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Abstract—Localization is indispensable for the successful de-
ployment of wireless sensor networks (WSNs). Time-based lo-
calization approaches attract a lot of interest due to their
high accuracy and potentially low cost. However, time-based
localization is intensively coupled with clock synchronization.
Thus, the reliability of timestamps in the time-based localization
becomes an important yet challenging task to deal with. In this
paper, we propose a robust time-based localization approach
to locate a target node with the assistance of anchors (nodes
with known positions) in an asynchronous network with clock
offsets. We employ the asymmetric trip ranging (ATR) protocol to
obtain time-of-arrival (TOA) measurements and facilitate clock
offset cancellation. Regardless of the reliability of the timestamp
report from the target node, closed-form least-squares (LS) and
weighted LS estimators are derived to accurately estimate the
target node position. As a result, we counter the uncertainties
caused by the target node by ignoring the timestamps from this
node. Furthermore, Cramér-Rao Bounds (CRBs) and simulation
results corroborate the efficiency of our localization scheme.

Index Terms—Localization, synchronization, clock offset, least
squares, two-way ranging

I. INTRODUCTION

Location-aware wireless sensor networks (WSNs) have at-
tracted enormous interest from industry and academia due
to their wide range of applications [1]. Location-awareness
is crucial for the successful deployment of WSNs [2]. The
unique properties of ultra-wideband (UWB) impulse radio
(IR) [2] facilitate localization based on time-of-arrival (TOA)
or time-difference-of-arrival (TDOA) with high accuracy and
potentially low cost. As the TOA or TDOA measurements
are time-based, clock synchronization [3] is tightly coupled
with localization. However, localization and synchronization
are traditionally treated as standalone problems, and only
recently they have been jointly considered [4]–[9]. A pre-
processor is first applied to cancel clock offsets, and then a
maximum-likelihood (ML) estimator is derived to estimate all
node positions in [4]. The two-way ranging (TWR) protocol
proposed in the IEEE 802.15.4a standard [10] is employed
in [5], [8] for asynchronous networks with not only clock
offsets but also clock skews. In [5], the relative clock skews
are first calibrated, and then the node positions are estimated
in a distributed way. The internal delay is further considered
in [8]. The impact of the clock skew is approximated as a
zero mean random noise in [6], and intrasensor TDOAs are

obtained by taking advantage of target motion, which also
facilitates clock offset cancellation. However, it cannot be used
to locate static target nodes. A localization approach based on
triple-differences, which are the differences of two differential
TDOAs, is proposed in [7], where the corrupted one-way TOA
measurements due to the relative clock offset and clock skew
are corrected by several steps. Two-way message exchanges
are used in [9] for a scenario, where all the anchors are
synchronized and the target node clock runs freely. It jointly
estimates the clock skew, the clock offset and the position of
the target node. Furthermore, it considers the uncertainties of
the anchor clocks and positions, and formulates a generalized
total least-squares problem to cope with these uncertainties.
However, it is a big challenge to first synchronize all the
anchors.

In this paper, we propose a robust time-based localization
method with the help of anchors for asynchronous networks
with clock offsets, which subsumes the localization method
proposed in [11] as a special case. UWB-IRs are employed for
high resolution TOA ranging. Moreover, low duty cycle, low
probability of detection and speed of light transmission make
UWB-IR ideal for secure communication and localization.
This UWB ranging is used to facilitate the TWR protocol.
However, this TWR protocol is vulnerable to a misbehavior
of deceitful target nodes, which send fraudulent timestamps
to spoof their processing time [12]. Furthermore, target nodes
may submit inaccurate timestamps due to their asynchronous
clocks or other reasons. Thus, the current protocol is not effi-
cient and even fails under those circumstances. The reliability
of timestamps in the time-based localization has to be taken
into account.

