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Abstract— This paper addresses the issue of closed-setof a small fraction of all the acoustic conditions that can
text-independent speaker identification from samples of speech he met during testing. The resulting mismatch between the
recorded over the telephone. It focuses on the effects of acoustictraining and testing data greatly affects the performance of

mismatches between training and testing data, and concentrates ASR t 1. Thi f duci
on two approaches: 1) extracting features that are robust against systems (e.g., [1]). IS paper focuses on reducing

channel variations and 2) transforming the speaker models to the effects of acoustic mismatches on speaker recognition
compensate for channel effects. over the telephone. We propose two approaches to tackle the
First, an experimental study shows that optimizing the front problem: extracting speech features that are robust to channel

end processing of the speech signal can significantly improve effects, and transforming the speaker models to make them
speaker recognition performance. A new filterbank design is L . .

introduced to improve the robustness of the speech spectrum less sensitive to acoustic mismatches.
computation in the front-end unit. Next, a new feature based on
spectral slopes is described. Its ability to discriminate between A. Feature Extraction Problem

speakers is shown to be superior to that of the traditional Although the exact factors in a speech signal that are

cepstrum. This feature can be used alone or combined with ! @

the cepstrum. responsible for speaker characteristics are not exactly known,
The second part of the paper presents two model itis a fact that humans are able to distinguish among speakers

transformation methods that further reduce channel effects. phased on their voices. Studies on interspeaker variations and

These methods make use of a locally collected stereo databaselzaCtOrS affecting voice quality have revealed that there are

to estimate a speaker-independent variance transformation for . " t both th tal and al
each speech feature used by the classifier. The transformations Vartous parameters at both the segmental and suprasegmenta

constructed on this stereo database can then be applied tolevels that contribute to speaker variability [2]-[6]. Despite
speaker models derived from other databases. ~ the fact that one cannot exactly quantify interspeaker vari-
%g(r;bm?dt,_ the methods dteve|0F:ﬁd ml thlz pafeg)roreSl:'tl?d_ In ability in terms of features, current speaker identification
a 0 relative Improvement on € closea-se -S tlraining :
5-s testing condition of the NIST'95 Evaluation task, after sys]'c[ems perfo;mhvery well with cle(;';m speech.. H';).Wevler, th(?
cepstral mean removal. performance of these systems can decrease significantly under
) certain acoustic conditions, such as noisy telephone lines [7].
Index Terms— Channel compensation, channel robusiness, |, yhe |ast few years, much of the speaker identification
front-end features, front-end optimization, text-independent h has b d d deli . 8113
speaker verification, variance transformation. research has been devoted to modeling issues (e.g., [8]-[13]),
and significant performance improvements have been reported
from developing sophisticated speaker models. Comparatively
. INTRODUCTION fewer papers have addressed the equally important issue of ro-

N MANY applications of automatic speaker recognitiodust feature extraction for the purpose of speaker identification.

(ASR), a communication channel separates the user frdd@ny current speaker recognition systems rely on spectral-
the recognition system (e.g., identity verification for bankeased features, in particular the mel-cepstrum. A notable
ing transactions over the phone, voice recognition for sma&¥ception is the work by Janowskt al. [14], where a new
voice mail systems, voice identification for building accesset of features based on amplitude and frequency modula-
identification of specific speakers in multimedia recordingsjon of speech formants and high-resolution measurement of
In most cases, the communication channel is allowed fghdamental frequency is used in addition to the standard
change between different calls to the system, and the déitigrbank-based cepstrum to perform speaker identification

collected to train the speaker models is only representatiQ¥er a degraded channel. A drawback of this approach is that it

requires an estimate of potential formant locations, which can
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filterbank design that improves the robustness of the speaxmpute what we refer to assynthetic variance distribution.
spectrum computation. We then derive a new feature basBEus distribution can then be used to derive a transformation
on spectral slopes that may be used either individually trat is applied to the variances of speaker models built with
in combination with the mel-cepstrum. Numerical results ateaining data from other databases. Two such transformations
provided to illustrate the performance gain brought by thesee proposed. They essentially increase the variances of the
algorithms. speaker models by an appropriate amount to render the speaker
models more robust to channel effects. These transformations
can be applied to different speech features, and have been
B. Model Transformation Problem tested both with cepstrum-based models and with models

The second part of this work aims at developing transfopased on the new feature described in the paper.
mation algorithms that render the speaker models more robusf he experiments reported in this paper deal with closed-set
to acoustic mismatches. speaker recognition, i.e., with the problem of identifying one
Many ASR systems rely on cepstral mean subtractiGipeaker among a known set of speakers. In the last section of
(CMS) [15] to compensate for channel effects [10], [16]. the paper, we show that the methods developed for closed-set
is well-known, however, that channel mismatches can stiflentification extend to open-set speaker recognition, that is to
be a significant source of errors after CMS. Preliminaipe problem of determining whether a test speaker belongs to
experiments reported in Section llI-B confirm this pointthe training set, and of identifying him if he does.
For this reason, more sophisticated cepstrum transformation
methods have been proposed in the literature. In [17] and II. DATABASES USED IN THIS STUDY

[18], cepstral compensatlgn vectors are derived from. aIhe focus of our effort is to ensure that the algorithms we
stereo database and applied to the training data to adJHS

for environmental chanaes. The compensation vectors dep&s elop are general and work on different telephone databases.
ges. P Pg & establish that this is the case, we used several corpora in

either on the SNR or on the phonetic identity of the frames.. : . o
. . is study. These corpora span different mismatch conditions,
In [19], an affine transformation of the cepstral vectors is 0 s X
ntain different amounts of training and testing data, were

estimated fro”.‘ a stereo po_rt!on of the database under Stu@%ﬂected by different institutions, and illustrate different kinds
and then applied to the training data. .- ) .

The effect of transmission channels on speech has also bgfenspeech, from read digits to unconstrained conversational
addressed in the context of speech recognition, where acougplgeCh'
mismatches increase the confusability between phones and . )
lead to word recognition errors. However, few of the algd® Switchboard NIST9S Evaluation Database
rithms developed for speech recognition can be readily appliedThis database is a subset of the Switchboard corpus [30],
to the problem of speaker recognition. For example, adaptationllected by the Linguistic Data Consortium. It consists of
algorithms that adjust the features or the models to bettmnversational telephone speech and was used as a bench-
represent the test data (e.g., [20]-[23]) are hard to userrark for the NIST'95 (National Institute of Standards and
speaker recognition: if the speaker models are adapted wldchnology) Evaluation [31]. The database consists of 26
the test data, they all eventually converge toward the samsmeakers, 13 male and 13 female. We experimented with the
model, and the speaker discrimination capability is lost. Oth80-s training, 5-s testing condition. The training data consists
speech recognition algorithms have addressed the mismatththree 10-s segments taken from different conversations.
issue by assuming thatpriori knowledge about the mismatchThe test data consists of 36 5-s segments per speaker. The
is available: some algorithms require stereo data represent8® segments were taken from six different conversations.
both conditions (e.g., [24], [25]), others need samples éfbout 50% of the conversations from which the test data was
similar sounds across different channels (e.g., [26]). Thesgtracted were conducted on the same telephone handset as the
approaches are hard to implement in speaker recognitimaining conversation. We used this database as a benchmark
because of the practical difficulty of requiring each speakétroughout our work.
to record large amounts of speech over multiple channels. In
the case of telephone speech, this problem could be alleviaggdswitchboard-45 Database (SB45)
example, A natural cholce would be carbon button versy €. SSembled the Switchboard-45 database from the

' Kiitchboard corpus by choosing 45 speakers, 19 male and 26

electret handsets [27]. The ASR system would then requ5‘reemale, who were not in the NIST95 database. The training

a handset detector [28], [29] in order to select one or t%eata varies from 20-40 s per speaker and the testing data

other transformation. In this work, however, we prefer tg_ . .
. ) ._consists, for each of the speakers, of approximately 100

assume that na priori knowledge about the mismatch is
s\%gments of lengths greater than 2 s. The test data was

provided or extracted from the speech waveform, and we shg . . -
I i . . xtracted from different conversations than the training data.
that significant improvement can be achieved without sufh

knowledge. .

