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Robust Time-Optimal Control: Frequency Domain Approach

T. Singh* and S. R. Vadalit
Texas A&M University, College Station, Texas 77843

The design of nonrobust and robust time-optimal controllers for linear systems in the frequency domain is pre-
sented. The bang-bang profile is represented as the superposition of time-delayed step inputs or the output of a
time-delay filter subject to a step input. A parameter optimization problem is formulated to minimize the final
time of the maneuver with the constraint that the time-delay filter cancels all of the poles of the system. The issue
of robustness to errors in the model is addressed by placing multiple zeros of the time-delay filter at the estimated
locations of the poles of the system. The design technique is illustrated on representative models of large space
structures, for rest-to-rest, time-optimal, and robust time-optimal maneuvers. Spin-up maneuvers are shown to
be special cases of the general formulation.

I. Introduction

T IME-OPTIMAL control of flexible spacecraft is a topic of
current interest.1 Many computational approaches and analy-

ses have been presented in the recent literature to deal with the ef-
fects of flexibility. Most of these works deal with planar (single-
axis) rest-to-rest maneuvers under two categories: near-minimum-
time control and exact-minimum-time control. The first category
of methods is based on smooth approximations to minimum-time
control for an equivalent rigid body. This class of methods has
been shown to be well suited when applied moments or torques are
produced by either throttlable thrusters or reaction wheels.2'3
Higher modes of the system are not excited due to the smoothness
of the control profile. The second category of methods deals with
on-off thrusters directly. Rajan4 formulates the problem including
one elastic mode and solves a two-point boundary-value problem.
Singh et al.5 determine the switch times by solving a set of nonlin-
ear algebraic equations. They also show that the control profile is
antisymmetric about the midmaneuver time for a rest-to-rest ma-
neuver. Ben-Asher et al.6 simplify the computational process for
linear models by formulating a parameter optimization problem
for which the gradients can be computed analytically. They also
solve the problem, including nonlinear terms due to the centrifugal
stiffening effect, using a shooting technique. Hablani7 discusses
the single-axis slew problem from a geometric viewpoint and
gives examples including the effect of damping. It is well known
that the time-optimal control is highly sensitive to errors in the sys-
tem parameters. Liu and Wie8 present a method to robustify the
time-optimal control using input preshaping as proposed by Singer
and Seering.9

This paper presents the design of the minimum-time profile as
the design of a bang-bang control profile/filter that minimizes the
total time and whose transfer function cancels all of the poles of
the system subject to state boundary conditions and actuator con-
straints. It is shown that the necessary conditions derived from this
point of view are the same as those derived from conventional
optimal control theory. We make use of the bang-bang principle
for linear controllable systems, which states that "If an optimal
control exists, then there is always a bang-bang control that is opti-
mal. Hence, if the optimal control is unique it is bang-bang."10

The motivation behind the paper is the fact that a bang-bang
input can be viewed as a summation of time-delayed step com-
mands. For example, a one-switch bang-bang input can be written
in the frequency domain as u(s) = C/0[l - 2e~sT\ + e~sTi]/s, where
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Tl is the switch time and T2 is the final time. f/0 is the saturation
value of the actuator and can be thought of as a reference input.
The transfer function of the time-delay filter is 1 — 2e~sT\ + e~sT2.
This transfer function has an infinite number of zeros, some of
which can be placed to cancel the finite poles of the system to be
controlled. We then formulate a parameter optimization problem
to determine the time delays to arrive at a filter that produces the
time-optimal control profile when it is subject to a step input.

Singh and Vadali11 have demonstrated the robustness achieved
by locating multiple zeros of the time-delay filter at the location of
the poles of the system. We use this concept to design robust time-
optimal control profiles.

Prior to the development of the technique for the design of time-
optimal control profiles for linear systems, it is noted that a func-
tion/(s) = 0 has a minimum of two roots at s - s0 if

= 0and ds = 0

This fact is utilized to develop constraint equations to design time-
delay filters with multiple roots at any given location.

The paper begins with the presentation of the formulation of the
problem. A simple technique is presented for the design of a mini-
mum-time control profile for a rest-to-rest maneuver of a flexible
spacecraft. Design of a robust minimum-time control profile is
presented next. This is followed by the presentation of a general
procedure for the design of a bang-bang profile for the control of a
system with damped modes. Design of the minimum-time control
profile for spin-up maneuvers is presented in the penultimate sec-
tion of the paper. This is followed by some concluding remarks.

