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Abstract

In this paper, a robust topology optimization method presents that insensitive to the uncertainty in geometry and applied load. 

Geometric uncertainty can be introduced in the manufacturing variability. Applied load uncertainty is occurring in magnitude and 

angle of force. These uncertainties can be modeled as a random field. A memory-less transformation of random fields used to random 

variation modeling. The Adaptive Sparse Grid Collocation (ASGC) method combined with the uncertainty models provides robust 

designs by utilizing already developed deterministic solvers. The proposed algorithm provides a computationally cheap alternative 

to previously introduced stochastic optimization methods based on Monte Carlo sampling by using the adaptive sparse grid method. 

Numerical examples, such as a 2D simply supported beam and cantilever beam as benchmark problems, are used to show the 

effectiveness and superiority of the ASGC method.
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1 Introduction

Improving the performance and reducing the costs in engi-

neering design of structures are obtained by using of struc-

tural optimization. Generally, size, shape and topology 

optimization are three levels of structural optimization.  

The purpose of the classic topology optimization is to obtain 

an optimal distribution of material or structural design 

parameters in a range of nominal material properties, geom-

etry and loading conditions. SIMP and ESO methods are 

very popular in topology optimization and used in many 

articles. In these methods, elemental design variables are 

used to create topology optimization formulations.

Traditionally, the structural topology optimization is 

done deterministically (deterministic topology optimiza-

tion (DET)) [1]. However, designs derived by deterministic 

approaches often tend to be sensitive to changes in system 

and operating parameters. To cope with this issue, safety 

factors have traditionally been introduced into the formu-

lation of the design optimization problem, which often 

leads to unknowable unsafe or overly conservative designs. 

Therefore, a serious need to investigate the effect of uncer-

tainty in the design of a structural topology is desirable.

A semi-definite programming approach for topol-
ogy optimization of truss structure under uncertain load 

was presented by Ben-Tal and Nemirovski [2]. Guest and 

Igusa [3] considered load uncertainty in topology optimi-

zation. They consider the size and location of applied loads 

as uncertain. The weighted average multiple load pattern 

method has been developed in their research to resolve the 

problem of loading uncertainty. 

Kogiso et al. [4] considered uncertainty in the applied 

load. Uncertainty in the direction of the load was supposed 

and optimization of the complaint mechanisms was deter-

mined. Variations were studied based on the sensitivity 

with the evaluated variance by using the first derivative. 
Dunning et al. [5], Cherkaev and Cherkaev [6], Logo [7] 

and Logo et al. [8], Zhao and Wang [9], Zhao et al. [10], 

were also studied robust topology optimization under 

uncertainty loading.  

Chen et al. [11] presented a robust method for mini-

mum compliance and complaint mechanisms by using 

the level set method. In their work uncertainties in load-

ing and material properties have been studied. Modeling 
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of random field by using of the spectral stochastic finite 
element method (SSFEM) is a novelty of their approach. 

Tootkaboni et al. [12] research on the robust shape and 

topology optimization of two-dimensional structures. 

They used a polynomial chaos approach for mass minimi-

zation of structure under material uncertainty.

More recently some researchers have been focused on 

modeling geometric uncertainty in topology and shape 

optimization by using both level set and density based 

methods [11, 13 and 14]. In density based topology optimi-

zation these uncertainties that are attributed to manufac-

turing tolerances are commonly modeled via the Heaviside 

thresholding approach [15–18]. 

Chen and Chen [13] considered geometric uncertain-

ties by using level-set approach. They have presented a 

robust design optimization (RDO) for topology optimiza-

tion. In their work a stochastic velocity field is modeled by 
using Hamilton-Jacobi equations. Then, random geometry 

variations are modeled through velocity field. The mean 
and standard deviation of the design criteria are evaluated 

using an efficient quadrature rule. 
Geometric uncertainty is modeled in Lazarov et al. [17] 

by using the stochastic perturbation method. In their work, 

it is assumed that the system parameters, the inputs and 

the solution have small random variation. The method pro-

vides computationally cheap alternative to MC, however, 

the need for small variability is a restriction for the use of 

this method on the general applicability. 

