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Abstract 

Robust topology optimization has long been considered computationally intractable as 

it combines two highly expensive computational strategies. This paper considers 

simultaneous minimization of expectancy and variance of compliance in the presence 

of uncertainties in loading magnitude, using exact formulations and analytically 

derived sensitivities. It shows that only a few additional load cases are required, 

which scales in polynomial time with the number of uncertain load cases. The 

approach is implemented using the level set topology optimization method. Shape 

sensitivities are derived using the adjoint method. Several examples are used to 

investigate the effect of including variance in robust compliance optimization. 

 

Nomenclature 

A = elasticity tensor 

C = compliance of the structure 

E[C] = Expected compliance 

Em = Young's modulus 

fi = load with uncertain magnitude 

H(φ) = Heaviside function 

[K] = stiffness matrix 

k = current iteration number 

m = order of the stiffness matrix 

n = number of uncertain loads 

p = solution to adjoint problem 

P(fi) = probability density function for load i 

Rb[C] = combined robust compliance objective function 

t = fictitious time domain 

u = displacement 

ui = displacement field for the single load of magnitude σi 

uµ = displacement field for the mean loading conditions  

v = virtual displacement 

Var[C] = variance of compliance 

Vol
*
 = volume constraint 

Vn = velocity function normal to the boundary 

w = non-dimensional factor 

Δt = time step 

φ(x) = level set implicit function  

ΓS = boundary of the structure 

ε = strain tensor 

ςm = sensitivity of expected compliance 

ςv = sensitivity of compliance variance 

η = weighting factor for the multiple objectives 

κi,j = entry in the inverse stiffness matrix 
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λ = Lagrange multiplier 

µi = mean magnitude of uncertain load i 

σi = standard deviation of uncertain load i 

σ = covariance 

Ω = design domain 

ΩS = structural domain 

 

1. Introduction 

Topology optimization is the most flexible form of optimization, where the optimum 

solution is least dependent on the initial design. This is a significant development in 

engineering design, as topology optimization can produce designs that an engineer 

has never thought of, directly assisting the creative aspect of design.
1,2

 It is becoming 

a common tool in engineering design industry and many finite element software
3-5

 

now include a topology optimization capability along with specialized software.
6
 

 

Engineering designs that operate in the real world should consider the effect of 

uncertainty. The design should be efficient, but also robust and reliable when subject 

to an uncertain environment. Treatments of uncertainties can be largely categorized 

into two types: reliability-based optimization (RBO) and robust design optimization 

(RDO). Reliability-based optimization incorporates uncertainties as quantified 

probabilities of failure and this is presented as a constraint. On the other hand, robust 

design optimization aims to find a solution insensitive to variations and uncertainties. 

Schuëller and Jensen
7
 in their review, offer a perspective that a deterministic model is 

a simplification of the real problem which has many sources of uncertainties and thus, 

optimization considering uncertainties is naturally associated with high cost and 

resources, which can quickly become prohibitive. Topology optimization, even in a 

deterministic sense, consists of a high number of design variables, so including 

uncertainties presents significant challenges to topology optimization. 

 

Reliability-based topology optimization (RBTO) was first introduced by Kharmanda 

and Olhoff
8
 to treat a probabilistic constraint and the objective function remained 

deterministic. Following on from this work, there has been a flurry of activity 

developing RBTO.
9-17

 A common approach is to introduce uncertainty as a constraint 

on the probability of failure using the First Order Reliability Method (FORM). This 

approach approximates the failure, or limit state function using a Taylor expansion at 

the most probable point. This point is defined as the shortest distance to the failure 

surface from the origin, after the uncertain variables have been transformed into the 

standard normal form.
18

 The FORM method allows computation of analytical 

sensitivities for the reliability constraint, which is attractive to topology optimization.  

 

The FORM approach has been used in topology optimization for reliability 

constraints on stiffness, fundamental eigenfrequency and critical displacements.
12-16

 

The RBTO method has also been generalised to include non-probabilistic uncertainty 

models.
17

 The approach is to assume that uncertain variables can be defined using 

convex models when probability data is unavailable. 

