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Abstract

In this study, a robust topology optimization method is proposed for compliant mech-

anisms, where the effect that variation of the input load direction has on the output

displacement is considered. Variations are evaluated through a sensitivity-based ro-

bust optimization approach, with the variance evaluated using first-order derivatives.

The robust objective function is defined as a combination of maximizing the output

deformation under the mean input load and minimizing variation in the output defor-

mation as the input load is varied, where variance due to changes in load can be ob-

tained through mutual compliance and the presence of a pseudo load. For the topology

optimization, a modified homogenization design method using the continuous approx-

imation assumption of material distribution is adopted. The validity of the proposed

method is confirmed with two compliant mechanism design problems. The effect that

varying the input load direction has upon the obtained configurations is investigated by

comparing these with deterministic optimum topology design results.

Key words : Robust Design, Topology Optimization, Compliant Mechanism, Homog-

enization Method, Sensitivity-Based Robust Optimization

1. Introduction

The designs of mechanical mechanisms often employ rigid parts linked together via mov-

able joints, and in such mechanisms, the joints constrain the relative motion of such links. In

contrast, compliant mechanisms take advantage of a structure’s flexibility to achieve a speci-

fied motion, exploiting the elastic deformation of a continuous material instead the movement

of parts constrained by joints(1). Such compliant mechanisms are made of fewer parts than

conventional rigid link mechanisms and offer several advantages, such as reduced operational

noise, freedom from lubrication requirements, and ease of miniaturization. The use of com-

pliant mechanisms in mechanical products, medical instruments and MEMS (Micro-Electro

Mechanical Systems) is therefore expected to become more widespread.

Since the homogenization design method (HDM)(2) was first proposed, topology opti-

mization approaches have become increasingly sophisticated, and some have been applied

to the configuration design of compliant mechanisms. An example of such an approach

is its application to aeroelastic structural design in the conceptual design phase(3), and a

homogenization-based topology optimization method for obtaining compliant mechanism con-

figurations has also been proposed(4), where the objective function is formulated as a multi-
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objective problem to maximize the mean compliance to achieve the specified motion, and

minimize the mutual mean compliance to support reaction forces.

Topology optimization results, however, are often plagued by various numerical insta-

bility problems that produce checkerboard patterns. Several schemes based on filtering tech-

niques are routinely used to try and resolve such indeterminacies, but these merely address

the symptoms rather than the core difficulty. However, several methods have been proposed

that solve this issue theoretically, such as the method of continuous approximation of mate-

rial distribution(5), and this kind of approach has been applied to the topology optimization of

compliant mechanism designs whose optimal configurations avoided checkerboard patterns(6).

At the present time, product safety, reliability and robustness are increasingly important

requirements in product design. Most studies in the topology optimization of compliant mech-

anisms have been conducted under deterministic conditions, where material properties and

applied loads are not subject to variations. Such compliant mechanisms are usually designed

to achieve a specified motion under a specified load, but when the actual direction of applied

loads is different from the design specification, as may often occur in the field, the mechanism

may fail to respond appropriately. In particular, small mechanisms such as MEMS are likely

to be quite sensitive to variations in material properties, dimensions or environmental factors

such as applied loads.

A robust design is one that maintains a particular insensitivity with respect to external

noise or uncertainty. In this sense, a robust design approach lies in the same category as

reliability-based designs that consider uncertainties based on probabilistic theory(7), (8), how-

ever robust designs do not employ strict definitions for modeling uncertainty beyond a formu-

lation that uses the mean and variance of the performance.

Consequently, there are many variations in robust design approaches, such as the Taguchi

method(9), the sensitivity-based robust optimization approach(10), the physical programming

approach(11), (12), and robust design with an axiomatic approach(13). The various advantages

and disadvantages of these approaches are discussed in a review paper(14). A further approach

is offered by information gap decision theory(15), building on convex models(16) and their

application to the evaluation of insensitive or worst case designs (e.g., Ref. (17)).

This study proposes a robust topology optimization method for compliant mechanism

design that considers the effect of uncertainty in applied loads, and adopts a sensitivity-based

robust optimization approach because of its suitability for continuous optimization problems

and applicability to large-scale problems that have many design variables. Additionally, the

sensitivity-based optimization approach requires minimal parameter settings. On the other

hand, the physical programming approach and robust design method with axiomatic approach

are suitable for investigating the effects of several kinds of uncertainties, however, since this

study only considers the variation of applied loads, none of these approaches are adopted. The

convex model approach is another candidate, but it is not well suited to the investigation of

variations in structural response due to variation in applied loads because the obtained results

depend on how the convex set is defined when describing uncertainties.

