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Abstract

The privacy risks inherent in the release of a large number of summary statistics were illustrated by Homer et
al. (PLoS Genetics, 2008), who considered the case of 1-way marginals of SNP allele frequencies obtained in a
genome-wide association study: Given a large number of minor allele frequencies from a case group of individuals
diagnosed with a particular disease, together with the genomic data of a single target individual and statistics
from a sizable reference dataset independently drawn from the same population, an attacker can determine with
high confidence whether or not the target is in the case group.

In this work we describe and analyze a simple attack that succeeds even if the summary statistics are
significantly distorted, whether due to measurement error or noise intentionally introduced to protect privacy. Our
attack only requires that the vector of distorted summary statistics is close to the vector of true marginals in `1
norm. Moreover, the reference pool required by previous attacks can be replaced by a single sample drawn from
the underlying population.

The new attack, which is not specific to genomics and which handles Gaussian as well as Bernouilli data,
significantly generalizes recent lower bounds on the noise needed to ensure differential privacy (Bun, Ullman,
and Vadhan, STOC 2014; Steinke and Ullman, 2015), obviating the need for the attacker to control the exact
distribution of the data.
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I. INTRODUCTION

Given a collection of (approximate) summary statistics about a dataset, and the precise data of a single target
individual, under what conditions is it possible to determine whether or not the target is a member of the dataset?
This tracing problem is the focus of our work.

Questions of this type arise in many natural situations in which membership in the dataset is considered
sensitive; indeed, this is typically the reason for choosing to publish summary statistics, as opposed to releasing
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the raw data. In a scenario that is prominent in the literature, the dataset contains genomic information about a
case group of individuals with a specific medical diagnosis, as in a genome-wide association study (GWAS),
and the summary statistics are SNP allele frequencies, i.e. 1-way marginals. Specifically, if each person’s data
consists of d binary attributes, we consider a mechanism that releases (an approximation to) the average value of
the each of the d attributes. Homer et al. [1] demonstrated the privacy risks inherent in this scenario, presenting
and analyzing a tracing algorithm for membership in a GWAS case group, provided the attacker also has access
to allele frequencies for a reference group of similar ancestral make-up as that of the case group.

It came as a surprise to the genomics research community that the trace amount of DNA contributed by an
individual is enough to determine membership in the case group with high statistical confidence. The result had
a major practical impact in the form of very restrictive policies governing access to allele frequency statistics
in studies funded by the US National Institutes of Health and the Wellcome Trust. Follow-up analytical works
provide alternative tests and asymptotic analyses of tradeoffs between the size of the test set, the size of a reference
dataset, power, confidence, and number of measurements [2].

As in the follow-up works, the analysis in Homer et al. assumes that exact statistics are released, leaving open
the possibility that the attack may be foiled if the statistics are distorted, for example, due to measurement error
(which can be highly correlated across the statistics), or because noise is intentionally introduced in order to
protect privacy. Thus we ask if there is a single attack that applies to all mechanisms that produce sufficiently
accurate estimates of the statistics in question, rather than to just the single mechanism that outputs exact statistics.
We present and analyze such an attack.

A line of work initiated by Dinur and Nissim [3] provides attacks of this flavor for certain kinds of statistics,
showing that all mechanisms that release “too many” answers that are “too accurate” are subject to devastating
“reconstruction attacks,” which allow an adversary to determine the private data of almost all individuals in a
dataset. These attacks, which immediately give lower bounds on noise needed to avoid blatant non-privacy, have
been extended in numerous works [4]–[11].

These reconstruction attacks do not generally apply in the setting of Homer et al., since they either require that
the amount of noise introduced for privacy is very small (less than the sampling error), or require an exponential
number of statistics, or do not apply to statistics that are as simple (namely, attribute frequencies), or require that
the adversary have a significant amount of auxiliary information about the other individuals in the dataset.

Of course, complete reconstruction is an extreme privacy failure: the privacy of essentially every member of the
dataset is lost! Conversely, protection from complete reconstruction is a very low barrier for a privacy mechanism.
What if we are more demanding, and ask that an attacker not be able to determine whether an individual is
present or absent from the dataset, that is, to trace? This in/out protection is the essence of differential privacy,
and the question of how much noise is needed to ensure differential privacy, first studied in [12], has seen many
recent developments [13]–[18]. By shifting the goal from reconstructing to tracing, these works obtain lower
bounds on noise for settings where reconstruction is impossible.