II. Problem Formulation
We consider a general linear model of a flexible system with

one rigid body mode and n flexible modes, which can be repre-
sented by the vector differential equation

Mx + Cx + Kx = bu, b, x e Rn (1)

where M is the mass matrix, C the damping, and K the stiffness
matrix. The b is the control influence vector, and x and u are the
state vector and scalar control input, respectively. Define the
modal participation vector

.«>0 V- -<U r = ̂ b (2)
where O is the matrix of eigenvectors. We can decouple Eq. (1) by
a similarity transformation, using the eigenvectors of the system,
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Fig. 1 Time-delay filter.

to the form
e = <>0ii

/ = 1 tO/2 (3)

where 9 is the rigid body coordinate, qt is the /th modal coordinate,
and a, and O)/ are the /th damping factor and frequency, respec-
tively. We also assume that the control effort lies in the range

-\<u<\ (4)

The objective of the controllers is to cancel all poles of the sys-
tem, with the constraint that the control is saturated at all times.
The design involves selection of time delays of a time-delay filter
whose output for a step input is the time-optimal control (Fig. 1).

III. Rest-to-Rest Maneuvers
A. Minimum-Time Control of a Flexible Spacecraft with Undamped
Modes

Many researchers have noted the antisymmetric characteristic of
the minimum-time control profiles designed for rest-to-rest
maneuvers for flexible spacecraft without structural damping.5'6'8
We first show that a control profile that is antisymmetric about the
midmaneuver time leads to a transfer function with two zeros at
the origin of the s plane. Figure 2 illustrates the minimum-time
control profile for an undamped system with the time delays
selected to represent antisymmetry. The transfer function of a
time-delay filter containing 2n + 2 time delays (2n + 1 switches) is

2T0

time

Fig. 2 Antisymmetric control profile for a spring-mass system.

in Eq. (5), and equating the real and imaginary parts, we have,
respectively

+ 2£ (-I)','
/ = i

(8)

and

2 ]£(- \ye~GTi sin (0)7;) + 2(- l)n + le~cT» + 1 sin(o)7; + v)
i = i

(5)

A zero of the transfer function is located at s = 0, as Eq. (5) goes to
zero at s = 0. The derivative of Eq. (5) with respect to s is

»' (6)
i = i

which has a zero at s = 0. Thus we conclude that Eq. (5) has at least
two zeros at the origin that automatically cancel the rigid body
poles, thus satisfying the velocity boundary condition for a rest-to-
rest maneuver.

To arrive at the equations required to cancel the imaginary poles
of the system, we substitute

+ e~2°Tn +1 sin (20)7; + l ) = 0 (9)

As we require the undamped poles of the system to be canceled by
the zeros of the time-delay transfer function, we substitute a = 0 in
Eqs. (8) and (9) and rewrite them, respectively, as

cos(corn+1)

and

sin(carn+1)

= 0 (10)

(7) = 0 (11)
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To cancel poles at co = +yoc>i, ±y'co2, ... , ±7'cort, we substitute co,
into the coefficient of sin(corrt + 1 ) in Eq. (11), which is the same as
the coefficient of cos (($Tn +1) in Eq. (10), which leads to n equa-
tions in n + 1 unknowns, rb T2,... ,Tn + j.

Another equation is derived from the boundary constraint of the
rigid body motion. The response of the rigid body equation to the
antisymmetric control profile at tf = 2Tn + { can be represented
using the boundary conditions

as

0(0) = 0, 90y)*0

6(0) = 0, 6(^ = 0

(-I)'

(12)

(-DX (13)

Equations (10) and (13) represent (n + 1) equations in (n + 1) un-
knowns. These equations allow multiple solutions. Hence we solve
for the time delays via an optimization problem that is formulated
in the next section.

B. Parameter Optimization
The time delays for the time-optimal filter are solved using a

parameter optimization technique. Analytical expressions for the
gradients of the cost function and the constraints are used in deter-
mining the time delays.

The optimization problem for the undamped system is to mini-
mize the cost function

/ = (tf/2Y = :
subject to the constraints

n

2^(-l)'cos[(a(rn+1-r,.)] +
1 = 1

1) = 0 , i =

(14)

(15)

1 (-i

and

o < 7 \ < r 2 < r 3 . . . . < r n

(16)

(17)

The antisymmetric structure of the control profile about the mid-
maneuver time has been exploited to reduce the number of param-
eters to be determined for an undamped system. For example, we
need to determine n + 1 parameters for the control of an w-mode
system, unlike the previous papers where 2n + 2 parameters had to
be determined.6

The optimization toolbox of MATLAB has been used to solve
the constrained optimization problem.