We employ the asymmetric trip ranging (ATR) protocol
proposed in [13] to facilitate clock offset cancellation and
counter the uncertainties due to the target node. Moreover, the
ATR protocol takes advantage of the broadcast property of
WSNs and reduces the communication load. All the anchors
can obtain ranging information in one ranging procedure. By
ignoring the processing time report from the target node, we
estimate the target position based on the timestamps from
the anchors. As a result, the fact that the target node is
not synchronized to the anchors does not have any influence
on our method. Closed-form least-squares (LS) and weighted
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Fig. 1. An example of the two-way ranging protocol.

LS (WLS) estimators are derived to accurately estimate the
target node position. Moreover, Cramér-Rao Bounds (CRBs)
are derived as a benchmark.

The rest of the paper is organized as follows. In Section II,
we review the TWR protocol. The system model is given in
Section III. The robust localization algorithm is proposed in
Section IV. Performance bounds and simulation results are
shown in Section V. The conclusions are drawn at the end of
this paper.

II. THE TWO-WAY RANGING PROTOCOL

The TWR protocol used in the IEEE 802.15.4a standard [10]
facilitates ranging between two nodes. The packet structure
proposed by the standard is composed of a synchronization
header (SHR) preamble, a physical layer header (PHR) and a
data field. The first pulse of the PHR is called the ranging
marker (RMARKER). The moment when the RMARKER
leaves or arrives at the antenna of a node is critical to ranging.
An example of the TWR protocol is shown in Fig. 1. Node A
(or Node B) records TAT (or TBT ) and TAR (or TBR) upon
the departure and the arrival of the RMARKER, respectively.
Thus, the time of flight (TOF) t0, which is linear to the
distance d (the ranging target) between node A and node B
(d = ct0, where c is the speed of light), is given by

t0 =
1

2

(
TAR − TAT

αA

−
τ0

αB

)
+ n, (1)

where τ0 = TBT − TBR is the processing time at node
B, αA and αB are the clock skews of node A and node
B, respectively, and n is the aggregate error term. As the
differences of the timestamps are employed in (1), the clock
offsets are canceled. The aggregate error term n in (1) counts
for the leading edge detection (LED) errors [10], which are
due to the detection of the first multipath component of the
received RMARKER, and the uncertainties of the internal
propagation paths [10], which are caused by the difficulties
to measure the events exactly at the antenna. Moreover, n can
also contain communication and quantization errors.

Let us now focus on the robustness of the TWR protocol.
According to (1), the TOF t0 depends not only on the
timestamps TAR and TAT at node A, but also on the processing
time τ0 at node B. The dependence on the reliability and
synchronization of two different nodes is a weak point of
the TWR protocol. Thus, the TWR protocol is vulnerable
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Fig. 2. An example of the ATR protocol.

to the node misbehavior. For example, assume node B is
compromised and tries to cheat node A about its distance
by tampering its processing time as τ ′

0. Then, t0 will be
miscalculated, since node A is not aware of the misbehavior of
node B. In the following, we adopt the same packet structure
as in the standard and employ the ATR protocol to overcome
the shortcomings of the TWR protocol.

III. THE ASYMMETRIC TRIP RANGING PROTOCOL

Considering M anchor nodes and one target node, we would
like to estimate the position of the target node. Our method
can also be extended to multiple target nodes. Moreover,
located target nodes can be viewed as new anchors that can
facilitate the localization of other target nodes. All the nodes
are distributed in an l-dimensional space, e.g., l = 2 (a plane)
or l = 3 (a space). The coordinates of the anchor nodes are
known and defined as Xa = [x1 x2 . . . xM ]l×M , where
the vector xi = [x1,i x2,i . . . xl,i]

T indicates the known
coordinates of the ith anchor node. We employ a vector x

of length l to denote the unknown coordinates of the target
node. In asynchronous networks with clock offsets, the target
node clock runs freely, and the clock skews of all the anchors
are equal to 1 or treated as 1. There are only clock offsets
among all the anchors. The timing relation between the ith
anchor clock Ci(t) and the absolute time t can be described
as [3] Ci(t) = t + θi, i=1, . . . , M , where θi is the unknown
clock offset of Ci(t) relative to the absolute clock. Moreover,
the model for the target clock is given by Cs(t) = αst + θs,
where αs and θs denote the unknown clock skew and clock
offset of the target node clock relative to the absolute clock.

