,” inProc. ESCA Workshop on Automatic
Speaker Recognition,1994, pp. 27–30.

[8] T. Matsui and S. Furui, “A text-independent speaker recognition method
robust against utterance variations,” inProc. ICASSP’91, pp. 377–390.

[9] M. Savic and J. Sorenson, “Phoneme based speaker verification,” in
Proc. ICASSP’92,pp. 165–168.

[10] D. A. Reynolds and R. C. Rose, “Robust text-independent speaker
identification using Gaussian mixture speaker models,”IEEE Trans.
Speech Audio Processing, vol. 3, pp. 72–83, Jan. 1995.

[11] H. Gish, M. Schmidt, and A. Mielke, “A robust, segmental method
for text-independent speaker identification,” inProc. ICASSP’94,pp.
145–148.

[12] J. P. Eatoch and J. S. Mason, “A quantitative assessment of the relative
speaker discriminating properties of phonemes,” inProc. ICASSP’94,
pp. 133–136.

[13] K. T. Assaleh and R. J. Mammone, “Robust cepstral features for speaker
identification,” in Proc. ICASSP’94,pp. 129–132.

[14] C. R. Janowski Jr., T. F. Quatieri, and D. A. Reynolds, “Measuring
fine structure in speech: Application to speaker identification,” inProc.
ICASSP’95,pp. 325–328.

[15] S. Furui, “Cepstral analysis technique for automatic speaker verifica-
tion,” IEEE Trans. Acoust., Speech, Signal Processing,vol. ASSP-29,
pp. 254–272, Apr. 1981.

[16] H. Gish and M. Schmidt, “Text-independent speaker identification,”
IEEE Signal Processing Mag.,pp. 18–32, Oct. 1994.

[17] R. M. Stern, F.-H. Liu, P. J. Moreno, and A. Acero, “Signal processing
for robust speech recognition,” inProc. ICSLP’94,Yokohama, Japan,
vol. 3, pp. 1027–1030.

[18] F.-H. Liu, R. M. Stern, A. Acero, and P. J. Moreno, “Environment
normalization for robust speech recognition using direct cepstral com-
parison,” inProc. ICASSP’94,Adelaide, Australia, vol. 2, pp. II/61–64,
19–22.

[19] R. J. Mammone, X. Zhang, and R. P. Ramachandran, “Robust speaker
recognition,” IEEE Signal Processing Mag., vol. 13, pp. 58–71, Sept.
1996.

[20] J. L. Gauvain and C.-H. Lee, “Maximuma posteriori estimation for
multivariate Gaussian mixture observations of Markov chains,”IEEE
Trans. Speech Audio Processing,vol. 2, pp. 291–298, Apr. 1994.

[21] C. J. Legetter and P. C. Woodland, “Flexible speaker adaptation using



568 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 7, NO. 5, SEPTEMBER 1999

maximum likelihood linear regression,” inProc. Spoken Language
Systems Technology Workshop,1995, pp. 110–115.

[22] V. Digalakis, D. Rtischev, and L. Neumeyer, “Speaker adaptation using
constrained reestimation of Gaussian mixtures,”IEEE Trans. Speech
Audio Processing,vol. 3, pp. 357–366, 1995.

[23] A. Sankar and C.-H. Lee, “A maximum-likelihood approach to stochas-
tic matching for robust speech recognition,”IEEE Trans. Speech Audio
Processing,vol. 4, pp. 190–202, May 1996.

[24] L. Neumeyer and M. Weintraub, “Probabilistic optimum filtering for
robust speech recognition,” inProc. ICASSP’94,vol. 1, pp. 417–420.

[25] M. Weintraub and L. Neumeyer, “Constructing telephone acoustic
models from a high-quality speech corpus,” inProc. ICASSP’94,vol.
1, pp. 85–88.

[26] S. Lerner and B. Mazor, “Telephone channel normalization for automatic
speech recognition,” inProc. ICASSP’92,pp. 261–264.

[27] A. E. Rosenberg, J. DeLong, B.-H. Juang, and F. K. Soong, “The use of
cohort normalized scores for speaker verification,” inProc. ICSLP’92,
Banff, Alta., Canada, Oct. 12–16, 1992, pp. 599–602.

[28] D. A. Reynolds, “MIT Lincoln Laboratory site presentation,” inNIST
Speaker Recognition Workshop,Linthicum Heights, MD, Mar. 27, 1996.

[29] L. P. Heck and M. Weintraub, “Handset-dependent background models
for robust text-independent speaker recognition,” inProc. ICASSP-97,
Munich, Germany, Apr. 1997.

[30] J. J. Godfrey, E. C. Holliman, and J. McDaniel, “SWITCHBOARD:
Telephone speech corpus for research and development,” inProc.
ICASSP-92,1992, pp. I-517–I-520.

[31] NIST Speaker Recognition Workshop, Johns Hopkins University, Bal-
timore, MD, June 1995.

[32] L. Rabiner and B.-H. Juang,Fundamentals of Speech Recognition.
Prentice Hall, 1993.

[33] H. Hermansky and N. Morgan, “RASTA processing of speech,”IEEE
Trans. Speech and Audio Proc.,vol. 2, no. 4, pp. 578–589, 1994.

[34] M. Schmidt, H. Gish, and A. Mielke, “Covariance estimation methods
for channel robust text-independent speaker identification,” inProc.
ICASSP-95,May 1995, pp. 333–336.