The technique that we propose compensates for chanfrelSRI-Digits Database
mismatches by transforming the speaker models. It makesThe SRI-digits database contains the voices of ten male SRI
use of an auxiliary database containing stereo recordingsetmployees. The text of the data consists of spoken digits only.
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The data was collected from 20 to 23 telephone handsets, alln both training and testing, the speech waveforms are
connected to the same internal telephone line. Six sets of thdigitized and preprocessed by a front-end unit that extracts a
calls were made from each handset. The three calls in eachssgtof V. mel-frequency cepstral coefficients from each frame
contain repetitions of the same number. of data. The parameters that control the front-end processing
This database provides a lot of flexibility for designinde.g., frequency range, filter shape, filter resolution) areaset
experiments to test our system on different training enviropriori but can be modified if desired. Cepstral mean subtraction
ments. We set up four different training conditions, namelgan be applied (optionally) to each utterance to eliminate
train on one handset (SRI-1), train on all handsets (SRI-2), asgime of the spectral shaping occurring in the communication
train on multiple handsets [SRI-3, SRI-4 (different handsethannel.
were used in SRI-3 and SRI-4)]. The test data was keptFor each speaker, a GMM is built using the speaker’s
identical throughout the experiments. For each speaker, 1i8fining data to estimate the prior probabilities, means, and
test segments are available. Except for the data set SRI-2, vheiances of the Gaussians. The number of Gaussidps,
telephone units used in training were never used in testingis the same for each speaker, and is chosen depending on
the amount and nature of the training and testing data. The
D. Stereo-ATIS Database generation of a GMM starts with the choice of a random

The Stereo-ATIS database contains read sentences cHTEr quantization (VQ) codebook. The codebook is then
cerning flight-related issues. The sentences were recor(ﬁt@é’lat?d on, using _the Lond.a.Igorithm [32]. At each VQ
simultaneously with a Sennheiser close-talking microphoffg"ation, the Gaussians containing the largest number of data
and over a local telephone line. The database was collecte®@'tS are split, and the Gaussians containing the fewest
SRI and contains the voices of 13 male speakers. Each spe&l@ift Points are eliminated. After convergence of the VQ

read ten sets of about 30 sentences. Each set of sentencesdRdEP00K, Gaussians are fitted to the codewords, and their

recorded with the same telephone line but with a differeR@rameters are adjusted using a few expectation-maximization

handset. Sentences are on average 4 s long. The amourk=df) iterations [32].

data used for training and testing was varied according to the’VN€n presented with a speech segment from an unknown
aker, the classifier scores all the sufficiently high energy

experiments. Because it contains stereo speech, this datalyi&

is ideally suited for controlled experiments. It was exterfl@mes of the segment against all speaker models, accumulat-

sively used in the development of the channel compensati'&g the Iog-_lil_<elihoods of the speech frgmes for each model.
algorithms. A hard decision is then made as to which model summed up

the highest log-likelihood, and this model is hypothesized as
E. NIST96 Evaluation Database belonging to the speaker who uttered the test segment.

This database is a subset of the Switchboard corpus. It
contains the 156 male speakers to be recognized in #BePreliminary Experiments

N.IST 96 Evalua't|on task'(j[arget speakgr;). We eXpe”memedPreliminary experiments were performed with the baseline
with the following condition: The training data for each

sP/stem to measure the effect of channel mismatches and

speaker consists of 2 min of speech extracted from a SINApstral mean subtraction on speaker recognition error rates.
conversation, the test data consists of a total of 1357 segm %se experiments are performed with a 16-coefficient mel-

of 30 s each (8.7 segments per speaker, on average).
test t tracted f ti ded ngtrum feature.
est segments were extracted from conversations recorded V&l the Stereo-ATIS database described previously, a set

telephone channels not seen in training. This is thus a higfgy 4-Gaussian GMM’s was built with 40 s of Sennheiser-

mismatched database. It was used to check the performanc?eg rded speech per speaker. The system was then tested with

the model transformation method with a large pool of speakezs_s Sennheiser utterances (lines three and four in Table 1) and

with the telephone recordings of the same utterances (lines one
and two). For comparison, ten sets of 64-Gaussian GMM's
were built with speech recorded from ten different telephone
units, and the models were tested with speech from the
The speaker recognition system used as a baseline for tasne telephone units. The performances of these ten matched
work consists of a series of Gaussian mixture models (GMM'&lephone—telephone systems were averaged and reported in
modeling the voices of the speakers to be identified, alofige five of Table I.
with a classifier that evaluates the likelihood of unknown The results reported in the table show that although CMS
speech segments with respect to these models. In closedredtices the error rate significantly in the mismatched system
problems (speaker identification), the classifier hypothesizeom 33% to 16%), its error rate with CMS remains more
the identity of an unknown test speaker by determining whighan three times higher than that of the corresponding matched
model maximizes the likelihood of the test utterance. In opeBennheiser system (16% versus 5%). Other researchers (e.g.,
set problems, the classifier compares the likelihood scores[38], [34]) have reported similar results: CMS eliminates
some threshold to reject the test segments that poorly matdnvolutional effects but it does not eliminate additive noise
all the trained models, and otherwise hypothesizes speakad does not take into account channel nonlinearities and
identities based on likelihood maximization. nonstationarities.

I1l. BASELINE SYSTEM AND PRELIMINARY EXPERIMENTS

A. Description of the Baseline System
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TABLE | 08
SPEAKER IDENTIFICATION ERROR RATES WITH MATCHED AND
MiSMATCHED DATA (STEREC-ATIS, 40-S TRAINING, 4-S TESTING,

08
TELEPHONE EXPERIMENTS PERFORMED WITH TEN DIFFERENT HANDSETS)

training testing CMS | % error o7

g
@

Sennheiser | telephone yes 16.06

i
Sennheiser | telephone no 33.53 % 05

g
Sennheiser | Sennheiser | yes 5.22 2 04
Sennheiser | Sennheiser | no 3.85

03k

telephone | telephone yes 5.81

0.2

e With cepstral mean subtraction
------ Without cepstral mean subtraction

0.1 1 1
In addition, CMS can eliminate some of the speaker charac- ° % copetral cosfficontindex, k '

teristics as exemplified by the matched Sennheiser experimelpts — . -

. . . . g. 1. Average distortion between Sennheiser-recorded cepstral coefficients
(lines three and four). This result, which may be att”bme(d]d their telephone stereo recordings (Stereo-ATIS, ten sentences per tele-
to the cancellation of vocal-tract information by the highpagsone unit and per speaker, ten telephone units, 13 speakers).
filtering in CMS, is to be expected also from techniques such
as RASTA preprocessing [33].