C. Sufficiency Condition
In this paper we assume that the system model is normal, an

assumption that precludes the existence of singular intervals and

forces the necessary conditions to also be sufficient. To verify the
optimality of the switch times arrived at from the parameter opti-
mization problem, Ben-Asher et al.6 proposed an elegant tech-
nique. Consider the first-order system

x = Ax + du, (18)

Hence the switching function is

dTK(t) =

The optimal control is given by u(i) = — sgn[drX(f)L where A, is the
costate vector. Furthermore

(19)

(20)

which is equal to zero at the (2n + 1) switch times. Thus A,(0) is in
the null space of the (2n + 1) X (2n + 2) matrix P

dTexp(-ATTl)

dTQxp(-ATT2)
P = (21)

We can determine the null space of P and use that vector as X(0) to
determine ^(t). Since the parameter optimization permits multiple
solutions that satisfy the boundary conditions, the control profile
determined from

(22)

must switch at the predetermined switch points to be optimal.

D. Numerical Example 1
To illustrate the proposed control design technique, we consider

the control of a two-mass-spring problem, which has one flexible
and one rigid body mode. The equations of motion are

mx\ + k(x{ — x2) = u

mx'2 - k(xl - x2) = 0
(23)

where x\ and x2 represent the displacement of the first and second
masses with respect to some inertial frame. We intend to control
the displacement of the second mass x2 with a control applied to
the first mass. We use m = 1 and k = 1, following Liu and Wie.8
The boundary conditions for the rest-to-rest maneuver are

*!(()) = *2(0) = 0, Xl(tf) = x2(tf) = 1

^(0) = ^2(0) = o, *!(*/) =*2oy) = o
The decoupled equations of motion are

6 = 0.707 Iw

q + 2q = -0.707 In

and the boundary conditions are

6(0) = 0(0) = 0, Q(tf) = 1.4142, q(tf) = 0

6(0) =

(24)

(25)

(26)
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The optimization problem to be solved is

min/=(r//2)2=r2
2 (27)

subject to the constraints

-2cos[co1(r2 - TO] + 1 + cos(co1r2) = 0 (28)

0.7071 [272 - (2T2 -

and

~ ? ] - 1-4142 = 0 (29)

> 0 (30)

The transfer function of the time-delay filter for the time-opti-
mal solution can be shown to be

I _ 2e - 1 -0026* + 2^-2. 1089s _ 2e -[2(2.1 089) - 1.0026]*

The optimization toolbox of MATLAB,12 which uses the sequen-
tial quadratic programming method, was used to arrive at the time
delays. Figure 3 illustrates the evolution of the states of the system
subject to the bang-bang control profile (Fig. 4). The optimality of
the solution is corroborated via the technique detailed in Sec. III.C.

E. Robust Minimum-Time Control
It has been shown in Refs. 11 and 13 that multiple zeros of the

time-delay transfer function at the location of the poles of the sys-
tem lead to robustness of the controller with respect to errors in
estimated frequency. To add n additional zeros at the location of the
poles of the system, we need an additional n time delays. In addi-
tion we need to maintain antisymmetry of the control profile, which
leads to a total addition of 2n time delays. Thus the final robust
control profile has 4n + 2 time delays in the transfer function in
addition to the proportional signal. The time-delay transfer func-
tion is

2n 2n

2]T (-l)'V" ' -2e 2" + 1 ^*-*(2T2n+l-Tl)

+ e (32)

To cancel the n modes of the plant, we require n zeros of the time-
delay transfer function at the location of the n poles of the system,
which leads to n equations

cos(cor2rt+1) = 0, /=!, 2,..., w (33)

' 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Fig. 3 Evolution of system states subject to time-optimal control. Fig. 5 Evolution of system states subject to robust time-optimal con-
trol.
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Fig. 4 Time-optimal control profile for a spring-mass system. Fig. 6 Robust time-optimal control profile for a spring-mass system.
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Fig. 7 Magnitude plot of the Bode diagram for the spring-mass sys-
tem.

time

Fig. 8 Control profile for a spring-mass-dashpot system.