The robust optimal configurations of compliant mechanisms are obtained by the pro-

posed method that combines a sensitivity-based robust optimization approach with topology

optimization. Numerical examples are provided to investigate how variation in input load

direction affects the output deformation of the obtained optimal compliant mechanism config-

urations.

The rest of this paper is organized as follows. Section 2 describes the topology opti-

mization of the compliant mechanism design method. Section 3 describes the formulation

for achieving robust designs, using the sensitivity-based robust optimization approach. To

demonstrate the effectiveness of the proposed method, it is applied to two compliant mech-

anism design examples, as described in section 4, and section 5 provides a summary of the

results.
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2. Compliant mechanism design using topology optimization

Consider the design problem of determining the boundary of the design domain Ωd by

minimizing or maximizing objective functions. The key idea of the topology optimization

method is the introduction of a fixed, extended design domain D that includes the prescribed

original design domain Ωd, and the utilization of the following characteristic function(18).

χΩ(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 (if x ∈ Ωd)

0 (if x ∈ D\Ωd)
(1)

where x denotes a position in the extended design domain D. Using this function, the origi-

nal structural design problem is replaced by a material distribution problem incorporating an

elasticity tensor, χΩE, in the extended design domain D, where E is the elasticity tensor in

the original design domain Ωd. Since this characteristic function can be very discontinuous,

i.e., resides in L∞(D), some regularization or smoothing technique is required in the numerical

treatment. The homogenization method(2) is used to relax the solution space by introducing

microstructures representing the composite materials. The design variables, however, are ap-

proximated by piecewise constants in the finite element implementation, which often leads to

numerical instabilities such as checkerboard patterns.

Two types of methods have been proposed to regularize the design domain: The HDM

(Homogenization Design Method)(2), (19) and the SIMP (Solid Isotropic Material with Penal-

ization) method(20). In the HDM, a homogenization method is used to perform the relaxation

of the solution space, by introducing microstructures that represent the composite materials.

The SIMP method simply uses a fictitious isotropic material whose elasticity tensor is as-

sumed to be a function of penalized material density expressed by an exponent parameter.

Design variables are approximated by piecewise constants in the finite element implementa-

tion in both the HDM and the SIMP method even though the material density is assumed to

be continuously distributed almost everywhere in the extended design domain D. However,

we conjecture that there are inconsistencies in these procedures, i.e., the assumption of con-

tinuous material distributions and the piecewise distribution of design variables, and that the

approximations based on the use of a piecewise constant in each element cause the numerical

instability problems that are manifested as checkerboard patterns.

To overcome such obstacles and maintain procedural consistency here, the discretized

design variables are not allocated at the elements’ center, but at their nodes, and continuous

material distributions are assumed using a continuous interpolation function at each node(5).

That is, the design variable r(x) is approximated as follows.

r(x) ≈ rh(x) = N
r(x)R =

n
∑

i=1

Nr
i (x)Ri (2)

where h stands for the discretized quantity using the FEM, N
h is a vector whose components

are Nr
i
(x) (i = 1, . . . , n), R is a vector of nodal (discrete) design variables Ri (i = 1, . . . , n),

and n is the total number of nodes, which is also the same as the number of design variables

in this formulation(5).

Using the above approximation, the design variables can hold the C0-continuity over

the domain due to the partition-of-unity of Nr
i
(x), and they are continuously distributed in and

throughout the elements. The bi-linear interpolation function is used here for Nr
i
(x) in the case

of four-node quadrilateral elements, for its simplicity in this research and because it preserves

the C0-continuity. Note that Nr
i
(x) (i = 1, . . . , n) are selected and evaluated independently of

the shape functions for displacement fields. Also note that similar formulations based on the

SIMP method were presented in Refs. (21) and (22). Although they pointed out some numer-

ical problems such as “layering” and “islanding” when using coarse meshes, the numerical

examples obtained by the method proposed here will show clear optimal configurations given

sufficiently fine meshes, without the above problems.
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Fig. 1 Microstructure used for the design domain relaxation

(a) (b) (c)