Finally, comparing lines three and five in Table | confirms _ _ . _ _
that, more than the presence of a telephone unit between th# this section, we discuss some issues regarding the ex-
speaker and the ASR system, it is the possible mismatéaction of features for speaker recognition. We show that
between training and testing conditions that results in pobte performance of an ASR system depends strongly on the
speaker-ID performance. parameters describing the front-end unit that processes the

In another series of experiments with the Stereo-ATIS dafcoming speech. To make the front end more robust over a
base, we measured the average distortion between Sennhel3&ge range of parameters, we redefine the filterbank based on
recorded cepstral coefficients and their telephone stereo reca¥flich the cepstrum feature is computed. We then demonstrate

ings. The distortion measure for cepstral coefficiént;, is €xperimentally that a large performance improvement can be
defined as obtained by optimizing the front-end parameters. We report

detailed experimental results and suggest intuitive explanations
wherever possible.

IV. FEATURE EXTRACTION FOR SPEAKER IDENTIFICATION

S _ T2 .
dy, = w We then introduce a new feature: the spectral slope. We
9% %% show that the spectral slope (after reoptimization of the front-

end parameters) discriminates better between speakers than the
cepstrum. In addition, we argue that the two features contain

where ¢; and ¢I' denote, respectively, théth cepstral co- . ) - -
g . re#a'uvely orthogonal information, and we show that combining
efficients of a frame of Sennheiser-recorded data and tﬂ

its telephone stereo-recording; amg and of denote the em further improves the system performance.

standard deviations of the Sennheiser and telephone cepstral o )

coefficients. The average) is taken over all the telephone” Description of the Baseline Front End

units and all the speakers in the database, and is estimate@ihe baseline front end used in this work first transforms

from all the frames of several sentences of each speakére speech signal to the frequency domain via a fast Fourier

telephone combination. Fig. 1 shows the average distortitransform (FFT). The frequency scale is then warped according

dy versus the cepstral coefficient indéx with and without to the mel-scale to give a higher resolution at low frequencies

cepstral mean subtraction. Again, cepstral mean subtractamd a lower resolution at high frequencies. Specifically, we

helps decreasing the effects of the channel, although tigplemented the bilinear transformation proposed by Acero

distortion remains significant after CMS. The figure also shoy35]

that the channel effects are more noticeable on higher-order

cepstral coefficients. This may be due to the fact that the Whew = w + 2atan

overall speech energies in these coefficients are lower than

those in lower-order cepstral coefficients, and that noise effeetbere the constant,, € [0, 1] controls the amount of

are therefore relatively more important. warping. The frequency scale is then multiplied by a bank of
Because this work focuses on speaker recognition ui filters whose center frequencies are uniformly distributed

der mismatched conditions, CMS was systematically appligdthe intervalMin ;, Max,], along the warped frequency axis.

throughout the paper (unless otherwise specified) as a fifste width of each of these filters ranges from the center

step to eliminate channel effects. frequency of the previous filter to the center frequency of the

F,, sin w
1-F, cosw
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TABLE 1 TABLE 1l
BANDWIDTHS OF THE FRONT-END FILTERS AS A FRONT-END PARAMETERS FOR THEMEL-CEPSTRUM FEATURE, BEFORE
FUNCTION OF THE FILTER CENTER-FREQUENCIES OPTIMIZATION, FOR THE NIST95 DaTABASE (30-S TRAINING, 5-S TESTING)
center-frequency(f.) | bandwidth(Bw) Ns| Ne|Ming | Maxy | B, | Fy | Tr || % error
(Hz) (Hz2) 22 | 16 | 100 | 3300 | N/A | 0.6 [ 0.6 | 33.44
fe < 1000 137.5
1000 < £, < 2000 L1 (£.)07 T, shape o_f the fllter_s: 1.0 (rectangle), 0.0-1.0
(trapezoid), 0.0 (triangle)
fo > 2000 10.84 ()04 B, scale factor for the bandwidth: 0.0-1.0.

From a signal processing perspectivé, defines the reso-

lution that is required in the cepstral domaiN, defines the
next filter. The filter shape is trapezoidal, and can vary all thesolution that is required in the frequency domain, Mand
way from triangular to rectangular. The shape of a particulax; define the effective voice bandwidtlf;,, defines the
set of filters is encoded in a constafit that measures the resolution at different frequencies, aff¢l defines the shape
ratio of the small to the large side of the trapezdld & 0 of the filters. But how do these parameters affect the classifier
means triangular filterd,. = 1 means rectangular filters). Theperformance?
filterbank energies are then computed by integrating the energyA series of preliminary experiments showed that the values
in each filter, and a discrete cosine transform (DCT) is useddb most front-end parameters had a large impact on the
transform the filterbank log-energies into cepstral coefficientdassifier performance. For example, varying the filter shape
Cepstral mean subtraction is applied to each training awdhile keeping the other parameters constant would make the

testing utterance. error rate vary between 26—-29%. Other researchers observed
similar results (e.g., [37] describes an experimental study on
B. Perceptually Motivated Filterbank Design the influence of filterbank design and parameters on isolated

. ' word r nition).
Because the bandwidths of the mel-warped filters are chosén d ecog tion) Lo
. . ; ince it is not clear how each individual front-end parameter
based on the number of filters, the filterbank energy estimat P )
affects the classification error rate, we performed an extensive

can be very poor at certain frequencies when the frequen(5:|¥timization of all the front-end parameters, using the NIST95

scale is warped, especially if the number of filters is large. L
. : atabase. To ensure that the optimized parameters were not
Ideally, one should nonuniformly sample the Fourier transform. .
specific to that database, we collected the sets of parameters

svl;rrmg dtr}?e CS;nnF::Uta;f;eOf ';E:mj;efo Cgrzzpigiatri;g tt?]eat gave the best performance on NIST95 and tested them

pec q y e : : Y, on a series of other databases. The front-end parameters that
bandwidth of each filter a function of frequency (as opposed. o in the best perf Il the datab

S performance across all the databases were

to a function of the distance between center frequencies o . e
. . . . ; .~~~ then chosen as the new front-end for the speaker-identification
adjacent filters as in the baseline design). The question is how

this function should be chosen. System using that feature.