 

Most RBTO methods consider uncertainty in loading magnitude. Although, 

directional uncertainty has been modeled using independent orthogonal loads with 

zero mean,
15

 or by a non-probabilistic convex set model.
17

 Material property 

uncertainty has been limited to Young's modulus as a single uncertain variable 
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affecting the entire structure equally.
11-14

 Uncertainty in non-structural mass has also 

been considered for truss structures when there was a reliability constraint on the 

fundamental eigenvalue.
15

 When using an element based method, the thickness of 

elements has also been considered as a single uncertain parameter,
13,14

 which can be 

considered as a manufacturing uncertainty. 

 

Most of these uncertainties are either related to the load vector or are simple scalars 

on the stiffness matrix. This allows for reasonably straightforward computation of 

reliability constraint sensitivities. To the authors’ knowledge, more complex 

uncertainties that affect the stiffness matrix have not yet been considered in RBTO. 

These could include manufacturing uncertainties such as finer geometric details and a 

variation of material properties throughout the structure. 

 

In contrast to RBTO, less effort has been seen in the area of robust topology 

optimization. A popular approach to robust topology optimization is to approximate 

the random field of uncertainties as a set of discrete cases. The applied loading is 

often considered as the uncertain parameter, thus this approach is usually referred to 

as the multi-load formulation.
19-20

 This transforms a stochastic problem into a 

deterministic one with multiple design conditions, which existing topology 

optimization methods are equipped to solve. Noting that topology optimization is of 

high dimension, a key consideration is how to reduce the random variables and/or the 

number of design conditions. The objective function is typically the expected 

compliance for a set of conditions where the probability of each condition is treated as 

a weighting factor.
21-22

 

 

One alternative to the multi-load approach is to minimize the worst case, which turns 

the optimization into a min-max problem. The worst cases can be determined from 

the bounds of the convex model constructed from the prescribed uncertainties.
23-24

 

Kanno and Takewaki
25

 derived a mathematical formulation for a bounded set of 

loadings and Young’s modulus in the linear elasticity system. Another formulation for 

the worst loading conditions is based on the eigenvalue analysis of the linear elasticity 

system.
26-28

 However, optimizing for the worst conditions can lead to an overly 

conservative solution. As an alternative to the approximation formulations, Dunning 

et al.
29

 introduced an analytically derived expected compliance for uncertain loading 

parameters and used this as the objective function to optimize a continuum. Assuming 

that the loading magnitude and direction can be represented by Gaussian probability 

density functions, the resulting exact objective function reduces the number of load 

cases to at most (1+3n) where n is the number of loads with uncertainties. 

 

In robust topology optimization there has been limited research that considers sources 

of uncertainty other than loading. Manufacturing uncertainty has been considered as 

the position of the nodes in a truss ground structure when solving the minimization of 

expected compliance problem.
22

 This novel approach models nodal location 

uncertainty using small equivalent uncertain loads. This avoids adding uncertainty to 

the stiffness matrix and instead deals with an equivalent and simpler multiple load 

case problem. Uncertainty in the elastic modulus of truss structure members has been 

modeled using a perturbation method.
30

 The approach was to use a Taylor series 

expansion about the mean to approximate the uncertain input functions. Elastic 

modulus uncertainty has also been modeled in continuum structures using a 

polynomial chaos approach.
31
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Robust topology optimization has also been applied to design compliant mechanisms, 

where the objective was to maximize the mean output displacement whilst 

minimizing its variance under input loading uncertainty.
32

 The statistical moments 

were computed using a first order approximation, where the mean value is simply 

computed using mean loading conditions and variance is approximated using the 

derivative of displacement with respect to the uncertain loads.  

 

Chen et al
33

 developed a robust optimization method with random field uncertainties, 

including loading and material properties. The approach was to reduce the high 

dimension of the random filed using a Karhunen–Loève expansion. The multi-load 

approach is then employed by combining the univariate dimension-reduction method 

with Gauss- type quadrature sampling. The method then uses approximation formulae 

to compute statistical moments and a semi-analytical approach to compute 

sensitivities. 