To make full use of the broadcast property of wireless
signals, we employ the ATR protocol proposed in [13] and
shown in Fig. 2. But different from [13], we thoroughly
explore the robustness property of the ATR protocol here,
and propose localization methods taking three aspects into
account: localization, synchronization and robustness. The
ATR protocol makes all the other anchors listen to the ranging
packets and record timestamps locally, when one anchor and
the target node exchange their ranging packets. It can obtain
more information than the TWR protocol, where all the
other nodes are idle, when two nodes exchange their ranging
packets. The ATR protocol starts with one of the anchors
initiating the ranging request and recording a timestamp when
its RMARKER departures, which can also be interpreted as the
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time when that anchor receives its own RMARKER without
any delay. Without loss of generality, we assume the M th
anchor initiates the ranging request, and we denote the time
recorded at the M th anchor as TMR. Consequently, all the
other anchors and the target node receive the ranging request
and record their own timestamps TiR, i = 1, . . . , M − 1 and
TSR respectively, as soon as they detect the RMARKER from
the M th anchor. The target node processes the ranging request
and broadcasts a response. The departure time of the target
RMARKER is recorded as TST . Define τ = TST − TSR as
the true processing time of the target node. Each anchor in
the network detects the broadcast ranging response from the
target node, and records its own timestamp for the arrival of
the target RMARKER as TiS , i=1, . . . , M . If a compromised
target node tampers its processing time as τ ′, or a target node
reports τ ′ due to the clock skew or the internal delay, all
the distance measurements would be decreased or enlarged
by c|τ − τ ′| (where c is the speed of light), which would lead
to a meaningless position estimate.

For the ith anchor node, the difference between TiS and
TiR relates to the distance as

c(TiS − TiR) = di + dM + Δ − diM + niS − niR,

i = 1, 2, . . . , M, (2)

where di = ‖xi − x‖ =
√
‖xi‖2 − 2xT

i x + ‖x‖2 is the
unknown distance between the ith anchor and the target node,
Δ = cτ is the unknown distance corresponding to the target
node processing time, and diM = ‖xi − xM‖ is the known
distance between the ith and the M th anchors. Furthermore,
niS and niR denote the distance errors translated from the
measurement errors of TiS and TiR, respectively, which are
aggregate error terms as we have discussed in Section II.
Note that the recordings of TiS and TiR, i = 1, . . . , M − 1
are triggered by the received RMARKERs, and thus the
same internal delays are involved, which are canceled out
by making differences of timestamps recorded at the same
node as indicated in (2). By making these differences,
the clock offsets at the anchors can also be canceled1.
The situation is different for the M th anchor, since it
records TMR and TMS upon transmitting and receiving the
RMARKERs, respectively. As a result, the internal delays
of the transmission path and the receiving path are added
up when computing TMS − TMR. Thus, we assume that the
main part of the M th anchor’s internal delay is compensated
beforehand as accomplished in [8]. But different from [8],
compensation is not required for the other anchors in our
scheme. Consequentially, niS and niR can be modeled as
zero mean random variables with variance σ2

iS and σ2
iR,

respectively [5]. Defining u = c[T1S , T2S , . . . , TMS ]T ,
v = c[T1R, T2R, . . . , TMR]T , d = [d1, d2, . . . , dM ]T ,
da = [d1M , d2M , . . . , d(M−1)M , 0]T , ns =
[n1S , n2S , . . . , nMS ]T and nr = [n1R, n2R, . . . , nMR]T ,

1Note that this is different from the traditional TDOA approach, which
requires synchronization among anchor nodes [14].

we can write (2) in vector form as

u− v = d + (dM + Δ)1M − da + ns − nr. (3)