Fig. 2 Design specifications for a compliant mechanism design

Figure 1 shows the microstructure used for the relaxation of the design domain in the

two-dimensional problem. As shown in this figure, its shape is hexagonal and the design

variable is a geometrical parameter r. In order for a unit cell to be void, r must be 1, and

for it to be solid material, r must be 0. This microstructure has an isotropic response. Using

this microstructure, whose elasticity tensor is E, the homogenized elasticity tensor E
H is

calculated as,

E
H =

1

|Y |

∫

Y
E(x, y)

[

I − ǫy(χ)
]

dY (3)

where χ indicates the characteristic deformations obtained by the following equation:

∫

Y
ǫy(u)

T
E(x, y)ǫy(χ(x, y)) dY =

∫

Y
ǫy(u)

T
E(x, y) dY for ∀u ∈ Vy (4)

ǫy(u)
T =

(

∂v1

∂y1

∂v2

∂y2

1

2

(

∂v1

∂y2

+
∂v2

∂y1

))

(5)

and y is the local coordinate defined in the microstructure, and Vy is the admissible space

defined in unit cell Y such that

Vy =
{

u = viei : Y-periodic in unit cell Y
}

(6)

where |Y | stands for the area of the unit cell. We thus obtain the homogenized properties that

are then utilized in the optimization procedure.

Next, let us consider that the original design domain for a compliant mechanism, Ωd, is

fixed at boundary Γd, and is subjected to an applied traction t1 at boundary Γ1 as shown in

Figure 2 (a). We also consider an extended design domain D that includes Ωd. We intend to

design a compliant mechanism that starts to deform in the specified direction t2 at boundary Γ2

in order to carry out its intended design function when a traction t1 is applied at boundary Γ1.

To successfully implement this function in the compliant mechanism, kinematic and structural

requirements must be satisfied simultaneously. For the kinematic requirement, the compliant

mechanism must have sufficient flexibility to allow appropriate deformation along a direction

specified by a dummy load t2 at Γ2 when traction t1 is applied at Γ1 as shown in Figure 2 (a).

This is obtained by maximizing the mutual mean compliance formulated by

l2
(

u
1
)

=
∫

Γ2

t
2 · u1 dΓ u

1 ∈ V1, (7)

where

V1 = {u = viei : u = 0 on Γd} (8)
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Note that the deformation of the compliant mechanism may be considerable, but the ef-

fect of large deformations can be ignored in the topology design phase. That is, the compliant

mechanism is designed based on a small linear deformation assumption since the goal is for

it to qualitatively deform in the desired direction of motion. It is not necessary to consider

utilizing any additional functions based on non-linear effects such as buckling at this phase of

the design process. This assumption is appropriate when the qualitative characteristics of the

mechanism is considered in the compliant mechanism design.

Concerning structural requirements, the compliant mechanism must have sufficient stiff-

ness in appropriate locations in order to form a durable structure, even though the primary

goal is to implement sufficient flexibility in the structure. Two different kinds of stiffness at

two different boundaries are considered. One aims to provide sufficient stiffness at boundary

Γ1 as shown in Figure 2 (b) when traction t1 is applied at boundary Γ1, which maintains the

overall shape of the compliant mechanism when it deforms due to traction t1. This property

is obtained by minimizing the mean compliance at boundary Γ1 in response to traction t3 = t1

while boundary Γ2 is fixed, as follows:

l3
(

u
3
)

=
∫

Γ1

t
3 · u3 dΓ u

3 ∈ V3, (9)

where

V3 = {u = viei : u = 0 on Γd and Γ2} (10)

The other required stiffness is at boundary Γ2 as shown in Figure 2 (c), which maintains

the shape of the compliant mechanism against the reaction force imposed from the workpiece

contacted. Here, the direction of the reaction force is assumed to be opposite to that of the

dummy load t3 and it is obtained by minimizing the mean compliance at boundary Γ2 in

response to traction t4 = −t2 while boundary Γ1 is fixed, as follows:

l4
(

u
4
)

=
∫

Γ2

t
4 · u4 dΓ u

4 ∈ V4, (11)

where

V4 = {u = viei : u = 0 on Γd and Γ1} (12)

Note that these fixed conditions theoretically provide the compliant mechanism with over con-

straints because the reciprocal theorem requires a constraint only in the direction along which

the traction is applied in the pseudo or quasi-static case. However, as a matter of practical-

ity, we impose fixed conditions instead of the exact boundary conditions mentioned above,

because the direction of the traction applied to the complaint mechanism keeps changing as

the complaint mechanism deforms. That is, if we consider the exact boundary conditions,

they might not provide the complaint mechanism with sufficient flexibility because the direc-

tion along which the traction is applied changes as the compliant mechanism deforms. Thus,

boundary conditions are set in order to obtain sufficient stiffness in both cases.