Keshavarzzadeh et al. [19] considered topology opti-

mization under uncertainty in load and geometry. They 

used non-intrusive polynomial chaos expansion with 

design sensitivity analysis for reliability-based and robust 

topology optimization. Manufacturing variability is mod-

eled by using of thresholding technique. In this method, 

a reduced dimensional random field was used to demon-

strate the threshold field.
Latifi Rostami and Ghoddosian [20] used adaptive 

sparse grid collocation method to study the topology opti-

mization for mechanical systems with hybrid material and 

geometric uncertainties. The random variations are mod-

eled by a memory-less transformation of random fields 
which ensures their physical admissibility. The computa-

tional cost is decreased by using of sparse grids and dis-

cretization refinement that are proposed and demonstrated 
as well. This method provides a computationally cheap 

alternative to previously introduced stochastic optimiza-

tion methods based on Monte Carlo sampling by using the 

adaptive sparse grids method.

This paper organized as follows. First the deterministic 

(DET) optimization problem and then the Stochastic opti-

mization approach for obtaining robust designs are pre-

sented. In the next section, modeling of uncertainties is 

discussed. Then, Adaptive Sparse Grid Collocation meth-

ods and its features are introduced. The optimization algo-

rithm is presented in following and finally its applicability 
in topology optimization of robust minimum compliance 

is demonstrated. 

2 Problem definition
One of the issues that are commonly discussed in topol-

ogy optimization is the minimum compliance optimiza-

tion. The formulation of this field is given as 

min ( )
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where K is the stiffness matrix obtained by finite element 
discretization, u and f is the solution and the input vec-

tors for the system N
e
 are the set of all elements and p̄

ĩ 
 

are the physical density associated with. V
i
 is a volume of 

element i and V * is the fraction of the total volume which 

can be occupied with the material. The individual ele-

ments contributions to the tangent matrix K are calculated 

as K
i
 = E

i
K

0
 where K

0
 is the element stiffness matrix for 

unit stiffness and E
i
 is the material stiffness obtained by 

using the so-called solid isotropic material interpolation 

with penalization (SIMP) given as

E E E E
i i

p  min min( ) 0
, (2)

where E
0
 indicates the stiffness of places that occupied 

with the material, p is the penalization factor and p̄
ĩ 
 is the 

physical density of element i. The vector l in Eq. (1) will 

have different values for different problems. In the test 

case that discussed minimum compliance design, l = f.

Problems governed by the mechanical stiffness suffer 

from numerical instabilities, such as checkerboard patterns 

and mesh dependency solution. Density filtering makes it 
possible to achieve independent designs of the mesh. 

Here the mesh independent density filtering (Bruns and 
Tortorelli [21]) is used as a basis to ensure the existence 

of solutions. The basic idea is to determine the physical 

element density to be a weighted average of the neighbor-

ing design variables, where the neighborhood is defined 
by a circle in 2D or sphere in 3D with the specified radius. 
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Applying regularization to the original problem causes 

gray areas with a moderate density of 0 to 1.

In the following, the filtered density is denoted with p
ĩ
 

and physical density with p̄
ĩ 
. The filtered density for i-th 

element is calculated as 
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where the neighborhood set of elements, locating within 

the filter domain for the element i am represented by, the 

weighting function w(x) is defined as

w R
j j i

( )x x x   . (4)

In the above relation, R the specified filter radius and x
i
 

and x
j
 are central coordinates of the design elements i and 

j respectively. The sensitivity of filtered density p
ĩ
 with 

respect to the design variables is calculated as
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However, if the physical density is shown by the filte-
red density, the design of the gray areas will be formed,  

which will be difficult to interpret. Projection schemes 
should be used to convert these gray areas to white and 

black areas. In this research, a Heaviside projection proce-

dure is used for projecting these gray areas. In this method 

firstly a threshold η is defined and then all values below 
threshold are projected for 0 and above the threshold to 1. 