In order to be immune to a misbehavior of the compromised
target node or to incorrect timestamps due to the randomness
of the target node clock, we do not employ the timestamp
report from the target node, but only use it as a trigger at
each anchor. We estimate the target position only based on
the timestamps TiR and TiS , i = 1, . . . , M , recorded locally
at the M anchors. Because we do not use the timestamps
of the target node, its clock parameters, such as clock skew,
clock offset and internal delay, do not have any impact on
our scheme. This distinguishes our algorithm from others that
use the timestamps of the target node, such as [5], [8], [9].
It is easy for the target node to cheat one anchor, but it is
almost impossible to cheat all the anchors simultaneously. We
remark that the cooperative positioning protocol proposed in
[15] is similar to our ATR protocol. However, our method
differs from [15] in several aspects: (i) we do not use the
timestamps from the target node, and thus our method is more
robust to unreliable timestamps; (ii) the target node processing
time is unknown; and (iii) we propose low complexity closed-
form solutions for localization, instead of complex MLEs.

IV. ROBUST LOCALIZATION ALGORITHM

Since we do not use the timestamps from the target node,
the clock parameters of the target node do not impact its
position estimate. More specifically, we treat Δ (the distance
corresponding to the target node processing time) in (3) as
an unknown parameter. Note that (3) is a linear equation with
respect to (w.r.t.) Δ, but it is a complicated nonlinear equation
w.r.t. x due to dM and d. We are not interested in methods with
a high computational complexity, such as the MLE which also
requires the unknown noise pdf. Because of the low cost and
low power constraints of a WSN, we explore low-complexity
closed-form solutions for localization.

Since Δ � di, Δ is a dominant term at the right hand
side of (3). In order to extract useful distance information,
we have to preprocess (3). Instead of choosing a reference
anchor node as proposed in [11], we employ an orthogonal
projection P onto the orthogonal complement of 1M , which
is given by P = IM − 1

M
1M1T

M . Since P1M = 0M , P can
be used to eliminate the term (dM +Δ)1M in (3). As a result,
premultiplying both sides of (3) with P, we obtain

P(u − v) = Pd − Pda + P(ns − nr). (4)

Note that Pd = d − d̄1M , where d̄ = 1
M

∑M

i=1 di is the
unknown average of the distances between the target node
and the anchors. Thus, (4) can be rewritten as

P(u − v) = d − d̄1M − Pda + Pns − Pnr. (5)

Keeping d on one side, moving the other terms to the other
side, and making an element-wise multiplication, we achieve

ψa−2XT
a x+‖x‖21M =(P(u−v+da)) � (P(u−v+da))

+d̄21M + 2d̄P(u−v+da) + nrs, (6)
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where ψa = [‖x1‖
2, ‖x2‖

2, . . . , ‖xM‖2]T , and

nrs =−(P(ns−nr)) � (P(ns−nr)) − 2d� P(ns−nr). (7)

Defining Pnr = nr − n̄r1M and Pns = ns − n̄s1M , where
n̄r = 1

M

∑M
i=1 niR and n̄s = 1

M

∑M
i=1 niS , we can write the

entries of nrs as in (8) on top of the next page. Recall that
E[niS ] = 0, E[n2

iS ] = σ2
iS and E[niSnjS ] = 0, i �= j, leading

to E[n̄s] = 0, E[n̄2
s] =

1
M2

∑M

i=1 σ2
iS and E[n̄sniS ] = 1

M
σ2

iS .
The stochastic properties of niR can be obtained in a similar
way. Moreover, niS and niR, i = 1, . . . , M are uncorrelated.
As a result, the stochastic properties of nrs are given by (9)
and (10) on top of the next page, where we ignore the higher
order noise terms to obtain (10) and assume E[[nrs]i] ≈ 0
under the condition of sufficiently small measurement errors.
Note that the noise covariance matrix Σrs depends on the
unknown d.