 

Returning to the generally accepted formulations of robust optimization, considering 

only the worst cases or the minimization of expectancy does not directly address the 

sensitivity of the solution to variations. A well-known formulation for a robust 

optimization objective is to simultaneously minimize the expectancy and variance of 

the performance. Seepersad et al.
34

 formulates the robust optimization problem as a 

multi-objective problem minimizing the deterministic performance of the system and 

the discrete variability of uncertain parameters within the prescribed bounds. A more 

common formulation is to minimize the weighted sum of expectancy and variance of 

the performance for given uncertain parameters.
32,33,35

  

 

Extending robust topology optimization to include variance has received little 

attention to date. Some authors have discussed the importance of including variance, 

but concluded that the problem is more complicated, compared with minimization of 

expected performance.
20,22

 Compliance variance has been approximated using the 

method developed for random field uncertainties.
33

 This approach is general, in that it 

can handle many types of probability distribution. However, the formulation is only 

approximate and the sensitivities derived are semi-analytical. Carrasco et al. derived a 

formulation for compliance variance for truss structures subject to random loading 

perturbations at the nodes.
35

 The combined expected and variance of compliance 

problem was solved using a steepest decent method, although no derivation of the 

gradients used in the method was presented. 

 

The aim of this paper is to introduce the minimisation of expectancy and variance in 

compliance topology optimization under uncertainty in loading magnitude. An exact 

formulation for compliance variance is derived and analytical sensitivities are 

obtained using the adjoint method. Variance is then combined with expected 

compliance to produce a robust optimization problem that minimises the average and 

variability of performance. This is implemented using the level set method and 

demonstrated through numerical examples. 

 

2. Robust Topology Optimization 

2.1 Minimisation of Expected Compliance 

This section outlines the derivation for the expected compliance under uncertainty in 

loading magnitude:29 
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E[C ( f )] = !

fn

∫ C ( f ) P( f i)df1!dfn
i=1

n

∏
f1

∫  (1) 

 

where C is the compliance of the structure, u is the displacement field, fi is a load with 

uncertain magnitude, n the number of uncertain loads and P(fi) the probability density 

function for load i. In this paper, it is assumed that the uncertain load cases are 

uncorrelated. For practical structures, the displacement field is usually found using 

FEA: 

 f{ } = K[ ] u{ }  (2) 

 

where { f } is the nodal load vector, {u} the nodal displacement vector and [K] a 

square symmetric and positive definite stiffness matrix of order m. Using (2) the 

compliance function can be written in a discrete form dependent on the load vector: 

 

 C ( f ) = f{ }
T
K[ ]−1 f{ } = κ i, j f i f j

j=1

m

∑
i=1

m

∑  (3) 

 

where κi,j is an entry in the inverse stiffness matrix, i and j are row and column 

indices, respectively. For a normal distribution of uncertain loads, the expected 

compliance, (1) can be analytically evaluated using the discrete form (3) and 

integration by parts. 

 

 E[C ( f )]= κ i, jµ iµ j

j=1

m

∑
i=1

m

∑ + κ i,iσ i
2

i=1

m

∑  (4) 

 

where µi is the mean magnitude of uncertain load i and σi is the standard deviation. 

The details of the derivation of (4) can be found in Dunning et al
29

 and are not 

repeated here. Equation (4) reveals that the expected compliance can be evaluated 

from (n+1) deterministic load cases, where the first load case is the application of 

mean loading conditions. The subsequent n load cases correspond to a single load of 

magnitude σi applied at the location of the uncertain load. 

 

The expected compliance problem can thus be solved as an equivalent multiple load 

case problem. The shape sensitivity for the multiple load case problem, ςm, is simply 

the sum of sensitivities from each separate load case:
36

 

  

 " E C ( f )[ ] = ςmVndΓS
ΓS

∫
 (5) 

 

 ς
m
= Aε(uµ )ε(uµ ) + Aε(u

i
)ε(u

i
)

i=1

n

∑  (6) 

 

where Vn is a velocity normal to the boundary (positive inwards), ΓS is the boundary 

of the structure, A is the elasticity tensor, ε is the strain tensor, uµ is the displacement 

field for the mean loading conditions and ui the displacement field for the single load 
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of magnitude σi. This shape sensitivity can be used to define the velocity function for 

the level set topology optimization method, which is discussed in Section 3.1. 