In particular, the papers [14], [18] provide tracing attacks, based on the use of fingerprinting codes [19], [20],
that operate given attribute frequencies of the database with only non-trivial accuracy. However, they require that
the attribute frequencies of the underlying population are drawn from a particular, somewhat unnatural distribution,
and that the attacker has very accurate knowledge of these frequencies. We remark that such knowledge is the
“moral equivalent,” in this literature, to having a large reference population, in the genomics literature.

In this paper, we generalize the attacks based on fingerprinting codes in several ways to considerably broaden
their applicability:

• The population’s attribute frequencies can be drawn from any distribution on [0, 1] that is sufficiently smooth
and spread out, including, for example, the uniform distribution on [0, 1] or a large subinterval. The tracing
algorithm does not depend on the distribution.

• Instead of knowing the population attribute frequencies, it suffices for the attacker to have a single reference
sample from the population.



• We show that similar attacks can be applied to Gaussian data (rather than binary data) for mechanisms that
release too many attribute averages with nontrivial accuracy.

Our results provide a common generalization of the fingerprinting results and the results of Homer et al, showing
they are special cases of a much broader phenomenon.

Like the fingerprinting attacks of [14], [18], the lower bounds on noise implied by our attacks nearly match
the upper bounds on noise sufficient to ensure the strong guarantees of differential privacy, for example, via the
Gaussian or Laplace mechanisms [3], [21]–[24]). Thus, the cost in utility for avoiding our attacks is nearly the
same as the cost for avoiding the much larger class of attacks that differential privacy prevents, where the dataset
can be arbitrary and the attacker can know everything about it, except whether or not the target individual is
present in the dataset.

A. Model and Assumptions

Distributional Assumption: The database consists of n independent samples from a population, which is
given by a product distribution Pp on {±1}d. The vector p ∈ [−1, 1]d specifies the expectation of a sample from
Pp. That is, to sample x ∼ Pp, we set xj = 1 with probability (1 + pj)/2 and set xj = −1 with probability
(1− pj)/2, independently for each j.

The vector p represents unknown statistics about the population; p is unknown to both the mechanism and the
privacy attacker.1 The vector p is itself drawn from the product distribution D on [−1, 1]d with the jth marginal
having probability density function ρj : [−1, 1]→ R. In the case of genomics, we can think of the distribution D
as capturing, for example, differences between populations (although of course in reality this would not be a
product distribution). Our attacks will succeed even if the mechanism knows D but the attacker does not, provided
each ρj is sufficiently smooth and spread out e.g., if ρj is uniform on a large enough subinterval of [0, 1]).

Accuracy of the Mechanism: The (possibly randomized) mechanism M receives n independent samples
x1, · · · , xn ∈ {±1}d drawn from Pp (after p is initially drawn from D), and outputs a vector q ∈ [−1, 1]d with
q ≈ x̄ = 1

n

∑
i∈[n] xi ≈ p. That is, M provides approximate 1-way marginals. We say M is α-accurate if for all

j ∈ [d] we have
∣∣∣E [qj]− pj∣∣∣ ≤ α for all possible values of p, where the expectation is taken over the randomness

of M and the sample x. We require this to hold even when we condition on xj
′

and qj
′

for j′ 6= j. This is a
very weak accuracy requirement, as it only refers to the bias of the statistics, namely E [q]− p. We also require

that q is bounded in [−1, 1]d, so if the mechanism adds unbounded noise, we should truncate the answers, which
may increase the bias.

The Attacker: The privacy attacker A receives two samples in {±1}d, the target y and the reference z,
where z is drawn independently from the population Pp, together with the output q of M on a dataset x1, . . . , xn,
and produces an answer, either IN or OUT. The attacker’s answer indicates whether or not it believes y is among
the x1, · · · , xn given to M. The attacker is guaranteed that reference sample z is drawn from Pp independent
from everything else. The attacker must satisfy two properties:

• Soundness: If y is drawn from Pp independent from the view of M (i.e. independent from q), then A should
output IN with probability at most s.

• Completeness: Choose i uniformly from [n] and set y = xi. Then A should output IN with probability at
least c. The probability is over all the random choices: i, x, z, and the coin flips of A and M.

These conditions are interesting when c� s, as when c ≤ s they are trivially satisfied by having A always output
IN with probability c. To interpret this, think of y as the data of a member of the population and A wants to
determine whether or not y is in the dataset (case group) given toM. For A to be considered successful we require

1If the mechanism knows p then the problem becomes vacuous: it could simply ignore the data and publish p.



that it can identify a random member of the dataset with reasonably high probability (given by the completeness
parameter c), whilst, if y is not in the dataset, it is erroneously claimed otherwise with negligible probability
(given by the (un)soundness parameter s). The reference sample z is some minimal auxiliary information about
the population that A can use.