As (6) is still a nonlinear equation w.r.t. x, we make again
use of the orthogonal projection P to eliminate the terms ‖x‖2

and d̄2 in (6). By premultiplying both sides of (6) with P

followed by rearranging, we arrive at

Pψa − P((P(u − v + da)) � (P(u − v + da)))

= 2PXT
a x + 2d̄P(u − v + da) + Pnrs. (11)

As a result, (11) becomes a linear equation w.r.t. both x and
d̄. Defining b = ψa − ((P(u−v +da))� (P(u−v +da))),
A = 2

[
XT

a , P(u − v + da)
]
, and y = [xT , d̄]T , we can

finally rewrite (11) as

Pb = PAy + Pnrs. (12)

We can find the LS and WLS solutions for (12) as

ŷ = (AT PA)−1AT Pb, (13)

and
ŷ = (AT PWPA)−1AT PWPb, (14)

respectively, where W is a weighting matrix. The optimal
weighting matrix Wo is given by

Wo = (PΣrsP)†, (15)

where we use the pseudo inverse because the M ×M projec-
tion matrix P has rank M − 1. Furthermore, PA should be a
full rank tall matrix. Thus, the number of anchors M should
be no less than l + 3, which indicates that we need at least
five anchors to estimate the target position on a plane. Since
Wo depends on the unknown d, we can update it iteratively.
Consequently, the iterative WLS is summarized as follows

1) Initialize W using the estimate of d based on the LS
estimate of x;

2) Estimate ŷ using (14);
3) Construct W using (15), where Σrs is computed using

ŷ;
4) Repeat Steps 2) and 3) until no obvious improvement of

the cost function (b−Ay)T PWP(b−Ay) is observed.

An estimate of x is finally given by

x̂ = [Il 0l]ŷ. (16)

We remark that the estimator (13) (or (14)) is equivalent to
the unconstrained LS (or WLS) estimator to obtain x, d̄ and
d̄2 − ‖x‖2 all together as discussed in [16]. We may even
improve the estimation performance by exploring the relations
among x, d̄ and d̄2 − ‖x‖2 as constraints. Constrained LS
(CLS) and weighted CLS (WCLS) estimators can be derived
as in [17]. However, it is extremely difficult to take the relation
between x and d̄ into account, since it is highly non-linear.

The distance Δ corresponding to the target node processing
time can be estimated as

Δ̂ = 1T
M (u − v − d̂ + da) − d̂M , (17)

where d̂i = ‖x̂−xi‖, i=1, . . . , M are the distance estimates
between the target node and the anchors based on x̂. We
remark that there are mathematical similarities between our
data model (3) and the data model in [8], if we regard dM +Δ
in (3) as an unknown internal delay. However, we employ a
novel ATR protocol and estimate the parameters in a different
way.

V. PERFORMANCE BOUNDS AND NUMERICAL EXAMPLES

As a well-adopted lower bound, the Cramèr-Rao bound
(CRB) based on the model (3) in Section III is derived
in Appendix B. Here, we exemplify the CRB for location
estimation on a plane, e.g. we take l = 2. Let us define
θ = [Δ, xT ]T , where x = [x1, x2]

T . The inverse of the
fisher information matrix (FIM) I(θ) is then given by

I−1(θ) =

⎡
⎢⎢⎣

1

f
−

1

f
rT G−1

−
1

f
G−1r

(
G −

1

k
rrT

)−1

⎤
⎥⎥⎦ , (18)

where f = k − rT G−1r, with k, r, and G defined in
Appendix B. Consequently, we obtain CRB(x1) = [I−1(θ)]2,2

and CRB(x2) = [I−1(θ)]3,3. We observe that Δ is not part
of I−1(θ). Therefore, no matter how large Δ, it has the same
influence on the CRB.

Let us now evaluate the performance of the proposed
robust localization algorithm by Monte Carlo simulations, and
compare it with the CRB. We consider two simulation setups:
Setup 1 and Setup 2. In Setup 1, the anchors are evenly
located on the edges of a 40 m×40 m rectangular to mimic an
indoor geometry scale. Meanwhile the target node is randomly
located on a grid with cells of size 1 m × 1 m inside the
rectangular. In Setup 2, all anchors and the target node are
randomly distributed on the grid inside the rectangular. Due
to the broadcast property of the ranging protocol, we assume
that σ2

iS and σ2
iR are related to the distances according to

the path loss law. Thus we define the average noise power
as σ̄2 = 1/M

∑M
i=1 σ2

iS , where σ2
iR and σ2

iS are chosen to
fulfill the condition that all σ2

iR/d2
iM and σ2

iS/d2
i are equal

as in [17]. Note that since dMM = 0, we simply assume
σ2

MR = 0 and nMR = 0. The processing time of the target
node is 5 ms, and as a result the corresponding distance Δ is
3×108×5×10−3 = 1.5×106 m. The performance criterion is
the root mean squared error (RMSE) of x̂ vs. the SNR, which
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[nrs]i = 2di(niR−n̄r−niS+n̄s) − (niR−n̄r−niS+n̄s)
2, i = 1, 2, . . . , M. (8)