 

2.2 Minimisation of Compliance Variance 

This section derives an exact form of compliance variance under loading magnitude 

uncertainty and the corresponding shape sensitivity using the adjoint method. The 

variance of compliance can be derived by evaluating the following: 

 

 Var[C ( f )]= E[C ( f )
2
]− E[C ( f )]

2  (7) 

 

The second term of this equation can be found by squaring (4): 

 

 

E[C ( f )]
2 = κ i. jκ p,qµ iµ jµ pµq( )

q=1

m

∑
p=1

m

∑
j=1

m

∑
i=1

m

∑ + 2 κ i. jκ p,pµ iµ jσ p
2( )

p=1

m

∑
j=1

m

∑
i=1

m

∑

+ κ i.iκ j, jσ i
2σ j

2( )
j=1

m

∑
i=1

m

∑
 (8) 

 

Now an expression for the first term of (7) is derived by evaluating: 

 

 

  

E[C ( f )
2
] = 

fn

∫ C ( f )
2

P( f i)df1dfn
i=1

n

∏
f1

∫  (9) 

 

Substituting (3) into (9) and evaluating for each uncertain load between limits of µ ± 

∞ using integration by parts, gives: 

 

E[C ( f )]
2 = κ i. jκ p,qµ iµ jµ pµq( )

q=1

m

∑
p=1

m

∑
j=1

m

∑
i=1

m

∑ + 4 κ i.pκ j,pµ iµ jσ p
2( )

p=1

m

∑
j=1

m

∑
i=1

m

∑

+ 2 κ i. jκ p,pµ iµ jσ p
2( )

p=1

m

∑
j=1

m

∑
i=1

m

∑ + 2 κ i. j
2σ i

2σ j
2( )

j=1

m

∑
i=1

m

∑ + κ i.iκ j, jσ i
2σ j

2( )
j=1

m

∑
i=1

m

∑
 (10) 

 

 

Now substituting (8) and (10) into (7) yields an exact formulation for compliance 

variance under uncertain loading magnitude: 

 

 Var[C ( f )]= 4 κ i.pκ j,pµ iµ jσ p
2( )

p=1

m

∑
j=1

m

∑
i=1

m

∑ + 2 κ i. j
2σ i

2σ j
2( )

j=1

m

∑
i=1

m

∑  (11) 

 

This expression can be rewritten in matrix form: 

 

 Var[C ( f )]= 4 µ{ }
T
K[ ]−1 σ [ ] K[ ]−1 µ{ } + 2 σ i{ }

T
K[ ]−1 σ [ ] K[ ]−1 σ i{ }

i=1

n

∑  (12) 

 

where [K] is a square symmetric stiffness matrix, {µ} is the mean or deterministic 

loading vector and {σi} is a load vector with a single load whose magnitude is equal 

to the standard deviation of uncertain load i. The matrix [σ ] has non-zero entries only 
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on the diagonal with values of σi
2
 and acts like a covariance matrix. Therefore, (n+1) 

load cases are required to compute compliance variance. These cases are conveniently 

identical to those required to compute expected compliance, (4). For linear elastic 

structures (12) can be written in terms of displacements: 

 

 Var[C ( f )]= 4 uµ{ }
T
σ [ ] uµ{ } + 2 u i{ }

T
σ [ ] ui{ }

i=1

n

∑  (13) 

 

where {uµ} and {ui} are displacement vectors for the load vectors {µ} and {σi} 

respectively: 

 

 µ{ } = K[ ] uµ{ }  (14) 

 σ
i{ } = K[ ] ui{ } (15) 

 

Alternatively, (13) is written in a continuous form: 

 

 Var[C ( f )]= 4 σ uµuµdΓS
ΓS
∫ + 2 σ uiuidΓS

ΓS
∫  (16) 

 

where σ  is a tensor form of [σ ]. The shape sensitivity of compliance variance, (16), 

can be computed using the adjoint method:
36,37

 