To obtain the optimal configuration of a compliant mechanism here, three objective func-

tions must be implemented, namely, to maximize Eq. (7) and to minimize Eqs. (9) and (11).

In order to incorporate the three objective functions, the objective function is converted to the

single objective function. The optimization problem is formulated to use this single objective

function under a volume constraint.

maximize : f =
l2
(

u1
)

w3l3
(

u3
)

+ w4l4
(

u4
) (13)

subject to : V(x) ≤ VU (14)

where w3 and w4 are weighting coefficients and VU is the volume upper constraint. See the

details in Ref. (4).

100



Journal of Advanced Mechanical Design,
Systems, and
Manufacturing

Vol.2, No.1, 2008

Fig. 3 Concept of robust optimization.

This formulation is based on a conventional deterministic optimization problem. In order

to obtain an optimal configuration of a robust compliant mechanism where variation in applied

load is considered, measures to evaluate robustness should be introduced into the objective

function.

3. Formulation of robust objective function

A sensitivity-based robust optimization approach(10) is used in this study because of its

suitability when applied to continuous optimization problems. In this method, the robustness

of the objective function is usually described as a weighted sum of the mean objective value

and variation of the objective with respect to the variations of design variables and design

parameters. This can be defined by using the mean value E[·] and variance Var[·] as follows.

maximize : F(x) = E[ f (x, d)] − αVar[ f (x, d)] (15)

where x and d indicate design variables and design parameters, respectively, and α is a pos-

itive weighting coefficient. This objective function combines a maximization of the mean

performance with a minimization of variations due to uncertainty and is illustrated concep-

tually in Figure 3. The deterministic optimum solution xopt shows a larger variation of the

objective ∆ f (xopt) in response to a specified change δ in the design parameters, whereas the

robust optimum solution yield a smaller corresponding variation ∆ f (xrobust) even when the

objective function of the robust design frobust is smaller than that of the optimum design fopt.

For the robust constraint conditions, certain constraints are satisfied within the variable

range for the design variables and design parameters. That is, the j-th constraint condition is

modified as follows.

g j(E[x] + z
x, E[d] + z

d) ≤ 0 (16)

where zx and zp indicate variable ranges of design variables and design parameters, respec-

tively. The other constraints are formulated in the same manner used for conventional deter-

ministic optimization problems.

The mean and variance of the objective function f are evaluated according to the follow-

ing first-order approximation.

E[ f ] ≈ f (E[x], E[d]), (17)

Var[ f ] ≈
nx
∑

i=1

(

∂ f

∂xi

)2

Var[xi] +
nd
∑

i=1

(

∂ f

∂di

)2

Var[di] (18)

where, nx and nd are the number of design variables and uncertain parameters, respectively.

The first order approximation does not always have sufficient accuracy because the deriva-

tive indicates only the change within an infinitely small range, and in particular, because the

derivative with respect to a design variable would become zero at the deterministic optimum
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value. Sundaresan et al.(10) proposed that the variance be approximated by the mean square

sum of the difference between the objective function value at current design points fi and at

the central point fc, and this is called a sensitivity index.

Var[ f ] ≈
1

nx

nx
∑

i=1

( fi − fc)2 (19)

In any case, this approximation imposes a disproportionately large computational cost in com-

parison with the derivative approach. The derivative approach provided in Eq. (18) is thus a

better strategy for case where there is a relatively small range of variations(23).

In this study, the applied input load is assumed to have variation, while the design vari-

ables corresponding to the topology are specified as being deterministic. In this case, changes

in the objective function with respect to design parameters, not design variables, are consid-

ered to be confirmed to a relatively small range of variation. However, even at its smallest, a

derivative with respect to a design parameter would not become zero at the deterministic op-

timum, which is why the variance here is formulated using a derivative approach in Eq. (18).

When the input load direction is varied, only the mutual mean compliance l2(u1) in

Eq. (7) is affected. Therefore, the robust objective function is formulated to maximize the

mutual mean compliance and minimize the variation as follows.

maximize : F =
E[l2(u1)] − α

√

Var[l2(u1)]

w3l3(u3) + w4l4(u4)
(20)

where the standard deviation is used instead of the variance to set the same dimension as the

first term of the numerator and α is a positive weighting coefficient.