In [36], Klatt proposed a bank of 30 filters based on auditor The optimization methpd we used is based on successive
; o , . ne searches. At each iteration, all the parameters but one
perception criteria. Because Klatt's parameters are derived for

. ) ) . . . re held constant, and the speaker classification error rate
a fixed filterbank size, his design could not be ported directly fo : -
. , - IS evaluated for different values of the remaining parameter
our system. Instead, we approximated Klatt's coefficients wi
: ) . . - Ine search). The value that leads to the lowest error rate
the function given in Table Il. To provide more flexibility to. ; - . .
. . is retained. The optimized parameter is then fixed, and the
the system, an additional parameter, the bandwidth sBale . o : ;
. i : . next parameter is optimized. The procedure continues until the
was introduced in the front end to uniformly scale the filter -
bandwidths. ie error rate reaches a local minimum. The front-end parameters

used to initialize the optimization procedure (see Table III)

Buw.... = B. Bw resulted from partial optimizations done previously in our
wew o laboratory. These initial parameters were those used in the
where Bw is the bandwidth specified in Table II. baseline system.

Table IV gives the list of experiments that were conducted
to evaluate the performance of the system for different front-
end parameters. The filterbank used in these experiments is
that described in the previous section.

A number of parameters affect the computation of the Fig. 2 jllustrates the performance of the system for different

C. Optimization of the Front-End Parameters
for the Filterbank-Based Cepstrum

cepstrum, as follows: parameter values. Each figure shows the speaker-ID error
N, number of cepstral coefficients rate as a function of one parameter. For each value of this
Ny number of filters in the filterbank parameter, a series of experiments was performed by varying
Max—Min; effective voice bandwidth the other parameters and measuring the resulting speaker-ID

r, frequency warping constant:1.0 to +1.0 error rates. The lowest error rate over each set of experiments
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Fig. 2. Optimization of the front-end parameters for the mel-cepstrum feature, when varyings; (dp) N., (c) Ny, (d) Miny and Max (NIST95,
30-s training, 5-s testing).

was retained and plotted against the parameter of interestSince the performance of the system varies significantly
From Fig. 2(a), we observe that the performance is besBfor with the choice of front-end parameters, the next test that must
ranging from 0.8-1.0. It was also observed in the experimerits performed is to determine whether this performance gain
on B, that the performance was uniformly poor fBf, > 0.2 holds up on different databases. From the set of experiments
andZ,. < 0.5 (not displayed in Fig. 2). performed in Table 1V, approximately 50 of the best systems
The overall performance of the system uniformly improvesere chosen and the performance of these systems was eval-
as the number of cepstral coefficients increases, up to uated on the SRI-digits and Switchboard-45 databases. The
Beyond N, = 17, the error rate begins to increase [Fig. 2(b)jparameter values that resulted in the best performance varied
It is likely that for low orders of cepstral coefficients, speakexcross the different databases. The system that resulted in the
information dominates in the representation but, as the numibgst average performance was chosen as the new front end for
of cepstral coefficients increases, the channel informatitite speaker-ID system using the cepstrum as a feature. The
begins to dominate (see Section Il). front-end parameters for this system happen to be identical to
Fig. 2(c) shows the result of varyiny; with N. fixed at those obtained for NIST95 alone (Table V).
17. Although the accuracy of the estimates of the cepstral
coefficients depends upon the number of filters used in the Filterbank-Based Spectral Slope Along Frequency
computation of the filterbank energy coefficients, the error ratewe have discussed in a previous section how we computed
does not vary significantly wittV,. This may be because thethe filterbank-based cepstrum. The information contained in
filter bandwidths are independent of the number of filterghe cepstrum corresponds to the overall shape of the spectrum.
adding more filters is thus equivalent to interpolating thg is likely to be dominated by the first formant since the
filterbank log-energies and does not add to the resolution fakt formant has the highest energy, due to the effect of
the spectrum. the glottal roll-off. It is well known that formants and their
From Fig. 2(d), we observe that the performance of theansitions are very important for the perception of speech.
system is quite sensitive to Minand Max.. The error rate In psychophysical studies performed by Klatt [38], it was
is uniformly high when the effective voice bandwidth isobserved that when formant locations are changed, the sounds
decreased significantly. perceived by listeners are different from what was intended.
Table V gives the parameters of the best front end usifiine same study shows that humans perceive the same sound
the cepstrum feature, for the NIST95 database. Comparwden the relative amplitudes of the formants are modified in
Tables Ill and V, we see that the improvement in error ratfifferent instantiations of the sound.
due to the parameter optimization and to the modification of Although various algorithms have been developed to es-
the filterbank computation is 25.6% relative. timate formant frequency locations in running speech (e.g.,



560 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 7, NO. 5, SEPTEMBER 1999

TABLE IV TABLE V
EXPERIMENTS PERFORMED ON THE FRONT-END PARAMETERS FOR THE BEST FRONT END FOR THE CEPSTRUM FOR THE
MEL-CePSTRUM FEATURE (NIST95, 30-S RAINING, 5-S TESTING) NIST95 DatABASE (30-S TRAINING, 5-S TESTING)
I. Experiments on B, Ny | N. | Ming | Max; | B, | Fy, | T, | % error

N;=20,N. =17, B, = {0.2,0.4,0.5,0.6,0.8,0.9, 1.0}, o | 171 200 | 3300 loglo2 ool 2480

F, =4{0.0 — 0.5 in steps of 0.1}, 7, = {0.0 — 1.0 in steps of 0.1},

Min; = 300 Hz, Max; = 3100 Hz.
I P TABLE VI

EXPERIMENTS PERFORMED ON THEFRONT-END PARAMETERS FOR THE
SPECTRAL SLoPE FEATURE (NIST95, 30-S RAINING, 5-S TESTING)

II. Experiments on N,

Ny = {20,24}, N, = {{10,14,17},{10, 14,17, 18,92} }, B, = 0.8,
I. Experiments on B,

F,, = {0.0 — 0.2 in steps of 0.1}, 7, = {0.5 — 1.0 in steps of 0.1},

. Ny =24,B, ={0.2,0.4,0.6,0.8,1.0}, F,, = {0.0 — 0.2 in steps of 0.1},
Miny = 300 Hz, Max; = 3100 Hz.

T, = {0.0 — 1.0 in steps of 0.1}, Miny = 100H z, Max; = 3300H z.
III. Experiments on Ny

N; = {20,24,28,32}, N. = 17, B, = 0.8, F,, = {0.0 — 0.2 in steps of 0.1}, I1. Experiments on Ny

T, = {0.5 — 1.0 in steps of 0.1}, Min, = 300H z, Max; = 3100H 2. Ny = {20 - 32}, B, = {0.8,1.0},Miny = 100H 2z, Max; = 3300H 2,

IV. Experiments on Miny and Max, Fy={0.0-02},T, = {0.0 - 1.0}.

Ny=24,N,=17,B, = 08,F, = 02,T, = 0.9

Min; = {100 — 500H 2}, Max; = {3000 — 3300H z}. difference between the log-energies of two consecutive filters.
The best performance with this system on the NIST95 database
resulted in a 31.7% error rate.