[35] A. Acero, “Acoustical and environmental robustness in automatic speech
recognition,” Ph.D. thesis, Carnegie Mellon Univ., Pittsburgh, PA, 1990.

[36] D. H. Klatt, “A digital filterbank for spectral matching,” inProc.
ICASSP’76,pp. 573–576.

[37] B. A. Dautrich, L. R. Rabiner, and T. B. Martin, “On the effects of
varying filter bank parameters on isolated word recognition,”IEEE
Trans. Acoust., Speech, Signal Processing,vol. ASSP-31, pp. 793–897,
1983.

[38] D. H. Klatt, “Prediction of perceived phonetic distance from critical-
band spectra: A first step,” inProc. ICASSP’82,pp. 1278–1281.

[39] B. Yegnanarayana, “Formant extraction from linear prediction phase
spectra,”J. Acoust. Soc. Amer.,vol. 63, pp. 1638–1640, 1978.

[40] H. A. Murthy and B. Yegnanarayana, “Formant extraction from group
delay function,”Speech Commun.,vol. 10, pp. 209–221, 1991.

[41] , “Speech processing using group delay functions,”Signal
Process.,vol. 22, pp. 259–267, 1991.

[42] B. A. Hanson and H. Wakita, “Spectral slope distance measures with
linear prediction analysis for word recognition in noise,”IEEE Trans.
Acoust. Speech, Signal Proc.,vol. ASSP-35, pp. 968–973, July 1987.

[43] Proc. of the LVCSR Workshop,Maritime Institute of Technology,
Linthicum Heights, MD, Oct. 28–30, 1995.

Hema A. Murthy (M’94) received the B.E. degree
in electronics and communications engineering from
Osmania, University, Hyderabad, India, in 1980,
the M.Eng degree in electrical and computer engi-
neering from McMaster University, Hamilton, Ont.,
Canada, in 1986, and the Ph.D degree in computer
science and Engineering from Indian Institute of
Technology (IIT), Madras, India, in 1992.

From 1980 through 1983, she was a Scientific
Officer in the Speech and Digital Systems Group,
Tata Institute of Fundamental Research, Bombay,

India. Since 1988, she has been a faculty member with the Department of
Computer Science and Engineering, IIT. She is a member of the TeNet
Group, IIT, where her focus is on telecom network planning and management.
When performing this work, she was an International Fellow at the Speech
Technology and Research Laboratory, SRI International, Menlo Park, CA.
Her research interests are in speech analysis, computer graphics, network
management, and local language interfaces.

Françoise Beaufays (S’88–M’92) was born in
Brussels, Belgium, in 1965. She received the B.S.
degree in mechanical and electrical engineering
from Brussels University (ULB) in 1988, and the
M.S. and Ph.D. degrees in electrical engineering
from Stanford University, Stanford, CA, in 1989
and 1995, respectively.

From 1994 to 1999, she was with the Speech
Technology and Research Laboratory, SRI Inter-
national, Menlo Park, CA. In 1999, she joined
Nuance Communications, Menlo Park, CA. Her

research interests include speech recognition (in particular, acoustic modeling,
confidence estimation, rejection, robustness to noise), speaker identification
and verification, artificial neural networks, and linear adaptive signal
processing.

Dr. Beaufays received a BAEF fellowship in 1988, and Zonta Foundation
Amelia Earhart Fellowships in 1989 and 1991. She is a member of the IEEE
Signal Processing Society.

Larry P. Heck (M’92) was born in Havre, MT,
in 1963. He received the B.S.E.E. degree (honors)
from Texas Technical University, Lubbock, in 1986,
and the M.S. and Ph.D. degrees in electrical engi-
neering from the Georgia Institute of Technology,
Atlanta, in 1989 and 1991, respectively.

From 1986 to 1991, he was a Research and
Teaching Assistant with the Digital Signal Process-
ing Laboratory, School of Electrical Engineering,
Georgia Institute of Technology. From 1988 to
1992, he provided applications development support

with Atlanta Signal Processors, Inc. From 1992 to 1998, he was a Senior
Research Engineer at SRI International, Menlo Park, CA. His research focused
in the areas of speaker and speech recognition, active noise control, and
acoustical machinery monitoring. In 1998, he joined Nuance Communications,
Menlo Park, where he currently leads the company’s R&D effort in speaker
verification.

Dr. Heck was the recipient of a Hazelwood Mathematics Scholarship in
1986 and a Texas Instruments Ph.D. fellowship in 1988. He is a member of
the IEEE Signal Processing Society, the Acoustical Society of America, Tau
Beta Pi, Eta Kappa Nu, and Phi Kappa Phi.

Mitchel Weintraub received the B.S. degree in
applied and engineering physics from Cornell Uni-
versity, Ithaca, NY, in 1979, and the M.S. and
Ph.D. degrees in electrical engineering from Stan-
ford University, Stanford, CA, in 1982 and 1985,
respectively.

From 1985 to 1998, he was a Senior Research
Engineer in the Speech Technology and Research
Laboratory, SRI International, Menlo Park, CA. In
1998, he joined Nuance Communications, Menlo
Park. His work has included research on robust

signal processing, acoustics, pronunciation and language modeling for speech
recognition, speaker verification, recognition search and real-time algorithms,
keyword spotting and confidence computation, spoken language understand-
ing systems, computational models of auditory pitch processing and sound
separation, and pronunciation scoring of nonnative talkers.