As the Heaviside function is not differentiable, it is approx-

imated by a smooth approximation controlled by relax-

ation parameter β. A Heaviside projection utilized here is  

given as

 


   
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i
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 

tanh( ) tanh( ( ))

tanh( ) tanh( ( ))1
. (6)

The derivative of the physical density p̄
ĩ
 with respect to 

the filtered density p
ĩ
 is calculated as
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The physical density p̄
ĩ
 is a function of the filtered den-

sity p
ĩ
 and the sensitivities of the objective function in 

Eq. (1) with respect to the original design variables are 

calculated as follows (Eq. (8)):
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3 Stochastic optimization 

When a stochastic system is discussed, its properties such 

as excitations, material or manufacturing errors will have a 

random nature (depending on the type of problem). There-

fore the response u becomes a stochastic field and the objec-

tive in Eq. (1) becomes a random variable. The stochastic 

compliance objective function in robust form is commonly 

determined by using of the mean and standard deviation of 

the compliance in the form of the weighted sum.
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where E[C] is the expected value of the compliance, the 

variance of the compliance is shown with Var[C] and  

represented the weighting coefficient that chosen by the 
user. In deterministic loading condition, the mean value 

(Expectancy) and the variance of the compliance of are 

given by

E C E E[ ] = [ ] = [ ]f u f u
T T

0
, (10)

Var C Var[ ] = [ ]f u
T . (11)

The sensitivities of the objective function with respect 

to the design variables ρ are found by using the adjoint 

method as follows (Eq. (12)):

. (12)

In the following sections first, the representation of the  
uncertainties as a stochastic field is discussed and then the  
solution of the stochastic state problem by using the Pro-

babilistic collocation method is presented in more details.

4 Applied load and geometric uncertainty 

representation

Under real-world conditions, many of the terms in the opti-

mization problem, including applied loads, the stiffness of 

the structure and geometry may involve some degree of 

uncertainty. There exist a variety of uncertainty quanti-

fication schemes that can be used for design optimization 
under uncertainty. Depending on the amount of available 

information, uncertainties can be introduced in various 

ways in the analysis of physical systems. 

ρ ρ ρ













f E C C[ ] ( Var[ ])




Rostami and Ghoddosian
Period. Polytech. Civ. Eng., 63(3), pp. 898–907, 2019|901

Commonly, probabilistic models used to quantify 

uncertainties. One or several system parameters, as well 

as system inputs are represented as stochastic processes 

in time or stochastic fields in space. Here, with the help of 
a scalar stochastic field y(x, ω) the system properties and 

the geometric uncertainties are modeled. The Scalar sto-

chastic field is defined in the physical domain D Ì Rd, and 

in this system Ω represent the set of all possible outcomes. 
ω  Ω is a coordinate which belong to it. Usually, the index 
set D and the possible outcomes set Ω are infinite dimen-

sional object. Therefore, any practical application would 

require to the reduction of dimensionality. In this research 

a truncated KLE used to model the reduced random field. 
The KLE provides a mapping from a relatively small num-

ber of independent random variables to the types of ran-

dom fields that are common in many physical processes. 
The Random field should have the optimal range for topol-
ogy optimization, in this research values between 0 and 1, 

but Z as a result of KLE does not in the range. Therefore, 

to resolve this problem an inverse transform sampling is 

applied to Z to ensure the new random variable (Ẑ) in the 

optimal range.

To obtain the KLE expansion for the random field Z its 

correlation function is assumed to be of the squared expo-

nential form i.e.

R exp( )
xx

c

d

l
  

2

22
, (13)

where d = |x –x'| is the Euclidean distance between loca-

tions x and x' and l
c
 is the correlation length. The correla-

tion length determines the scale of variation of the random 

field: a random field with a small correlation length will 
exhibit more fine scale variations than a random field with 
a large correlation length. A correlation length l

c
 = 0.3L 

is used [22]. The correlation matrix R is obtained by the 

finite element centroids x and x'. The KL decomposition 

of a zero mean process generates by using the n eigen-

value-eigenvector pairs (λ
i
, γ

i
) of the correlation matrix as 

follows (Eq. (14):

Z x x x
i i i
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n
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where random variables represented by φ
i
 and γ

i
(x) is 

interpolated from the eigenvector γ
i
 as piecewise uniform 

over the elements. For the purpose of dimension reduction, 

the expansion is truncated to the first n
mode

 < n modes. The 

correlation length l
c
 and the type of correlation function 

are effective in determining the number of modes n
mode

 .