  

 Va " r C ( f )[ ] = ς vVndΓS
ΓS

∫
 (17) 

 ς v = 4Aε(uµ )ε(pµ ) + 2 Aε(u i)ε(pi)

i=1

n

∑  (18) 

 

where pµ and pi are solutions to the following adjoint equations: 

 

 A

ΩS

∫ ε(v)ε(pµ )dΩS = 2σ uµvdΓS
ΓS

∫  (19) 

 A

ΩS

∫ ε(v)ε(pi)dΩS = 2σ uivdΓS
ΓS

∫  (20) 

 

where ΩS is the structural domain and v is any permissible displacement field. 

Therefore, 2 σ uµ and 2 σ ui are adjoint load vectors used to find the adjoint 

displacement vectors that are required to compute the shape sensitivity of compliance 

variance in (17) and (18). 

 

The formulations for expected and variance of compliance were derived for point 

loads. However, the integration by parts process that was used to obtain formulations 

(4) and (11) can be generalized to include distributed loading. If the uncertainty in the 

magnitude of a distributed load, i, is described by a single Gaussian probability 

distribution, P(fi) then the additional load case required is equal to the same 

distribution, but with the magnitude multiplied by σi / µi .  

 

The method proposed here is limited to uncertainty in loading magnitude for 

uncorrelated loads and Gaussian probability distributions. However, the formulations 
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for expected and variance of compliance are exact and the sensitivities are derived 

analytically using the adjoint method. Therefore, within its scope, the proposed 

approach is very efficient compared with the random field approach proposed by 

Chen et al, which relies on approximation and semi-analytical sensitivities.
33

 

However, the random field approach is more general in its scope, as it can include 

non-Gaussian probability distributions and field type uncertainty, such as material 

properties. 

 

The formulations derived in this section for expected and variance of compliance, 

under uncertainty in loading magnitude, are exact for uncorrelated Gaussian 

probability distributions. However, as the formulations are functions of the first and 

second moments of the probability distribution they could be considered as first order 

approximations for general probability distributions. Furthermore, uncertainty in 

loading direction could be modeled using uncorrelated orthogonal loads, which has 

been used in other robust optimization methods that consider loading uncertainty.
20,32

 

 

2.3 Robust Objective: Combined Expectancy and Variance of Compliance 

The robust optimization objective is constructed as a weighted sum of expectancy and 

variance of performance, which, in this case, is the overall compliance: 

 

 Rb[C ] =
η

w

# 

$ 
% 

& 

' 
( E C[ ] +

1−η

w
2

# 

$ 
% 

& 

' 
( Var[C ] (21) 

 

where η ∈ [0, 1] is a weighting factor for the two parts of the objective and w is a 

non-dimensional factor. The non-dimensional factor is necessary because variance of 

a function has units of the expected value squared. For the compliance objective, w 

can be defined using Young's modulus, Em and the mean loading vector, {µ}: 

 

 w = µ{ }
T
µ{ } /Em  (22) 

 

The disparity of units between expectancy and variance of a function can also be 

resolved using normalising factors. These factors are often the values computed from 

the initial design. However, this approach can lead to solutions which are dependent 

on the initial design, thus the non-dimensional factor approach is adopted to avoid this 

dependency. An alternative to the non-dimensional factor is to consider the standard 

deviation of compliance in place of variance in the robust objective.
30,38

 This strategy 

may produce a more intuitive objective and is the subject of further study. 

 

The shape sensitivity for the combined robust compliance objective function, (21), 

Rb'[C] is simply the combination of sensitivities for each part: 

 

 Rb'[C] =
η

w

# 

$ 
% 

& 

' 
( E' C[ ] +

1−η

w
2

# 

$ 
% 

& 

' 
( Var'[C] (23) 

 Rb'[C ] =
η

w

# 

$ 
% 

& 

' 
( ςm +

1−η

w
2

# 

$ 
% 

& 

' 
( ς v

+ 

, 
- 

. 