B. Our Results

Theorem 1 (Main – Informal). There is a universal constant α > 0 such that for every δ > 0, n ∈ N, and
d ≥ O(n2 log(1/δ)), there exists an attacker A : {±1}d × [−1, 1]d × {±1}d → {IN,OUT} the following holds.

Let D be a product distribution on [−1, 1]d such that each marginal satisfies a technical smoothness condition
(Definitions 6 and 27). Let M : {±1}n×d → [−1, 1]d be α-accurate. Let p ∼ D and x1, · · · , xn, y, z ∼ Pp. Let
q ∼M(x1, · · · , xn). Then

P [A(y, q, z) = IN] ≤ δ and P [∃ i ∈ [n] A(xi, q, z) = IN] ≥ 1− δ.

Thus, if the first input (y) to A is a random independent element of the population, then A will accept with
probability at most s ≤ δ (the probability space includes the selection of y), but the first input is a random
element of the dataset (xi for a random i), A will accept with probability at least c ≥ (1− δ)/n. Thus, the result
is nontrivial when δ < (1− δ)/n (e.g. δ = o(1/n)).

We discuss a number of features and extensions of the result.

Dimensionality Needed: The dimensionality d of the data needed for the attack is d = Õ(n2) for δ = 1/2n,
which is tight up to polylogarithmic factors for achieving constant accuracy α. Indeed, it is possible to answer
d = Ω̃(n2) 1-way marginals with accuracy α = o(1), while satisfying the strong guarantee of (o(1), 1/nω(1))-
differential privacy [3], [21]–[24].2 (Our attack implies that no mechanism satisfying the above conditions can be
(0.1, 1/4n) differentially private.) For the 1-way marginals we consider, the number of statistics released equals
the dimensionality d of the data, but for richer families of statistics, the dimensionality is the more significant
parameter. Indeed, many more than n2 statistics can be released if the dimensionality d of the data is smaller
than n2—the algorithms of [24]–[27] can release a number of statistics that is nearly exponential in n/

√
d.

Beyond the d = Θ(n2) Barrier: The price for our very weak assumptions – weakly accurate answers and
only a single reference sample – is that we (provably) need d = Ω(n2) and can only trace a single individual.
With more accurate answers and a larger reference pool, a slightly modified version of our attacker can trace with
smaller d, and can trace many individuals in the dataset: if the mechanism is α-accurate (for some α ≥ n−1/2),
and we are given roughly 1/α2 independent reference samples from the distribution, then we trace when the
dataset has dimension only O(α2n2). Moreover, we can successfully trace Ω(1/α2) individuals in the dataset,
yielding a completeness probability of c = Ω(1/α2n) (Section III).

Weaker Soundness Conditions: The soundness of our attack does not rely on any properties of the distribution
D, the accuracy of M, the relation between d, n, and δ, or even the distribution of the rows x1, . . . , xn. It
only requires that conditioned on q y and z are sampled independently from the same product distribution.
Thus, the attack can be carried out under only the latter assumption, and if it says IN, one can safely conclude
y ∈ {x1, . . . , xn}.

2An algorithm that operates on datasets is (ε, δ)-differentially private if for all datasets S, S′ differing in the data of a single individual
and every event E, the probability of E when the dataset is S is at most δ plus eε times the probability of E when the dataset is S′.



Higher-Power Attacks: Our completeness probability of c = Θ(1/α2n) is essentially tight, as a mechanism
M that outputs the averages on a subsample of size O(1/α2) will be accurate but only allows tracing at most an
O(1/α2n) fraction of individuals in the dataset

However, if we assume that M is symmetric, then we can get around this. That is, if we assume that M can
be written as M(x1, · · · , xn) =M′(x) (where x = 1

n

∑
i∈[n] xi ∈ [−1, 1]d is the average of the sample), then

we can prove that
∀i ∈ [n] P [A(xi, q, z) = IN] ≥ 1− δ.

Note that with this high-power guarantee (c ≥ 1− δ), it is meaningful to take δ to be a fixed constant (e.g. the
standard significance level of .05).

The Distribution D: As noted above, we impose a technical regularity condition on the distribution D,
requiring that its marginals ρj are sufficiently smooth and spread out. This includes distributions such as the
uniform distribution on a large subinterval and the family of Beta distributions.