We derive the additional n equations by forcing the derivative of
Eq. (33) with respect to co to zero

subject to the constraints

-2cos[co1(r3 - 7^)] + 2cos[o)1(r3 - T2)] -

2(r3-r2)sin[co1(r3 -
+ r3sin(CG1r3) =

= 0
(37)

(38)

0.7071[2r3 -(2T3 - 71
1)2+(2r3 - T2)2 -T + T - T]

-1.4142 = 0 (39)

and

73 > T2 > T{ > 0 (40)

The time-delay filter for the time-optimal solution can be shown
to be

~ 1-6563]*

_ 2£>-[2(2.9330)-0.712]s + ^-2(2.9330)5

Figure 5 illustrates the response of the system subject to the
robust bang-bang control (Fig. 6). An increase in the maneuver
time is evident. The robustness of the controller can be gauged
from the smaller amplitude of the Bode plot (Fig. 7) in the vicinity
of the system frequency as compared to the Bode plot for the non-
robust case. This implies that the sensitivity of the overall transfer
function is near zero for a small band of frequencies around the
natural frequency. The performance of the robust control profile,
however, degenerates when the model error is large.

IV. Minimum-Time Control of a Flexible Spacecraft
with Damped Modes

Ben-Asher et al.6 and Hablani7 have noted the lack of antisym-
metry of the minimum-time control profile for systems with
damped modes. With that argument in mind, we represent the
transfer function of the time-delay filter acting on a unit step input
to produce the minimum-time control profile for an w-mode sys-
tem as (Fig. 8)

1 = 1 , 2 , . . . , /I (34)

The final equation is derived from the boundary condition of the
rigid body motion

1+2 (42)

This transfer function has one zero at s = 0. To force the transfer
function to have an additional zero at s = 0, we require

(43)

(35)

The time delays are obtained by solving a parameter optimization
problem with the constraints given by Eqs. (33-35).

F. Numerical Example 2
We consider the same example as in Sec. III.D. to illustrate the

robust time-optimal control methodology. The optimization prob-
lem to determine the time delays for robust time-optimal control is

(36)

which is the derivative of Eq. (42) with respect to s, to have a zero
at s = 0, which leads to the constraint equation

(44)

(45)

n + 2) = 0 (46)

To cancel the damped poles

s = <5i ±70)!, O2±70)2,..., Gn

of the system we require

2/1+1

1+2 ^(-l)ie~oTicos(<tiri) + e~°T*'+2
/ = i
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and lers for damped systems. The equations of motion of the system
are

' sin(co7;-) 2sin(cor2n + 2) = 0 (47)

The final constraint is arrived at from the rigid mode boundary
condition

(48)

where tf=T2n + 2.
Minimizing T2n + 2 subject to the constraint equations (44) and

(46-48), we arrive at the 2n + 2 time delays.
To address the robustness issue, we require additional con-

straints derived by forcing the variation of Eqs. (46) and (47) with
respect to co to zero. We will arrive at the same constraint equa-
tions if we forced the variation of Eqs. (46) and (47) with respect
to a to zero. We would require an additional 2n time delays to sat-
isfy the additional constraints leading to a (4n + 2) time-delay filter
for an ft-mode system.

Numerical example 3. We consider a two-mass-spring-dashpot
system to illustrate the technique to design time-optimal control-
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (Seconds)

Fig. 9 Response of a spring-mass-dashpot to a time-optimal control
profile.
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mx\ +c(xl -x2) + k(xl -x2) = u

mx2-c(xl-x2)-k(xl-x2) = 0
(49)

The parameters chosen for this numerical example are m = 1, c = 1,
and k - 1. The boundary conditions are the same as Eq. (24). The
decoupled equations of motion are

6 = 0.7071w
(50)

q + 2q + 2q = -0.7071 u

and the associated boundary conditions are

6(0) = 0(0) = 0, Q(tf) = 1.4142, q(tf) = 0
(51)

(52)

The constrained optimization problem to be solved is

subject to the constraints

~°ir4 cos(co171
4) = 0

°^ sin(o>1r1) + 2e~

4) = 0

~G^ cos(co1r3)

(53)

Ti sin(co1r3)

(54)

0.7071 [(74
2/2)] - (74 - r^2 + (T4- T2)2 - (T4- T3)2] - 1.4142 = 0

(56)

and

T4 > T3 > T2 > Tl > 0 (57)

The transfer function of the time-delay filter for the time-opti-
mal solution can be shown to be

I — 2^-1-44045 + 2g-3.368s _ 2^-4.25865 + ^-4.6625 /^g\

It can also be shown that the transfer function of the robust time-
delay filter for the same problem is

\-2e~L44655 + 2^-3.50055 _ 2^-4.73105 + 2^-5.76415 _ 2^-6.4135

Fig. 10 Response of a spring-mass-dashpot to a robust time-optimal
control profile.