[39]-[41]), the formant-extraction problem is nontrivial. Ma- This system was then improved in three ways. First, the
chines tend to make gross errors in estimating formant |@r|g|nal filterbank was replaced with the perceptual filterbank
cations: spurious peaks are introduced and true peaks @fé&ection IV-B. Then, CMS was introduced in the filterbank
often missed. We therefore looked for a new measure ti§é@pe computation to reduce channel effects. This was done
would emphasize the locations of formants without actualy taking the DCT of the filterbank log-energies, eliminating
estimating them. the first cepstral coefficienty, and computing the inverse
Filterbank-based spectral slope is a metric that can do tHRCT of the remaining cepstral coefficients. The spectral slopes
When comparing the slopes of two spectra of the same sougre then computed from the transformed filterbank. Last, the
the amplitude differences are not captured, while the locatiof@Pe computation was made more robust to small variations
and bandwidths of resonances are captured. The spectral sige filterbank log-energies by using a three-point regression
can also be related to the shape of the glottal pulse. If W@ehnique (least mean squares fit to a straight line) instead of
assume a source-system model for speech production, gample difference betyveen adjacent filters. This new system
spectra corresponding to the system ride on top of the spedi@S Optimized as detailed below.
corresponding to the source. Even if the peak locations are
the same for different speakers, the slope information can gise Optimization of the Front-End Parameters
information about the tilt in the spectrum, the spectral tilt bein" the Spectral Slope
related to the shape of the glottal pulse. The front-end parameters were reoptimized for the spectral
A spectral slope metric was suggested by Klatt [38] anglope feature and tested on all the databases. In the context
used by Hanson and Wakita [42] for isolated word recognitionf the spectral slope, we also found that the performance
In the latter study, the slope is computed indirectly, usingf the system varied significantly with the choice of front-
the relationship between the derivative of the spectrum asfld parameter values. Again, successive line searches were
the weighted cepstrum. This principle can be applied serformed on the NIST95 database (Table VI) to select the
the filterbank-based cepstra only when the number of filtesest front end. Fig. 3 shows the optimization of the front
is infinite (and nonoverlapped) and the number of cepstr@hd for different parameters. From the experimentsn
coefficients is infinite. Neither of these conditions is true ifFig. 3(a)] we notice that the performance of the system is
practice. We therefore propose a technique based on the mairiiformly good for a choice of3, between 0.6 and 1.0.
suggested by Kilatt [38] but where the slopes are computedrig. 3(b) shows the results of the optimization/éf. From
differently. Fig. 3(b), it appears that the system with 28 filters works best
As with the cepstrum feature, the speech signal is trarfer B, = 1.0. The parameters of the system that worked best
formed to the frequency domain via an FFT, and the frequenoy the NIST95 database are given in Table VII. We did not
scale is warped. The spectrum is then multiplied by a baplerform experiments on Mjnand Max since the results
of filters similar to that used for the baseline cepstrum. In@ the cepstrum did more or less indicate that the entire
first implementation, the spectral slope was computed as th@ce bandwidth is important. We tested the performance of
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Fig. 3. Optimization of front-end parameters for the spectral slope feature, when varying; @)d (b) N, (NIST95, 30-s training, 5-s testing).

TABLE VII highest number of components from dominating the overall
BEST FRONT END FOR THE SPECTRAL SLOPE, FOR THE score.
NIST95 DataBASE (30-S TRAINING, 5-S TESTING)

The performances of the systems using each of the features

Ny | Ming | Max; | B, | F, | T, || % error individually and the combined features across all databases are
shown in Table VIII. Note that the combined systems did work
28 | 100 | 3300 [1.0|0.1|0.3| 24.15 uniformly better than either feature alone, except on SRI-3

where the spectral slope could not benefit from the additional
information brought by the cepstrum.

approximately 50 of the best systems on the SRI-digits and

Switchboard-45 databases. The system that resulted in the b&sExtension to Speech Recognition

average performance was identical to the best NIST95 systemy,o techniques described in the previous sections were

tested on aspeech recognitiomask. We determined two new
sets of front-end parameters for speech recognition by Viterbi
The experiments we have described indicate that the perfatigning the transcriptions of a few hours of Switchboard
mance of the speaker-ID system fluctuates significantly wigpeech, modeling each context-independent phone with a
the choice of the front-end parameters. This fluctuation coutMM, and finding the front-end parameters that minimized
be due to one of two reasons: 1) the features are very sensitive phone classification error rate for the cepstrum and spectral
to the front-end parameters and 2) the models generated slope features. These front ends were then used to perform
sensitive to small changes in parameter values. It is possiblespeech recognition experiment on the 1995 development
that the probability density functions used to represent tiset of the large vocabulary continuous speech recognition
features are not Gaussian. However, given that each elem@WCSR) evaluation on the Spanish Callhome database. This
of the feature is represented by a Gaussian-mixture densigtabase consists of unconstrained conversational speech over
function, a poor fit between the model and the data is unlikelthe telephone, contains many different dialects of Spanish,
The variation across databases should thus be attributedail has notoriously high recognition error rates [43]. Results
the variation in channel characteristics across the differeare summarized in Table IX. Cepstral mean subtraction was
databases and to the sensitivity of the front-end parametepplied at the sentence level, in all the experiments.
to the channel characteristics. The new features with the newTable IX shows that optimizing the front-end parameters
front end are still sensitive to channel variations. In Section Wrought a 3.6% absolute reduction in word error rate (WER)
we address this issue from a modeling point of view, amer a state-of-the-art speech recognizer, which is a significant
show that the new features along with modified models camprovement given the difficulty of the task. However, the

F. Discussion

significantly improve the performance of the system. improvement brought by the spectral slope in speaker recog-
nition problemsdoes not carry oveto the context of speech
G. Combining Different Features recognition. This confirma posteriorithat the spectral slope

nveys information that is specific to the speaker, e.g., the

In most of the experiments we performed on speaker ide?f—P | roll-off Section IV-D her th h h
tification, using the cepstrum or the spectral slope resulted JtPtta! rofl-o (see Section IV-D), rather than to the speech.

similar performance. If the two features carry complementary

information, their combination can be expected to perform V- MODEL-BASED CHANNEL COMPENSATION METHODS

better than either feature alone. To verify this hypothesis, weln the previous section, we addressed the problem of acous-
combined the two features by taking, for each test utterantie, mismatches between training and testing data from a
the arithmetic average of the normalized log-likelihoods déature-extraction viewpoint. In this section, we propose a
the observations obtained for each feature individually. Theodel-based channel compensation method that aims at re-
normalization factor for each feature is simply the length afucing remaining channel effects. The framework for which
the feature vector. This prevents the feature vector with thies method was developed assumes that—as in many speaker
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TABLE VI
PERCENT ERROR RATES WITH THE INDIVIDUAL AND COMBINED FEATURES ON DIFFERENT DATABASES [NIST95: 30-S RAINING,
5-S TesTING, SRI-1, 2, 3, 4 IMIN TRAINING, 3-S TESTING (SRI-1: MiISMATCHED, 1 HANDSET TRAINING, SRI-2: MATCHED,
TRAIN ON ALL HANDSETS SRI-3, 4: MSMATCHED, TRAIN ON MULTIPLE HANDSETS); SB45: 30-SRAINING, 2-S TESTING]

Feature NIST95 | SRI- | SRI—2 | SRI — 3 | SRI—4 | SB45

cepstrum 24.9 26.9 8.2 17.5 17.9 |45.11
spectral slope 24.15 27.1 8.28 13.06 16.06 | 44.81

combined features 23.4 25.4 7.5 13.45 15.94 42.9

TABLE IX
PERCENT WORD ERROR RATES FOR THE DEVELOPMENT SET OF
THE SPANISH CALLHOME LVCSR’95 EVALUATION . DIFFERENT
FRONT ENDS AND SPEECH FEATURES ARE COMPARED