Variation of the input load direction is modeled by introducing an uncertain traction t1
r

whose direction is perpendicular to the input load t̄
1

as shown in Figure 4. That is,

t
1 = t̄

1
+ t

1
r , (21)

t
1
r · t̄

1
= 0 (22)

the input load t̄
1

is assumed to be deterministic and the average of variable traction t̄
1

is set to

zero, so that

E[t
1] = t̄

1
, Var[ t̄

1
] = 0, (23)

E[t
1
r ] = 0, Var[t

1
r ] = σ2

t1 (24)

Under this assumption, the average and variance of the mutual mean compliance in

Eq. (20) are described as follows.

E[l2(u1)] = l2(ū1), (25)

Var[l2(u1)] =

(

σt1 ·
∂l2(u1)

∂tr
1

)2

(26)

where ū1 is the deformation due to the average traction t̄
1
. Variation of Eq. (26) is obtained

by the first Taylor series under the assumption that variation in the output deformation is

relatively small.

The derivative of the mutual mean compliance l2(u1) with respect to the variable traction

t1
r is described as follows.

∂l2(u1)

∂tr
1

= u
1
r (27)

where u1
r is the variation in deformation at the input point due to variation of the input load

t1
r . Additionally, the direction of the variable deformation u1

r can be assumed to be coincident

102



Journal of Advanced Mechanical Design,
Systems, and
Manufacturing

Vol.2, No.1, 2008

Fig. 4 Modeling of variable load direction.

Fig. 5 Flowchart of robust topology optimization procedure.

with the direction of the variable load σt1 that is defined as being perpendicular to the average

load in Eq. (21). Consequently, Eq.(26) yields the following scalar product.

Var[l2(u1)] =
(

|σt1 | · |u1
r |
)2
= (σt1 u1

r )2 (28)

The variable deformation ur
1

is obtained by the average of mean compliance due to unit pseudo

loads in both directions along t1
r as follows.

u
1
r =

l5(u5) + l6(u6)

2
(29)

l5(u5) =
∫

Γ1

t
5 · u5 dΓ, u

5 ∈ V5, (30)

where

V5 = {u = viei : u = 0 on Γd} (31)

l6(u6) =
∫

Γ1

t
6 · u6 dΓ, u

6 ∈ V6, (32)

where

V6 = {u = viei : u = 0 on Γd} (33)

where the unit pseudo loads are described as t5 and t6 having opposite directions, respectively,

as shown in Figure 4.

The robust optimization problem is formulated as follows.

maximize : F =
l2(u1) − α′

[

σt1

{

l5(u5) + l6(u6)
}]

w3l3(u3) + w4l4(u4)
(34)
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(a) Design domain. (b) Deterministic

(c) σ = 0.05 (d) σ = 0.125 (e) σ = 0.25

Fig. 6 Design domain and robust optimum configurations of example 1.

subject to : V(x) ≤ VU (35)

where the parameter α′ is equal to α/2. The constraint condition is a volume constraint, which

is invariable because the design variables are deterministic.

A flowchart of the topology optimization procedure is illustrated in Figure 5. As shown

the homogenized coefficients for the elasticity tensor are calculated first. Next, the four equi-

librium equations are solved using the finite element method. The mutual mean compliance,

the mean compliance, the total volume constraint, and the robust objective function are then

all computed. If the objective function converges, the procedure terminates, otherwise the sen-

sitivities of the mutual mean compliance, the mean compliance, the total volume constraint,

and the robust objective function are all computed. The design variables are then updated

using sequential linear programming, and the procedure returns to the first step.

4. Numerical examples

The validity of the proposed method is demonstrated by the following two compliant

mechanism design problems. The optimal configuration of robust compliant mechanism is

obtained by minimizing the objective function of Eq. (34) under a volume constraint of 20%

in whole design domain. Additionally, the denominator parameter values in Eq. (34) are set

to w3 = w4 = 1. In order to investigate the effect of variations, the standard deviation of the

input load is changed while the numerator in Eq. (34) is set to α = 1.

4.1. Example 1 : Simple compliant mechanism

The design problem is shown in Figure 6 (a) where boundary conditions and specifica-

tions are as indicated. Consider a compliant mechanism that undergoes a horizontal deforma-

tion uout in the left direction (−x direction) at the central node of the right edge in response to

a horizontal input load fin along the right direction (+x direction) applied at the central node

of the left edge, where the 9 nodes at the top and bottom of the left edge are fixed. The fixed

design domain D, a 30 × 30 square, is discretized to 60 × 60 square-shaped finite elements.