E[[nrs]i] =
2 − M

M
(σ2

iR + σ2
iS) −

1

M2

M∑
k=1

(σ2
kR + σ2

kS) ≈ 0. (9)

[Σrs]i,j = E[[nrs]i[nrs]j ] ≈

⎧⎨
⎩

4d2
i

(
M−2

M
(σ2

iR + σ2
iS) + 1

M2

∑M

k=1(σ
2
kR + σ2

kS)
)

, i=j

4didj

(
1

M2

∑M

k=1(σ
2
kS + σ2

kR) − 1
M

(σ2
iS + σ2

jS + σ2
iR + σ2

jR)
)

, i �=j
. (10)
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(b) Setup 2, M = 8

Fig. 3. RMSE of x for asynchronous networks with clock offsets

can be expressed as
√

1/Nexp

∑Nexp

j=1 ‖x̂(j) − x‖2, where x̂(j)

is the estimate obtained in the jth trial. Each simulation
result is averaged over Nexp = 1000 Monte Carlo trials. We
would like to compare our localization algorithm with the
conventional localization algorithm using the TWR protocol,
which is clarified in Appendix A, and the algorithm LS-I in
[9]. We assume that the algorithm LS-I in [9] is employed
with accurate knowledge of the anchor clock parameters and
positions. The number of rounds of two-way message ex-
changes is four, as with more than four rounds, the estimation
performance improvement is only marginal [9]. The clock
offset and the clock skew of the target is randomly generated
in the range of [1ns, 10ns] and [1 − 100 ppm, 1 + 100 ppm],
respectively.

Fig. 3(a) and Fig. 3(b) show the localization performance
of respectively Setup 1 and Setup 2 with eight anchors with
clock offsets. In each Monte Carlo run, we generate a new
geometry. In both figures, the dashed lines with no and
“♦” markers represent the conventional localization algorithm

using the fraudulent timestamp report from the target node
with 3 m and 15 m errors, respectively. According to the
figures, they cannot estimate the target position correctly
even with sufficiently small noise terms. A larger timestamp
error introduces a higher error floor. The dashed line with
� markers illuminates the conventional localization algorithm
using the correct timestamp report. It is slightly better than
the CRB of our method for Setup 1 (the dotted line with
× markers), but much better than the one for Setup 2. This
is reasonable, since the conventional method estimates less
parameters than the proposed method. The performance of the
algorithm LS-I (the dashed line with 	 markers) in Setup 1
and Setup 2 is quite different. It is worse than our method
(the solid lines with different markers) in Setup 1, whereas
better than our method in Setup 2. The algorithm LS-I seems
to be sensitive to geometries, where the target node is inside
the region restricted by the anchors. Moreover, 8M ranging
packets are transmitted in the algorithm LS-I compared to only
2 ranging packets in our scheme, so our communication load is
much less. Furthermore, the method in Section IV is immune
to a fraudulent timestamp report and robust to the randomness
of the target node clock, and its localization performance is
accurate with sufficiently small noise terms. The solid line
with “�” markers shows the performance of the LS estimator
using the eighth anchor as the reference node [11], whereas
the solid line with “+” markers indicates the performance of
our proposed LS estimator using the projection P. Note that
they almost overlap. The solid lines with “◦” and “∗” markers
denote the performance of our proposed WLS method with an
optimal weighting and iterative weighting matrix, respectively.
The fact that they almost overlap indicates that if we use the
LS estimate as an initial point, the iterative WLS can converge
to the WLS with optimal weighting. The performance of the
WLS with optimal weighting is slightly better than LS and
the iterative WLS estimators. Considering the computational
complexity as well as the performance, the LS estimator would
be the best option.