Feature WER in %
——— - G3
cepstrum, non-optimized front-end 75.0 _ o
Fig. 4. Clusters of data points in a 2-D feature space.
cepstrum, optimized front-end 71.4
spectral slope, optimized {ront-end 75.0 Gaussian mixture models, we can think of G1 as one Gaussian

of a speaker's GMM. The exact mean and variance changes
from G1 to G2, G3, or G4 are generally unknown at the time

identification applications—training data are collected froff testing. Instead of trying to estimate them from the data,
only a few telephone units, whereas the system is expectf replace G1 with G, a Gaussian that “covers” the possible
to recognize the speaker’s voice from many other handset-lif@gions where we may expect the data to lie when transmitted
combinations. by different telephone lines. The variances of the G clusters
In terms of Gaussian mixture modeling, a change in acousfitall the speaker models form what we refer to asyathetic
environment translates into a modification of the means aMariance distribution.This variance distribution can then be
variances of the clusters of features representing the speaktpgd to derive variance transformations for other databases.
voice. As a consequence, the speaker’s test data are not weftS argued in the next section, this approach can also to
modeled by the Gaussians built to fit the training data, as@me extent compensate for two other factors: the typically
Speaker misidentifications are ||ke|y to occur. limited amount of training data and the limited size of the
Deriving model transformations that counteract these péPeaker models.
rameter changes is made difficult by the fact that collecting
data from many different telephone lines for each speaker in . )
the database is often impractical. Whereas in speech recodghi-Amount of Training Data and Model Size
tion a large variety of acoustic environments can be obtainedin matched conditions, the performance of a speaker identi-
by pooling speech from different speakers using differefitation system largely depends on the amount of training data
units, in speaker recognition each model must be trained wakailable: the more data there are, the better the speaker’s
data from only one speaker. In this context, a more practioaice can be modeled, and the lower the error rate is. This
approach is to collect multi-telephone data from a few patieabservation also holds for mismatched systems as illustrated
speakers, analyze these data, and try to apply the resultingFig. 5. In this experiment, we used increasing amounts
observations to other databases. of Sennheiser data from the Stereo-ATIS database to build
The method we propose essentially performs chaooel- four GMM's having, respectively, 64, 128, 256, and 512
pensation,as opposed to channabaptation.It aims at ren- Gaussians. We then tested the models with two sets of data:
dering the speaker models more robust to channel mismatchae contained Sennheiser utterances, the other contained the
by appropriately increasing their variances while keeping theitereo recordings of the same sentences, recorded from various
means unchanged. The variance increases are different altmigphone units. The two test sets were kept unchanged as
each cepstral coefficient. They are meant to account for tthee amount of training data increased. Fig. 5 compares the
unknown shifts in the means occurring with the featurgserformance of the matched and mismatched systems and
when the channel changes, as well as for possible variast®ws that even if mismatched with the test data, more training
modifications. Fig. 4 illustrates this conceptually in a twodata significantly decreases the speaker-ID error rate. It also
dimensional (2-D) feature space. If G1 is a cluster of featurehows that larger amounts of training data allow models
observed on the training data collected from a given telephowéh more Gaussians to outperform smaller models (this is
unit, the same speech frames transmitted by another unit migbpecially visible for the matched system and for the 64- and
look like G2 or G3 or G4. Since our baseline system us&42-Gaussian curves in the mismatched system).
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B. Synthetic Variance Distribution

Using the Stereo-ATIS database, which (see Section II) con-
tains Sennheiser-recorded speech and telephone-transmitted
speech recorded in stereo mode, a synthetic variance distribu-
tion can be computed as illustrated in Fig. 4. The Sennheiser
utterances of the database are used to build the G1 clusters,
and their telephone stereo recordings are used to estimate the
variances of the G clusters. Because lower-order cepstral coef-
ficients typically have a larger dynamic range than higher-order
coefficients, the variance distribution is estimated separately
for each direction of the cepstral feature space.

The algorithm for computing the synthetic variance distri-
bution can be summarized as follows.

1) Set apart a few Sennheiser sentences from each speaker

' _ - and build with them a set oN,-Gaussian GMM’s that
e e o e i %, will be used as frame classifiers
Sennheiser-telephone system performance, the lower four correspond t&) FOr each speaker in the database:
the matched Sennheiser—-Sennheiser system= 64 G, —.—.= 128 G, - - a) use the speaker's GMM to label each frame of the

error rate in % (log scale)

i 1 1 1
0.7 1.7 2.0 2.7 4.0 6.6 10.7
training size in minutes of speech (log scale)

= 2%6 G, —=5126). speaker’'s remaining Sennheiser data with the index
of the Gaussian that maximizes its log-likelihood,
300 ! : . : — that is, classify the Sennheiser frames g clus-

ters;
b) for each Gaussian in the GMM (for each cluster):

i) compute the meansg, and the variancer%, of

ggso the Sennheiser frames clustered by this Gauss-
g ian;

g ii) compute the variancer?., of the stereo record-

% ings of these frames. These stereo recordings

comprise frames recorded on various telephone
units (ten in total in Stereo-ATIS). To compen-
sate for the shift in the means occurring between
the Sennheiser and telephone data, the variance
o7 is computed with respect to the meag of

107 the Sennheiser frames rather than with respect

to the mean of the telephone frames;.
Fig. 6. Average variance along of four Gaussian speaker models versus ; 2 ; ; i
the amount of data used to build the models (= 64 G, —.—.= 128 G, - The varlancesez, form the desired synthetlc vari

- = 256 G, —= 512 G). ance distribution.
We used boldface symbols for the means and variances to
emphasize that these are vectors\gf(the number of cepstral

The amount of data used to build a GMM and its numbespefficients) elements. The synthetic variance distribution is
of Gaussians is directly reflected by the variance distributiqRus ~_.-dimensional.
of the Gaussians. For illustrative purposes, we computed, forwe built such a synthetic variance distribution from the
each GMM built in the previous experiment, the average alo®iereo-ATIS database, keeping 30 sentences from each of the
each cepstral coefficient of the variances of the Gaussiansi®ispeakers in the database to train a set of 64-Gaussian GMM
the GMM. The averages along are plotted in Fig. 6. The classifiers, and using the other 270 sentences per speaker to
figure shows that, for a given amount of data, the Gaussiasrive the synthetic variance distribution. The feature used
of large GMM'’s have lower variances since they model fewavas the 17-dimensional cepstrum.
data points. It also shows that, for a given model size, theFig. 7 displays pairs of variances%, o%) computed along
average variance increases with the amount of training dadgo different cepstral coefficients;; and ¢;7. Each plot
This occurs because the EM algorithm effectively tries toontains 13x 64 points (the number of speakers in the
minimize the variances of the Gaussians in the model, whidlatabase times the number of Gaussians in the speaker GMM).
can better be achieved when there are fewer data points phe data points in each plot were normalized to have zero
Gaussian. mean and unit variance.