/ 
0 VndΓS

ΓS

∫  (24) 

 

This sensitivity is used with the level set method to solve robust topology 

optimization problems. 
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The minimization of expected compliance problem is analogous to the well known 

multiple load case problem. The significance of this formulation is that a problem 

with a continuous loading uncertainty distribution can be exactly solved by a discrete 

multiple load problem given by (4). In the case of the variance computation, the 

multiple load case problem is not directly analogous as it requires solving several 

adjoint problems to obtain the sensitivities (18). 

 

3 Level set based topology optimization 

The robust compliance formulation introduced in Section 2 is solved using the level 

set topology optimization method.
37,39,40

 The level set method is a numerical 

technique based on an implicit function for tracking interfaces and boundaries. The 

principle of level set based topology optimization is to update the implicit function 

using a velocity function derived from the shape sensitivity, such that the design 

progresses iteratively towards an optimum. The optimization strategy and 

implementation is discussed in more detail below. 

 

3.1 Implementation of Level Set Topology Optimization 

The structure is defined by an implicit function φ(x), so that its zero level set 

coincides with the boundary: 

 

 

φ (x) > 0, x ∈ Ω
S

φ (x) = 0, x ∈ Γ
S

φ (x) < 0, x ∉ Ω
S

' 

( 
) 

* 
) 

 (25) 

 

where ΩS is the domain of the structure and ΓS is the boundary of the structure. The 

implementation is demonstrated using the robust compliance objective function, (21). 

The objective is minimized subject to an upper limit on structural volume: 

 

 

Minimize :Rb[C ] =
η

w

# 

$ 
% 

& 

' 
( E C[ ] +

1−η

w
2

# 

$ 
% 

& 

' 
( Var[C ]

Subject to : H φ( )
Ω

∫ dΩ ≤ Vol*
  (26) 

 

where Ω is a domain larger than ΩS such that ΩS ⊂ Ω, Vol
*
 is the limit on material 

volume and H(φ) is the Heaviside function: 

 
H (φ) =

1, φ ≥ 0

0, φ < 0

$ 
% 
& 

 (27) 

 

The key principle of level set based optimization is to use shape sensitivity analysis to 

define a velocity function that progresses the structure towards an optimum. This 

update process is usually performed by solving a Hamilton-Jacobi type equation: 

 

 

∂φ (x, t)

∂t
+∇φ (x, t)

dx

dt
= 0   (28) 

 

where t acts as a fictitious time domain. Equation (28) can be discretized and 

rearranged to produce a convenient update formula for optimization: 

 

 
φ
i

k+1
=φ

i

k − Δt ∇φ
i

k
V
n,i    (29) 
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where Vn,i is a discrete value of the velocity function acting normal to the boundary at 

point i, Δt is a discrete time step and k is the current iteration. 

 

The velocity function is simply defined so that the shape sensitivity of the objective 

function reduces the function, (24): 

 

 V
n

= λ −
η

w

% 

& 
' 

( 

) 
* ςm −

1 − η

w
2

% 

& 
' 

( 

) 
* ςv  (30) 

 

where ςm is defined by (6) for the equivalent multiple load formulation of expected 

compliance, ςv is defined by (18) and λ is a Lagrange multiplier for the volume 

constraint, used to transform the constrained problem (26) into a unconstrained one. 

 

For practical reasons the portion of the boundary subject to surface tractions and 

displacement boundary conditions is often fixed during optimization. This is achieved 

by setting the velocity function to zero at the appropriate portions of the boundary. 

The velocity function is then used to update the implicit function using (29), thus 

improving the structure with respect to the objective. 

 

Details of the computational implementation of the level set topology optimization 

method used in this paper can be found in our previous publications.
41,42

 Numerical 

examples are presented in the following sections. 

 

4. Numerical Investigation 

4.1 Simply-supported beam 

The first example is a short beam of aspect ratio 2 with three point loads applied 

along the bottom edge, Fig. 1(a). The three loads all have the same mean magnitude, 

µ = 1.0, but have different standard deviations for magnitude uncertainty, σ1 = 0.5,   

σ2 = 0.1, σ3 = 0.2. The design domain is discretized using 160 × 80 unit sized square 

elements and the volume constraint is 40% of the design domain. A Young’s modulus 

and Poisson’s ratio of 1.0 and 0.3 are used, respectively. When the uncertain loading 

conditions are applied to the deterministic solution, Fig. 1(b), the expected 

compliance equals 112.0 and variance is 1412.1. 