Ultimately, the random field Z generates by using the ran-

dom variables φ
i
 via Eq. (14). To that end, uniform random 

variables assign to each φ
i
 with zero mean and unit variance. 

This assumption ensures that the same correlation matrix R 

can be reconstructed from the random field Z of Eq. (14). 

4.1 Modeling uncertainty in applied load

Loading uncertainties of linear elastic structures are con-

sidered in this section. Due to the variation of uncertain 

parameters ξ, the performance function f(x, ξ)has a proba-

bility distribution description. Thus, the robustness of the 

design objective can be achieved by optimizing the mean 

performance and minimizing the standard deviation of the 

performance simultaneously.

In this research a random load with uncertain angle and 

magnitude is considered. These uncertainties are character-

ized by two independent random variables. Random angle 

supposed that has a uniform distribution. Therefore, this 

random field showed via Eq. (14). For magnitude, uncer-
tainty is shown with Gaussian distribution with a mean of 

1 and standard deviation of 0.3 (F = N(1, 0.3)). Thus

f x FA x

F N A x xi i i

i

n e

( , ) ( , )

( , . ) ( , ) ( ) ( ).
mod

ξ ξ

ξ λ γ ϕ ξ

=

= =
=

∑1 0 3
1

,
 (15)

4.2 Manufacturing uncertainty via random field
We now consider geometric uncertainty in the above opti-

mization problem. As mentioned above, geometric uncer-

tainties are modeled by the assumption of a random nature 

to the threshold parameter η. This approach is model uncer-

tainty in structures that are fabricated via etching. The etch-

ing process causes errors in the form of over- or under- 

etching which produces structures that are either thinner or 

thicker than intended. This uncertainty is modelled with the 

Heaviside threshold. A non-uniform variation of errors in 

the design domain can be caused by the etching assumption, 

a more realistic. In the present paper this variation repre- 

sents by η with the random field such that: 

η,(x, ξ) = α
1
Ẑ(x, ξ) +α

2
 , (16)

where Ẑ(x, ξ)  [0, 1] is a random field, α
1
 and α

2
 control the 

mean and range of the process η such that η(x, ξ)  [0, 1].

Unfortunately realization of the KLE Z(x, ξ) Ï [0, 1] 

and this is noteworthy. Indeed geometric uncertainty is 

introduced by randomly varying the threshold parameter 

η and require η(x, ξ)  [0, 1]. To generate the random field 
Ẑ of Eq. (13) such that Ẑ(x, ξ)  [0, 1] use the fact that 

the Cumulative Density Function (CDF) of any continuous 



902|Rostami and Ghoddosian
Period. Polytech. Civ. Eng., 63(3), pp. 898–907, 2019

random variable, e.g. Z(x, ξ) is a uniform random variable, 

ranging from 0 to 1 i.e. U[0, 1]; this is ideal for modeling 

thresholds. In other words, for every realization of Z(x, ξ) 

there is a unique CDF transformed value that belongs to the 

range [0, 1]. The ensemble of these CDF transformed val-

ues has a uniform distribution from which the transformed 

process Ẑ is defined such that

Ẑ(x, ξ) = CDF(Z(x, ξ)). (17)

5 Adaptive sparse grid collocation methods

5.1 Sparse grid 

The sparse grid method is a most popular method that very 

useful in multidimensional quadrature and interpolation 

was introduced by Smolyak. The basis of this method is 

the Sparse tensor product. In following, the construction 

of this method is represented. Suppose that Q
l

(1)f a family 

of quadrature rules and will have:

∆ l l lf Q Q f

Q f

( ) ( ) ( )

( ) .