VI. CONCLUSIONS

In this work, we propose a robust localization strategy based
on TOA measurements for asynchronous networks with clock
offsets. Regardless of the honesty of the timestamps from the
target node, we employ a novel ATR protocol, which leads
to a localization method that is robust to uncertainties of the
target node. Furthermore, closed-form LS and WLS estimators
are derived to accurately estimate the target position.
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p(u,v; θ) =
1√

(2π)M
∏M

i=1
(σ2

iS
+ σ2

iR
)

exp

(
−

M∑
i=1

1

2(σ2
iS

+ σ2
iR

)
(ui − vi − di − dM + diM − Δ)2

)
. (19)

Q =

⎡
⎣ ∑M

i=1

1

σ2

iS
+σ2

iR

(
x1−x1,i

‖x−xi‖
+

x1−x1,M

‖x−xM ‖

)2 ∑M

i=1

1

σ2

iS
+σ2

iR

(
x1−x1,i

‖x−xi‖
+

x1−x1,M

‖x−xM ‖

)(
x2−x2,i

‖x−xi‖
+

x2−x2,M

‖x−xM ‖

)
∑M

i=1

1

σ2

iS
+σ2

iR

(
x2−x2,i

‖x−xi‖
+

x2−x2,M

‖x−xM ‖

)(
x1−x1,i

‖x−xi‖
+

x1−x1,M

‖x−xM ‖

) ∑M

i=1

1

σ2

iS
+σ2

iR

(
x2−x2,i

‖x−xi‖
+

x2−x2,M

‖x−xM ‖

)2

⎤
⎦ .

(20)

r =

[
M∑

i=1

1

σ2
iS

+ σ2
iR

(
x1 − x1,i

‖x − xi‖
+

x1 − x1,M

‖x − xM‖

) M∑
i=1

1

σ2
iS

+ σ2
iR

(
x2 − x2,i

‖x − xi‖
+

x2 − x2,M

‖x − xM‖

)]T

. (21)

APPENDIX A
CONVENTIONAL LOCALIZATION BY THE TWR PROTOCOL

Assume the distances between the target and the anchor
nodes are measured by executing the TWR protocol. For
each execution, we obtain four timestamps, namely TiS and
TiT (the time when the RMARKER leaves the anchor) at
the ith anchor, and T

(i)
ST and T

(i)
SR at the target. Recalling

the parameters defined in the previous sections, the relations
between the timestamps are described as follows

c(TiS − TiT ) = 2di + Δ + niS − niT , (22)

c(T
(i)
ST − T

(i)
SR) = Δ + n

(i)
ST − n

(i)
SR, (23)

where we assume exact knowledge of the time when the
RMARKER leaves, thus niT = n

(i)
ST = 0, and n

(i)
SR is a

zero mean random variable with the same variance σ2
iS as

niS . We first obtain an estimate of Δ based on (23), thus
Δ̂ = 1

M

∑M

i=1 c(T
(i)
ST − T

(i)
SR). Plugging Δ̂ into (22), we write

(22) in vector form without noise terms as

u− w = 2d + Δ̂1M , (24)

where w = [T1T T2T . . . TMT ]T . The target position
can now be estimated based on (24) using the same LS
estimator as in Section IV.

APPENDIX B
CRB DERIVATION

We analyze the CRB for jointly estimating Δ and x based
on (6). The FIM I(θ) is employed, with entries defined as:

[I(θ)]ij = −E

[
∂2

∂θi∂θj

lnp(u,v;θ)

]
, (25)

where p(u,v;θ) is shown in (19) on top of this page. In the
case of localization on a plane (l = 2), I(θ) can be specified
as

I(θ) =

[
k rT

r Q

]
, (26)

where k =
∑M

i=1
1

σ2

iS
+σ2

iR

, and where Q and r are defined in
(20) and (21) on top of this page, respectively.
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