 

 
Fig. 1 Simply-supported beam, (a) design domain and loading conditions,  

(b) deterministic solution. 

 

Uncertainties are now considered during optimization by solving the robust 

compliance problem for various combination weights η, where η = 1 becomes the 

minimisation of expected compliance problem and η = 0 becomes the minimisation of 
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compliance variance problem. Solutions for a range of combination weights are 

shown in Fig. 2 and convergence histories are shown in Fig. 3. All problems converge 

reasonably smoothly towards an optimum solution. The lowest expected compliance 

value is obtained by the solution with η = 1.0, Fig. 2(a), which also has the greatest 

variance value. This is not surprising, as this solution did not consider variance during 

optimization. Also, the minimum variance of compliance is obtained for η = 0, Fig. 

2(f) as expected. It is also interesting to note that, for this example, all solutions that 

consider uncertainty during optimization have significantly lower variance values 

compared to the deterministic solution. However, the same is not true of expected 

compliance values, where only the solution using η = 1 has a lower value. 

 

An examination of the expected and variance values of the optimum solutions for the 

range of η, Fig. 2, reveals a trade-off relationship between the expected compliance 

and the variance. This is shown more clearly in Fig. 4. The trade-off relationship is 

clear for η ≥ 0.5, where the expected compliance decreases and variance increases as 

the combination weight increases. This seems reasonable, as the combined objective 

focuses more on expected compliance as the weight increases. However, the trend for 

η < 0.5 is less clear, especially for the solution using η  = 0.4, which has a greater 

expected compliance value than the solutions using combinations weights of 0.3 and 

0.2. 

 

The anomaly for η = 0.4 in Fig. 4 can be attributed to the discretization. The central 

diagonal bar that is present in the solutions for η ≥ 0.5 is eliminated due to 

discretization of the implicit level set function. This is illustrated by solving the η = 

0.4 problem with a refined mesh of 320 x 160 elements. The solutions for the original 

and refined meshes are shown in Fig. 5. The expected and variance of compliance for 

the refined mesh solution were 134.2 and 854.6, respectively, compared with 137.7 

and 854.2 for the original mesh. There was little change in the compliance variance, 

but, significantly, the expected compliance was reduced when the refined mesh was 

used. The value of compliance computed for the refined mesh solution fits with the 

trend plotted in Fig. 4, as indicated by the circle. 
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Fig. 2 Robust solutions for the beam example using various combination weights. 
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Fig. 3 Convergence histories for the robust solutions of the simply-supported beam. 

 

 
Fig. 4 Expectancy and variance of compliance for a range of combination weights. 
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Fig. 5 Comparison of solution for η = 0.4, (a) Original mesh - 160 × 80, (b) Refined 

mesh - 320 × 160. 

4.2 Bridge structure 

The second example is a bridge type structure, Fig. 6(a), where the uniformly 

distributed load applied along the top is split into two components with equal 

uncertainty in magnitude: µ = 0.1 / unit length and σ = 0.04 / unit length. Young’s 

modulus and Poisson’s ratio of 1.0 and 0.3 are used, respectively.  The design domain 

is discretised using unit sized square elements and the volume constraint is 50% of the 

design domain. The top two rows of elements are fixed to remain part of the structure 

throughout optimization. 