1 1

1

1

0

1 0

≡ −( )

≡

−
 (18)

Note that ∆
l

(1)f is also a quadrature rule. For nested for-

mulas, ∆
l

(1)f contains the set of nodes of Q
l

(1)f with weights 

equal to the difference of weights between level l and l −1.
The sparse cubature can construct by the multi-index l 

= (l
1
, …, l

N
)  NN and define

l 


li
i

N

1

, (19)

this multi-index at level l is used and then the sparse cuba-

ture formula is shown as

Q f fl
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where the support nodes expressed in multi-index as |l|, 

(|l| = l
1
+ … + l

d
). The dimension of function f is shown 

by N. The interpolant expressed by using a recursive man-

ner as follows (Eq. (21)):

Q f
d

l d
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With the Smolyak algorithm, the weight w
i
 correspond-

ing to the ith collocation point ξ
i
 is defined, 

w
d

l d
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l d
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Then, by the sparse grid method, the mean and standard 

deviation of the objective can be computed as

E f w f

f E f E f

k k
k

[ ] ( )

Var[ ] [ ] ( [ ]) .


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 

2

 (23)

5.2 Adaptive grid refinement
In the conventional sparse grid collocation method, the same 

divisions in all are considered. While, the final solution is 
not dependent to some of these areas. As a result, the distri-

bution of collocation points should change in a smart way. 

For clarity, first a list of definitions for frequently used 
terms is given here. Most of these definitions are taken 
from [22]:

• A multi-index represents one combination of 1D 

quadrature rules to form a N-dimensional grid com-

ponent. For example: multi-index (1, 3) would repre-

sent a 2-dimensional grid component formed by the 

tensor product Q
1
 Ä Q

2
.

• An index set is a set of multi-indices that represent 

the components of the sparse grid. An index set X 

is admissible if it satisfies the following conditions 
for generalized sparse grid construction for all multi- 

indices k  X:

k X ,- e
j
   , for 1 1j d k j , (24)

where k is a multi-index, e
j
 is the j-th unit vector 

and d is the number of dimensions of the problem. In 

other words, any admissible index set for each k con-

tains all indices which have smaller entries than k in 

at least one dimension.

• The forward neighbors of a multi-index k is defined 
as the d multi-indices {k + e

j
, 1 ≤ j ≤ N}. By exten-

sion, the forward neighbors of a grid are all multi-in-

dices which satisfy this definition, and are not yet 
part of the index set X. As an example, consider a 

level 2, 2-dimensional sparse grid. The index set for 

this grid is: {(1, 1), (2, 1), (1, 2)}. The set of forward 

neighbors for this grid would be: {(3, 1), (2, 2), (1, 3)}. 

This is depicted in Fig. 1. The multi-indices of the 

sparse grid are shown in dark gray, while the three 

forward neighbors are light gray.

Fig. 1 Diagram showing the forward neighbors of a level 2, 

2-dimensional sparse grid
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• The backward neighbors of a multi-index are defined 
as all multi-indices {k – e

j
, 1 ≤ j ≤ N}.

• A parent interaction is an interaction which contains 

exactly (i – 1) of the indices of the current interac-

tion, where i indicates the order of the current inter-

action. As an example, for third order interaction 

(1, 2, 4) there are exactly three parent interactions: 

(1, 2), (1, 4) and (2, 4).

The Gerstner and Griebel adaptive approach is explained 

in detail in [23], which the information contained in this 

section is based on. This approach divides the index set X 

into two disjoint sets, called active and old index set. The 

active index set A contains the forward neighbors of the 

old index set X. For each of the multi-indices in A, an error 

indicator is calculated:

g I I
j X X Aj
= −

+
, (25)

where g is the error indicator, I indicates the computed 

value of the integral and j indicates a multi-index in A. In 

other words, the error indicator calculates the difference 

between the calculated value of the integral with the old 

index set, the value of the integral calculated with the old 

index set plus one of the multi-indices in the active index 

set. This is done for each entry in A. The global error esti-

mate λ is then the sum of all g
j
:

 


g
j

j

m

1

, (26)

where m is the number of multi-indices in A. For each  

iterative refinement step, the following actions are taken:
• The index with the largest associated error indicator 

is selected from the active index set and put into the 

old index set.