+ ^-6.65185

Figures 9 and 10 illustrate the evolution of the system states for the
nonrobust and the robust bang-bang control cases, respectively.
Figures 11 and 12 are the control profiles for the nonrobust and the
robust cases, respectively.

V. Spin-Up Maneuvers
The method outlined earlier for the design of minimum-time

rest-to-rest maneuvers can be used in the design of a control pro-
file for minimum-time spin-up maneuvers. Unlike the preceding
case, we need to cancel only one pole at the origin of the system
transfer function. It should be noted that since we have one less
constraint as compared to the rest-to-rest case, the sign of the gain
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Fig. 11 Time-optimal control profile for a spring-mass-dashpot.
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Fig. 12 Robust time-optimal control profile for a spring-mass-dash-
pot.

= 0 and has the characteristic of being a mirror image about the
half maneuver time.14

+ 2 i - 2 (60)

To cancel the undamped poles at s = ±/co/, / = 1 to n, we require

n n

T-) - 2 £ (-\ye-«2Tn + i - ̂
= 1

1) = 0 (61)

and

2 ]T (- 1)1'*-*7/ sin (cor,) - 2 £ (- rfe
1 = 1 / = 1

X

which can be simplified, respectively, to

(62)

and

2cos(corn + 1) -

From Eqs. (63) and (64), we have

w + 1-7;.)] - sin(coTn+1) = 0

(64)

(65)

Finally, to meet the velocity boundary conditions, we need

= 2T (-1)'?,.

(66)

We now have n + 1 equations in n + 1 unknown time delays Tt,T2,
...,Tn + l.

We could address the issue of robustness to errors in estimated
frequency by additional time delays that would place multiple
zeros at the location of the poles of the system. Time-optimal spin-
up maneuver of a spacecraft with damped modes would destroy
the symmetry of the control profile about the midmaneuver time.
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0.5 1 1.5 2 2.5
Time (Seconds)

3.5

Fig. 13 Response of system to minimum-time spin-up control profile.
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Fig. 14 Response of system to robust minimum-time spin-up control
profile.
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and the robust version for the same is

1 _ 2^-0.8354* + 2^-1 -5 168* _ 2e -[2(2.3627) -1.51 68]*

Fig. 15 Time-optimal control profile for a spring-mass system.
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Fig. 16 Robust time-optimal control profile for a spring-mass system.

Thus to design time-optimal control, we would have to formulate a
parameter optimization problem with 2n + 1 time delays, unlike
the undamped case, where we were required to determine n + 1
time delays. The sufficiency condition can be checked as described
in Sec. III. C.

Numerical example 4. We study the two-mass-spring problem
(which also represents a flexible spacecraft) described in Sec.
III.D. We require the masses to move at a constant velocity of one
unit in minimum time. The optimization problem to be solved to
arrive at the minimum-time control profile is

(67)

(68)

(69)

(70)

subject to the constraints

- 2 sin [toi(T2- 7\ )] + sin (a>1r2) = 0

0.7071[2r2 - 2(272- - 1.4142 = 0

T2 > T{ > 0

The transfer function of the time-delay filter is

1 - 2e~l2*lls + 2e~[2(L5755) ~

+ 2e~ - £-2(2.3627)* (72)

Figures 13 and 14 illustrate the system response to the mini-
mum-time spin-up control profile and the robust control profile,
respectively. Figures 15 and 16 are the control profiles for the two
cases.

VI. Conclusions
Design of time-optimal control inputs for linear systems has

been presented from a frequency domain viewpoint. The design
technique involves minimizing the maximum time delay of a time-
delay filter subject to the constraint that the output of the time-
delay filter saturates the actuator and the zeros of the time-delay
filter cancel all of the poles of the system. The generic nature of
the design procedure has been illustrated by designing time-opti-
mal control profiles for rest-to-rest and spin-up maneuvers. The
issue of robustness to errors in estimated system parameters has
been addressed by requiring multiple zeros of the time-delay filter
to be located at the estimated locations of the poles of the system.
Control profiles for rest-to-rest maneuvers of systems with one and
two flexible modes have indicated the requirement of three (four)
and five (six) switches (time delays), respectively.
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