This observation suggests that artificially increasing the Fig. 7 shows that 1) as we expected, most of the telephone
variances of GMM’s may be useful to compensate for theariances are larger than the corresponding Sennheiser vari-
lack of training data, and to allow larger models to be builances and 2) the variances along show more dispersion
We will see this assumption verified in our experiments. than those along;. This is not unexpected since we have

averal
Ny
o
(=]

7 2.0 27 4. 6.6
amount of training data in minutes of speech (log scale)
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Fig. 7. Pairs of normalized variancas} versu30§, along ey (left) and ¢17 (right).

TABLE X
SPEAKER-ID PERCENT ERROR RATE FOR DIFFERENT MODEL SizES (SRI-DiGITS, 1-MIN TRAINING ON
ONE OF Two TELEPHONE LINES, 4-S TESTING ON TEN DIFFERENT LINES, 1800 TEST SEGMENTS TOTAL)

32 Gaussians | 64 Gaussians | 128 Gaussians | 2 56 Gaussians

type of transformation | line 1 | line 2 | line 1 |line 2 | line 1| line 2 | line 1 | line 2
none 26.67 | 43.10 | 25.72 | 42.4 | 27.2 | 43.83 | 29.56 441
LMS affine 23.17 | 38.22 | 22.11 | 36.89 | 21.28 | 37.45 | 21.22 | 36.72
translation only 22.89 | 38.72 | 22.5 | 37.61 | 21.72 | 38.45 | 21.95 | 37.45
scaling only 23.78 | 40.72 | 24.72 | 40.61 | 25.22 | 41.61 | 26.72 | 42.56

observed in Section Ill that higher-order cepstral coeﬁicient@erea%ypyj(i) and a%jpjj(i) denote, respectively, the vari-

are more sensitive to channel effects. ance of the Sennheiser and telephone data fojtth&aussian
of speakep’s model, along cepstral coefficient, and where
(-} indicates the average over and j, i.e., over all the
Gaussians of all speakers.

C. Affine Transformation of the Variances The variance transformation equations are then described by
In first approximation, the data points in each plot of Fig. 7 ) A ,
can be fitted with a straight line. The coefficients of these Oitmed, q,1(6) = Moy (1) + &,

straight lines define aaffine transformatiorof the Sennheiser

2 . .
variances onto the telephone variances. Speaker models traifffr€7,:(¢) represents the variance to be transformed (more

from databases containing speech collected from a sin féecmcally the varlange of th@h Gaussian of speakeys .
del, alongc;), andoiy,,.q , () represents the same vari-

acoustic environment (single handset, single telephone i 4 ¢ :
can benefit from this transformation to modify their varianc ce after transformation. _ )
1) Results of ExperimentsThe affine transformation de-

and increase their acoustic coverage. ) o
veloped on Stereo-ATIS was applied to the SRI-digits database

Expressing the affine transformationsas m,;x +t;, where q ibed in Sect G ' . del ined
i refers to the cepstral coefficient, andz andy represent, escribed in Section Il. Gaussian mixture models were traine

respectively, the variance of a cluster of Sennheiser framih 1 min of sgeech gollt_e(r:]ted flrgl)_m oge teIeptr:Ione line (lines
and the variance of the corresponding telephone frames, fit¢ " two) and tested with multiline data. Table X compares

parametersn; and¢; can be estimated from the data, using g'ne error rates with and without variance transformation for
least mean gquarezs fitting: ' different model sizes. (The last two lines in Table X will be

explained in Section V-D.) Although the transformations were
2 W2 (Y (a2 (a2 (4 derived from Stereo-ATIS, they significantly improved the per-
<UT’P”(L)>2<US’P1J(L2> <a§’””(%)02T’P”(L)>, formance on this new database. As we argued in Section V-A,
({05, 5, (0N = {(o5,,, ;(1))%) increasing the model variances also allowed us to increase the
ti = (o7, ; (1)) —mi(o% , ; (i) model sizes.

m; =
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TABLE Xl
SPEAKER-ID PERCENT ERROR RATE FOR DIFFERENT MODEL SiZES, WITH DIFFERENT VARIANCE TRANSFORMATION SCHEMES
(SRI-DiGITS, 1-MIN ONE-LINE TRAINING OR 2-MIN TWO-LINE TRAINING, 4-S TEN-LINE TESTING, 1800 TEST SEGMENTS TOTAL)

training conditions no transformation affine transformation fixed target transf.
64 G |128G {256 G || 64 G [128 G |256 G || 64 G | 128 G | 256 G
line 1 25.72 | 27.22 | 29.56 || 22.11 | 21.28 | 21.22 || 22.00 | 21.06 | 21.56
line 2 42.45 | 43.83 | 44.06 || 36.89 | 37.45 | 36.72 || 35.83 | 35.5 | 35.33
line 3 42.78 | 42.78 | 45.67 || 39.28 | 37.45 | 38.22 || 38.17 | 36.5 | 37.61
line 4 52.5 | 52.17 | 53.28 || 46.45 | 46.67 | 47.0 | 44.72 | 43.33 | 44.22
line 5 43.11 | 44.17 | 44.33 || 41.0 | 41.45 | 40.89 || 38.67 | 39.72 | 41.83
line 6 43.67 | 46.22 | 48.11 || 40.0 | 40.67 | 40.78 || 38.78 | 38.67 | 39.89
Average 41.70 | 42.73 | 44.17 || 37.62 | 37.49 | 37.47 || 36.36 | 35.79 | 36.74
lines 1 & 2 25.95 | 25.56 | 32.11 || 22.28 | 20.61 | 21.61 || 21.78 | 19.89 | 20.67
lines 2 & 3 31.5 | 31.61 | 39.60 || 31.0 | 30.39 | 27.83 | 30.11 | 30.22 | 28.33
lines 3 & 4 34.95 [ 34.72 | 41.95 || 29.56 | 28.11 | 25.00 || 27.67 | 26.39 | 23.83
lines 4 & 5 31.17 | 31.39 | 36.45 || 28.39 | 28.39 | 27.61 || 27.95 | 27.72 | 27.45
lines 5 & 6 28.17 | 28.28 | 35.72 || 27.5 | 27.11 | 26.27 || 26.72 | 26.78 | 27.33
lines 6 & 1 20.06 | 20.83 | 28.50 || 19.28 | 18.56 | 20.11 || 18.89 | 18.56 | 20.33
Average 28.63 | 28.73 | 35.72 || 26.33 | 25.43 | 24.74 || 25.52 | 24.93 | 24.66

One problem with the affine transformation method is that\tith its scaling term, refines this model by taking into account
implicitly assumes that training data are provided by a singf®nadditive effects.
acoustic environment. If, instead, training data are collectedThe translation to a fixed targetnethod takes advantage
from a few different telephone lines, one might expect thesé this observation to simplify and generalize the variance
data to cover more of the feature space and the redudeghsformation and allow it to deal with multiline training
mismatch to require a different variance transformation. Aend, as a by-product, to compensate for limited amounts of
stereo data are hard to collect from two or more telephob@ining data.
units simultaneously, another method must be developed tdn this method, the synthetic variance distribution is seen as

deal with this situation. a “fixed target” to be reached by the variances of the speaker
models. The variances of the speaker models are translated
D. Translation to a Fixed Target by an amount such as to make their mean equal to the