• Its associated error estimate is subtracted from the 

global error estimate λ. 

• At the same time the new admissible forward neigh-

bors are added to the active index set. The global 

error estimate is recalculated by determining the 

error estimators of these new forward neighbors.

• The value of the integral is updated. 

• If the global error estimate falls below a given thresh-

old, the computation is stopped and the computed 

integral value is returned. If this is not the case, the 

cycle goes back to the first step.

6 Optimization algorithm

The optimization algorithm using of the Adaptive Sparse 

Grid Collocation methods can be written as follows: 

1. Problem discretize and initialization progress was 

preformed.

2. Stochastic field discretization KL by Eq. (14).
3. M integration points and the corresponding weights 

using the adaptive sparse grid method Generated.

4. Optimization loop preformed until the convergence 

criterion is satisfied:
– For k = 1, …, M computes K

k
u

k
 = f

k
 and ∂C

k
/∂ρ.

– The mean and the variance Estimated from Eq. (23) 

– The mean and variance sensitivities with respect to 

design variable evaluated 

– The robust objective sensitivities computed from 

Eq. (12)

– Update ρ.

The mean and the variance gradients are computed 

based on the gradients of the samples. For each sample the 

standard adjoint sensitivity analysis is used for estimating 

the sensitivities of the objective ∂C
k
/∂ρ and the constraints.

Keeping the solution vectors u
k
 can become very expen-

sive in terms of memory. Their contribution to the expec-

tation and the variance, as well as to the sensitivities, can 

be added during the loop through the collocation points.

7 Numerical examples

The presented methodology is demonstrated in the design of 

a 2D cantilever and a MBB beam. The results are obtained 

with a modulus of elasticity, E = 1.0, a penalization param-

eter p = 3, and E
min

 = 10–4. All optimizations start with β = 1, 

and the projection parameter is doubling every 50 iterations. 

The final projection parameter is β = 10. Control parameters 

in Eq. (16), have been considered as α = 0.5 and α = 0.25. 

The design variables are updated using optimality crite-

ria (OC) method. The optimization process is terminated 

Fig. 2 Correlation eigenvalues of random field Z
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when the largest change in the design variables becomes 

smaller than 1 %. The topology optimization process is per-

formed using MATLAB software [24]. The first 100 eigen-

values of the correlation matrix R over a uniform mesh are 

shown in Fig. 2, where their fast modal decay is apparent. 

In practice, firstly truncate (KL) to N terms and then 

used the ratio ( ) / ( )mod  
ii

n

ii

n
e

  1 1  to check the sufficiency 
of the number of truncated modes which indicates the first 
n

mode
 modes to represent the random field. This measure 

for n
mode

 = 4 is 0.9566, i.e. this truncation yields a 96 % 

Z representation which deem sufficient.

7.1 2D Simply supported beam

 As the first example, the design domain, the boundary, 
and loading conditions of the simply supported beam are 

illustrated in Fig. 3. The beam dimensions are considered 

as L = 90mm and H = 30mm and the thickness is T = 1mm. 

The material is assumed to have E
0
 = 1MPa and Poisson's 

ratio of 0.30. A single random load case is considered 

with which the angle and magnitude are characterized by 

two independent random variables. The angle is assumed 

to follow a uniform distribution with the interval of 

[−3π/4, −π/4]. The Gaussian distribution of the magnitude 
has a mean of 1 and standard deviation of 0.3. The goal of 

robust optimization is to minimize the compliance of the 

structure means that optimizing the mean μ
f
 and minimiz-

ing standard deviation σ
f
 of under the volume constraint. 

The weight κ is set to be 1 in this example. For discretiza-

tion of the design space, a mesh size that equal with 90*30 

of four-node quadrilateral elements has been used.