The uncertainty of the applied load is described as the uncertain vertical load value fr (in ±y

direction) at the central node at the left edge, where the average value is set to zero and the
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(a) Design domain. (b) Deterministic

(c) σ = 0.05 (d) σ = 0.125

Fig. 7 Design domain and robust optimum configurations of example 2.

standard deviation is in the range of 0.05 ∼ 0.25.

The optimal configurations obtained with different standard deviation values are illus-

trated in Figure 6 (b)∼(e). The obtained optimum solution is distiguished by its configuration

that includes dimensions and shapes of the structural elements as well as the topology(2), (4).

The color indicates the value of the normalized density calculated by 1 − r(x)2, where the red

color corresponds to the highest value and the blue color to the lower. The allocated value to

each color is illustrated in Figure 6 (b). Note that checker-board patterns are not observed in

the optimal configurations, since the node-based continuous approximation of material distri-

bution approach(5) as described in Eq. (2) is employed in the proposed method.

Figure 6 (b) shows the deterministic design that has no variations. The robust designs

reveal different configurations in comparison with the deterministic design, notably in the ver-

tical members added at the left side that support vertical input loads. The number of members

is increased in the case where σ = 0.25 shown in Figure 6 (e) at the right, probably because

this increases vertical stiffness to accommodate the variable vertical load.

4.2. Example 2 : Compliant gripper

The next example is a compliant gripper whose fixed design domain D is illustrated

in Figure 7 (a) where boundary conditions and specifications are as indicated. The top and

bottom edges at the left side are fixed to support the gripper. The function of the gripper

mechanism is to deform the right hollow along the directions of uout (±y directions) in order

to hold an object securely, when a horizontal input load fin (+x direction) is applied at the

central node of the left edge. The fixed design domain D is discretized in the same size of into

square finite elements as for in the previous example.

The obtained optimum configurations are illustrated in Figure 7 (b)∼ (d), and Figure 7 (b)

shows a deterministic design without variations where the color indicates the level of the

material density as illustrated in Figure 7 (b). The difference of the topology between the

robust designs is small except for the material distribution along the left edge.

To investigate the effect that the input load direction has on the output deformation, varia-

tions of the deterministic objective function value in Eq. (13) are investigated for the optimum

configurations under oblique input loadings. The result is shown in Figure 8. The horizontal
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Fig. 8 Variations of objective function value.

axis denotes the direction angle of the resultant load. The deterministic design has the highest

value under the deterministic condition where θ = 0◦, but deteriorates the performance under

the oblique input loadings. While, the optimal configuration in case where σ = 0.05 has the

largest values under oblique input loading. This result implies that the obtained configuration

representating dimension and shape of appeared structural elements rather than the topology

in this case achieves robustness with respect to the input load directions.

On the other hand, the optimal configuration in case where σ = 0.125 has smaller value

than that in case where σ = 0.05, though the design has larger value than that of the determin-

istic design under larger angles of the load direction. The design might have larger objective

function value for much larger angle of the resultant load. Such a loading condition, however,

might be beyond the assumed load variance. This result indicates the difficulty of the variance

value setting for the robust optimization. The adequate setting of the variance remains as one

of future problems of the robust optimization.

5. Conclusion

This study proposed a robust topology optimization method for design of compliant

mechanisms subject to variations in input load direction, as a first step to establish a robust

design procedure for compliant mechanisms that must endure considerable variations in actual

working environments.

The following conclusions were obtained.

• Based on the sensitivity-based robust optimization concept, the objective function was

formulated to maximize the average value and to minimize the variance for the compliant

mechanism.

• Variation in the output deformation due to variation in the direction of the input load

was evaluated through the mutual mean compliance and introducing a variable input load

perpendicular to the mean load direction.

• The utility of the proposed method was demonstrated with two numerical examples.

In comparison with deterministic optimal configurations, robust optimal configurations show

increased output deformations in response to the average applied load, and also an increased

stiffness in uncertain load directions that reduces the variance of the output deformation.

• Numerical results also indicate the difficulty of setting the variance value for the robust

optimization. This remains as one of future problems.

The authors hope to conduct future research that further develops the proposed method

so that consideration of other variations can be included, for example in material properties,

input loading positions or other environmental conditions, to establish a robust optimization

method for the design of increasingly versatile compliant mechanisms.
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