 

First,	
  we	
  use	
   the	
   initial	
  design	
  of	
   the	
  bridge	
  structure,	
  Fig.	
  6(a),	
   to	
  validate	
   the	
  

derived	
  formulae	
  for	
  expected	
  and	
  variance	
  of	
  compliance	
  for	
  distributed	
  loads	
  

with	
  uncertain	
   loading	
  magnitude.	
  The	
  analytically	
  derived	
  values	
   for	
  expected	
  

and	
   variance	
   of	
   compliance	
   were	
   obtained	
   using	
   (4)	
   and	
   (13),	
   respectively,	
  

where	
   the	
   load	
   cases	
  were	
   the	
  mean	
   loading,	
   and	
   two	
  additional	
   load	
   cases	
  of	
  

0.04	
  /	
  unit	
  length	
  for	
  the	
  separate	
  halves	
  of	
  the	
  bridge.	
  The	
  analytically	
  derived	
  

values	
  were	
  compared	
  with	
  a	
  sampling	
  method	
  that	
  approximates	
  the	
  statistical	
  

moments	
  using	
  deterministic	
  solutions:43  

 

 
E C f( )[ ] ≈ C f i( )P f i( )

i=1

n

∑ P f i( )
i=1

n

∑    (31) 

 

 
Var C f( )[ ] ≈ C f i( ) − E C f( )[ ]( )

2

P f i( )
i=1

n

∑ P f i( )
i=1

n

∑    (32) 

 

where n is the number of deterministic samples. The approximated values were 

computed using sample load cases that were combinations of the mean loading plus or 

minus a number of standard deviations of each uncertain load. Both expected and 

variance of compliance converged to within 1% of the analytical values using 49 

sample load cases, Table 1. This validates the use of the analytical formulae for 

expected and variance of compliance for distributed loads with uncertain magnitude. 

 

Table 1. Validation of analytical formulae for distributed loads. 

Number of 

samples 
E[C(f)] Var[C(f)] (×10

3
) 

1 334.8 0.00 

9 365.3 20.05 

25 386.1 35.29 

49 390.1 38.72 

Analytical 390.3 38.96 
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We now consider the optimization of the bridge structure. The deterministic solution 

is shown in Fig. 6(b). When the uncertain loading conditions are applied to the 

deterministic solution, the expected compliance is 1320.6 and variance is 1326.0×10
3
.  

 

Uncertainty is now considered during optimization and the solutions for η = 1.0, 0.5, 

0.0 are shown in Fig. 7(a), (b) and (c), respectively. Values for expected compliance 

are: 635.1, 633.7, 633.5 and values for variance are: 100.7×10
3
, 100.3×10

3
, 

100.2×10
3
, for η = 1.0, 0.5, 0.0, respectively. All solutions are similar to the 

deterministic solution, except for the addition of two lower horizontal bars. These 

bars support the potentially unsymmetrical loading conditions and significantly 

reduce the expected compliance and the variance, compared to the deterministic 

solution. 

 

All robust solutions are very similar in design and have compliance values within 1%. 

This suggests that, for this problem, the expected and variance values of compliance 

are mutual, such that minimizing one also minimises the other. Furthermore, the 

problem was solved for a range of objective weighting factors and almost identical 

solutions were obtained in each case. The behavior of the bridge structure is in 

contrast to the previous example of a simply supported beam, where there was a 

trade-off between the expected and variance of compliance. The two examples 

demonstrate that the effect of introducing compliance variance into the objective is 

problem dependent and it is not clear what specific features of the two examples 

produce this contrasting behaviour when variance is introduced. Further studies are 

underway to investigate and provide a more in-depth understanding for the robust 

optimization formulation of the expected and variance of compliance as a multi-

objective problem. 

 

 
 

Fig. 6 Optimization of the bridge structure, (a) design domain and loading conditions, 

(b) deterministic solution. 
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Fig. 7 Robust optima of the bridge structure (a) expected compliance objective, (b) 

combined objective η = 0.5, (c) variance of compliance objective. 

 

5 Conclusions 

This paper introduces an exact formulation for compliance variance under loading 

magnitude uncertainty for robust topology optimization. The robust objective for 

normally distributed uncertain loads can be computed by considering only a small 

number of additional load cases. This makes the robust topology optimization 

computational tractable (using a standard PC) and accessible by any topology 

optimization method. The numerical examples show substantial benefits and 

significant topological changes can be expected from robust optimization in 

comparison with the equivalent deterministic optimization. The objectives of 

expectancy and variance may or may not be conflicting and this depends on the 

specific structural design problems. Understanding of this a priori to optimization 

does not appear to be obvious.  
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