Fig. 3 Design domain and boundary conditions of a 2D simply 

supported beam

Fig. 4 Design obtained for deterministic, Obj.= 35.6935, (right) and 

robust design optimization (RDO), Obj.= 25.4565, (left)

Table 1 Comparison of robust design of different methods

Method Mean STD Objective Time 

ASGC 20.44 5.57 26.01 55s

Monte Carlo 21.37 11.13 32.5 302s

Tensor product grid 22.26 11.85 34.11 59s

Smolyak Sparse grid 22.23 11.84 34.07 59s

The optimal topologies obtained by deterministic and the 

proposed robust topology optimization approaches are 

presented in Fig. 4. 

The DTO and RTO resulted in significantly different 
topologies, as shown in Fig. 4. The remarkable differ-

ence lies in the robust design exhibiting an asymmetric 

layout compared with the deterministic design character-

ized by symmetric configuration. It can be attributed to 
the fact that the deterministic design suffers from sym-

metric vertical constraints at the lower left and the lower 

right corner. However, in robust design, the structure pos-

sesses an asymmetrical degree of freedom constraint in 

horizontal direction under the condition of the horizontal 

component of the load. As the results showed, the robust 

designs present more robust topologies than the determin-

istic approach, according to the results summary of the 

statistical information. This emphasizes the importance of 

considering the uncertainties in load for structural design. 

It is also noted that the corresponding computation cost for 

robust designs is larger than for the deterministic design 

since multiple load cases are required for calculating the 

mean and deviation values of the performance function. 

The optimal topologies obtained by different robust 

topology optimization approaches results are compared in 

Table 1.

The results of Monte Carlo simulations in Table 1 show 

that the proposed robust approach possesses improved 

efficiency without losing much accuracy. At the same 
time, compared with sparse grid, the computation burden 

for the exponential dependent calculation of tensor prod-

uct grid can be overcome to a certain extent. This means 

sparse grid, in a manner, performs better than the tensor 

product grid in compromise between robustness and cost 

in robust design. Finally by comparison standard devia-

tion of these methods can conclude ASGC method is bet-

ter than other methods because in topology optimization 

final goal is minimize the standard deviation. By mini-
mizing it the design topology has a stable behavior.

From the comparison of the results, with the improve-

ment of level l accuracy, the number of collocation points 

in sparse grid corresponding increases. As the results listed 
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in Table 2 show, the mean and standard deviation of the 

compliance for sparse grid are gradually decreasing with 

increase of level l. This indicates that more robust designs 

are clearly obtained under higher level l. Meanwhile, the 

higher computation cost is required due to the increase 

in the number of evaluations of performance function 

responses. This means robustness enhancement is inevi-

tably accompanied by the sacrifice of convergence time.

7.2 Robust design of a cantilever beam

The design domain, the boundary conditions for the 

state problem are shown in Fig. 5. The simulations are 

performed with beam height L = 1. The applied force is 

F = 0.1. The volume fraction of the solid material is set to 

50 % of the total volume.

Optimized designs for a single uniformly distributed 

threshold η  U[0.3, 0.7] are shown in Fig. 6. The designs 

do not possess features comparable with the mesh size. 

The designs are obtained with deterministic and RDO are 

shown in Fig. 6 and the results are listed in Table 3.

When the weight of the standard deviation, κ, is small, 
its increase does not have a significant effect on the objec-

tive function (compliance), because its contribution to the 

robust objective (9) is small. The results of the increasing 

in κ are denoted in Table 4 for η  U[0.3, 0.7]. 