. i . ean of the synthetic variance distribution. Mathematically,
For analysis purposes, the affine transformation can ﬁ:e

T . e transformation can be described as
simplified into a scaling part modeled by the slopg or
a translation part modeled by the offset Table X shows gffme(L g.1(0) 2 0'(2171(1') +t
the error rates obtained by setting the slopg to one and
estimating the offset using the least means squares, and where
error rates obtained by setting the offset to zero and estimating
only the scaling part of the transformation. The table shows ti = <0§“,p,j(i)> - <0,21,z(i)>-
clearly that the most significant part of the transformation is
due to its additive offset component. This can be justified Provided that the synthetic variance distribution is computed
intuitively: in first approximation, the speech coming out ofvith a large amount of training data (i.e., large enough to reach
a telephone line can be represented in the cepstral domtie asymptote in Fig. 6), the translation tetmalso corrects
as a random process resulting from the sum of a cletdre speaker model variance%,J(i),for being underestimated
speech contribution and a channel effect. Since the signbkcause of a lack of training data.
are additive, so are their variances. Thus, the translation termn addition to its capability of compensating for small
in the variance transformation corresponds to an estimateashounts of training data, this method extends easily to training
the average channel variance. The full affine transformaticzgnditions including more than one line since it does not make
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any assumption about the training conditions (as opposed te T T

the affine transformation method).  + |7 wlaut varianca transformation

_— w/ variance transformation

1) Results of ExperimentsThe affine transformation and o
fixed target translation were compared in a set of experiments
performed on the SRI-digits database, with one- and twg-
line training conditions. The fixed target translation metho°§4s-
consistently outperformed the affine transformation metho8.
Results are summarized in Table XI. 2

Next, a series of experiments was performed to che&K’|
that the improvement brought by the fixed target transléo;-
tion holds for larger sets of speakers. We used, to thiss|
effect, the NIST96 database (see Section Il), which contaifis
mismatched data from 150 male speakers. Speaker-ID ex-
periments were performed with 10, 25, 50, 100, and 150°[
speakers, with and without variance transformation. Whenever
possible, we averaged the outcomes of several experimeni . .
to improve the precision of the error rate estimates. (For ° 0 umbors of speakers 0
example, 15 ten-speaker experiments were averaged to ob Ng, Speaker-ID error rate as a function of the number of speakers in the
the ten-speaker error rate. For the 25-, 50-, 100-, and 15%@tabase, with and without variance transformation (NIST96, 2-min training,
speaker error rates, respectively, six, three, one, and Gies testing, mismatched training and testing).
experiments were performed and averaged. This way, all
the training and testing sentences were used exactly once
to determine the error rate for each number of speakersé? TABLE XII
The results of these experiments are displayed in Fig. 8. THEn . oran oo 6 ) LeXCeNT ERROR RATE WiTH DIFFERENT SYSTEMS

ON (30-S RAINING, 5-S TESTING, 64 GAUSSIANS PERMODEL)
figure shows that the improvement brought by the variance
transformation is essentially independent of the number Ofcepstrum | var. transf. || spectral slope | var. transf. {i % error
speakers. Transforming the model variances improves th&

N oI

match between the speaker models and the test data, ir- Vv 24.89
respectively of the number of speakers to be in the data- v 2415
base.

v v 23.08
E. Variance Transformation with Multiple Features v v 99.44

So far, we assumed that the cepstrum was the only feature

used for speaker identification. The following experiment v v 2340
shows the performance on the NIST95 database of a system , v v 22.33
combining the optimized features from Section IV with the
fixed target variance transformation. Two 64-Gaussian GMM’s v v v 22.54
were built from the cepstra and spectral slopes of the NIST95 v v J v 90.83

training data, using the optimized front ends summarized
in Tables V and VII. Two sets of variance transformations
were computed for the same features and the same front
ends, with Stereo-ATIS data. The transformations were appliggyond the scope of this work, however, we would like to
to the NIST95 GMM's, and testing was done as describegpse this paper with the results of an experiment we made on
in Section IV-G, that is, by maximizing the sum of thepen-set recognition, and which shows that the performance
normalized likelihoods of the two classifiers. The resultgymprovement that we observed on closed-set identification
summarized in Table XII, show that the combined systefyqs up in the case of open-set speaker recognition. This
reduced the error rate from 24.89% to 20.83%, a 16.31%periment was conducted on NIST95 and extends Table Xl
relative error rate reduction (note that the baseline for this ihe case of open-set recognition. The target speakers for
experiment,_ 24.89% error rate, assumes that the front ean'% experiment were the 26 speakers from the closed-set
already optimized). experiment. To these, 80 imposter speakers were added. The
target speakers were modeled with 64-Gaussian models. Two
F. Extension to Open-Set Speaker Recognition speaker-independent background models were built (one com-
All the results presented in this paper were for closeguted from the cepstrum feature, the other from the cepstral
set speaker identification. Another important problem is thalope feature) with data from the SB45 database. These models
of open-set speaker recognition, where “target” speakers &, respectively, 2400 and 800 Gaussians. The likelihood
to be identified and “imposter” speakers are to be rejectestores produced by the target models where normalized by the
Open-set speaker recognition involves many issues that Bkelihood scores from the speaker-independent background
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TABLE XIll
COMPARISON OF OPEN-SET SPEAKER RECOGNITION ERROR-RATE WITH DIFFERENT SYSTEMS, ON NIST'95 (30-SECOND TRAINING, 5-SECOND TESTING)
cepstrum | var. | spectral | var. [i closed-set |3% false | 10% miss | 1% miss
transf. | slope | transf. %error alarm
4 24.9 33.8 22.2 52.3
V4 24.1 33.8 20.7 55.3
Vv 4 23.1 34.3 20.9 47.5
v Vv 22.4 31.0 19.2 48.6
v Vv 23.4 32.6 19.6 50.5
Vv Vv v 22.3 324 19.0 44.6
4 Vv Vv 22.5 318 18.2 47.6
v Vv V4 V4 20.8 317 16.9 43.5
model, and likelihood maximization combined with a rejection  Mar. 1995.

threshold was used to identify or reject test utterances. THé!
results of this experiment are summarized in Table Xlll,3
where properties such as the closed-set error rate, the miss
rate with a 3% false alarm rate, and the false acceptané‘g
rates with 10% and 1% miss rates are reported. The com-
bination of the modified features along with the variancd5]
transformations significantly improved all the criteria that Weg)
evaluated.
VI. )
We have attempted to compensate for channel effects ig;
speaker identification by optimizing the front-end parame-
ters, modifying our filterbank computation, introducing a newt’!
feature, and transforming the speaker models. Although [ib]
has been shown that significant improvements are obtained,
we have only scratched the surface. In the context of feg;
ture extraction, the performance gain is obtained by using
only system features (filterbank-based cepstrum and filterbank-

CONCLUSION

based cepstral slope). There is a need to develop roblg
source-feature extraction algorithms. In the context of model
transformation, the fixed-target compensation algorithm h&s]
resulted in a significant performance gain, but it has certainfyy
not completely compensated for channel effects. This approach
should be extended to speaker-dependent and microphoHE]—
dependent transformations, which can be expected to give
further improvements.

[16]
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