Fig. 5 Design domain and boundary condition for cantilever beam

Fig. 6 Design obtained for deterministic (right) and robust design 

optimization (RDO)(left)

Fig. 7 Robust designs obtained with κ = 1 (top), κ = 3, κ = 5 (bottom)

Table 2 Comparison of robust design of different level l

Method Mean STD Number of points

Sparse grid (l = 1) 20.44 5.57 5

Sparse grid (l = 2) 20.13 5.43 13

Sparse grid (l = 3) 19.73 5.01 29

Table 3 Minimum Compliance of deterministic and robust design

Compliance Method

3.7354 Deterministic.

3.6157 RDO (κ = 1)

Table 4 The effect of increasing in κ statistical moment and Compliance 

STD Mean Objective κ

0.2920 3.2508 3.6157 κ = 1

0.2859 3.1869 4.2591 κ = 3

0.2803 3.1453 5.0499 κ = 5

Table 5 Comparison of robust design of different methods

ASGC Perturbation Mont Carlo κ

3.2508 3.59 3.58 κ = 1

3.1869 3.67 3.60 κ = 3

3.1453 3.83 3.62 κ = 5

Table 6 The effect of increasing the threshold interval for κ = 3

Present work(ASGC) Monte Carlo method

Mean STD Mean STD Interval

3.1805 0.2843 3.69 0.42 [0.1,0.9]

3.1881 0.2857 3.70 0.59 [0.2,0.8]

3.1869 0.2859 3.70 0.51 [0.3,0.7]

3.2465 0.2918 3.74 0.66 [0.4,0.6]

Increasing the weight κ in the objective given in Eq. (9), 
decreases the mean compliance and decreases its variation. 

Therefore, the mechanism response becomes more robust 

with respect to variations in the geometric variation.

To validate the present method, a comparison has been 

done between this method with Perturbation method 

(Lazarov work). The results of this comparison are shown 

in Fig. 7 and the minimum compliance values obtained 

from these methods are denoted in Table 5. RDO results 

related to three designs with weight parameter κ = 1, κ = 3, 

and κ = 5. 

From the results of Table 5 can be seen that the mean 

compliance of structure decreased with increasing in κ. 
Therefore, these methods have the same response. But, 

from Fig. 7 can be concluded the ASGC method has a bet-

ter answer compared with the other two methods. It can be 

seen that when the weight parameter κ increased, in pertur-

bation method inside of the structure changed significantly 
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but in the ASGC method this changed smoothly occurred. 

This means that the structure becomes more robust with 

respect to variations in the geometric variation.  

Results of increasing the threshold interval are denoted 

in Table 6 for κ = 3. As expected, the standard deviation 

is decreasing with expanding the support domain of the 

threshold distribution this means that, a larger thresh-

old interval leads to a more robust behavior. Therefore, 

expanding threshold interval has a similar effect with 

increasing in κ. 

8 Conclusions

A systematic approach for topology optimization under 

uncertainty is introduced that relies on the Adaptive 

Sparse Grid Collocation methods (ASGC) for uncertainty 

propagation of the cost and constraint functions. The 

expressions of the stochastic objective and its sensitivi-

ties are derived, and the main computational steps are pre-

sented in details. Different numerical examples for topol-

ogy optimization under uncertainty are considered. The 

computation of the random threshold field is elucidated in 
the numerical examples. In these examples, uncertainty is 

modeled by using a random threshold field that is charac-

terized by a truncated Karhunen-Loeve expansion. 

In the case of random load by comparison of different 

method that listed in Table 2 can conclude ASGC have a 

better behavior. Advantages of this method can be sum-

marized as minimum time, and then less cost, less stan-

dard deviation, minimum compliance in comparison with 

other method.

Comparing ASGC with some method such as Monte 

Carlo, Perturbation for geometry uncertainty is demon-

strated that the computational burden of ASGC is smaller 

than the above mentioned methods. For a single random 

variable, the presented approach is faster than optimiza-

tion based on sampling method based on Monte Carlo 

with 105 realizations.

It is also shown that the optimum volume and minimum 

compliance obtained by using this method is smaller than 

other method. As well as the effect of increasing of weight 

parameter, κ, was discussed and showed by increasing 

this parameter the structures become robust and mean 

and standard deviation of compliance are decreased. It 

was shown that in comparing ASGC method and Smolyak 

Sparse grid, however, both methods are used of sparse 

grid method, but ASGC automatically detects which 

dimensions require more nodal points and not treats all 

dimensions equally.
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