Some assumptions on D are necessary. For example, if each marginal ρj were supported on a subinterval
of length at most α, then the mechanism could give accurate answers by just producing a vector q ∈ [−1, 1]d

in the support of D and not using the dataset at all. This shows that the ρj need to be sufficiently “spread
out”. To see why “smoothness” is necessary, suppose that ρj were concentrated on two points p∗ and p∗∗ that
are reasonably far apart (farther than 2α). Then the mechansim can simply test whether the average of the
data elements exceeds (p∗ + p∗∗)/2 and, if so, output max{p∗, p∗∗}; otherwise output min{p∗, p∗∗}. While this
mechanism is not differentially private (a guarantee against tracing in the worst case), with high probability over
the choice of the dataset this mechanism is insensitive to small changes in the dataset, i.e., changing one row will
not change the output. This makes tracing impossible.

Real-Valued Data: In many settings, the database takes values in Rn×d rather than {±1}n×d. We show
that, if the data x1, · · · , xn are independent samples from a multivariate Gaussian (with no covariances), the
same attack can be carried out. We require an upper bound σ2max on the variance of the data entries and assume
that the coordinate means are again drawn from a smooth and spread out distribution. In this setting we require
d = O(n2σ2max log(1/δ)).

C. Description of The Attack

Like the attacks in previous tracing work for the genomic setting [1], [2], [28]–[30] and in the fingerprinting
setting [17], [20], our attack uses a simple scoring function to make its decision. The scoring function works
incrementally, with each marginal (SNP) making a separate contribution. The attack is described in Figure 1.

Aδ,d(y, q, z)
1. Input: y, z ∈ {±1}d and q ∈ [−1, 1]d.
2. Compute 〈y, q〉 =

∑
j∈[d] y

j · qj and 〈z, q〉 =
∑

j∈[d] z
j · qj.

3. If 〈y, q〉 − 〈z, q〉 > τ :=
√

8d ln(1/δ), output IN; otherwise output OUT.

Figure 1. Our Privacy Attack

The key features of the adversary are that it only sees the data of the user y being traced, plus a reference
sample z (in addition, of course, to seeing the output q), and does not depend on the mechanism M, the feature
vector p, or the distribution D on p.



D. Comparison with Previous Work

As mentioned above, our model and results provide a common generalization of work from several fields.

• Work in the genomics community [1], [2], [28], [29], [31] has so far focused on the case where exact
statistics are available to the attacker (α = 0 in our formalism). With a reference sample of Ω(n) individuals,
they showed that d = Θ(n) attributes are necessary and sufficient, while with a constant-sized reference pool,
d = Θ(n2) is required [2]). Our first attack uses Θ(n2 · log n) statistics with a reference pool of size 1,
and makes only a minimal accuracy assumption (a constant bound α on the bias).
Our second attack requires only d = Õ(α2n2) statistics if the mechanism is α-accurate (for some α ≥ n−1/2)
and the reference pool is of size O(log(n)/α2), in which case it can also successfully trace Ω(1/α2)
individuals in the dataset.
Im et al. [32] use (exact) regression coefficients instead of marginals as the basis of an attack, with similar
results to the case of marginals.

• Work on fingerprinting attacks [14], [18] corresponds to our setting of a constant α, but assumes that p is
drawn from a specific distribution D, and the attacker A knows p exactly (essentially, an infinite reference
pool). The dimensions required in their attacks are similar to ours (d = Θ(n2)).

We note that previous work has focused on categorical data, but our results extend to the setting of normally-
distributed real-valued data.

Other Work on Genetic Privacy: The literature contains attacks based on various types of published aggregate
statistics, e.g., allele frequencies, genetic frequencies, and various quantitive phenotypes such as cholesterol
levels [1], [29], [32], [33]; see [34] for a survey. Particularly exciting (or troubling) is the work of Wang et
al. [33] that exploits correlations among different SNPs. Not only do their attacks require relatively few SNPs, but
they go beyond in/out privacy compromise, actually reconstructing SNPs of members of the case group. In our
view, the message of these works and ours, taken as a whole, is that information combines in surprising ways,
aggregation should not be assumed to provide privacy on its own, and rigorous approaches to controlling privacy
risk are necessary.

II. TRACING WITH A SINGLE REFERENCE SAMPLE

Now we analyze our attack (given in Figure 1) and thereby prove Theorem 1.

A. Soundness Analysis

Proposition 2 (Soundness). Let q, p ∈ [−1, 1]d. Suppose y, z ∼ Pp are independent from each other and from q.
Then

P [Aδ,d(y, q, z) = IN] ≤ δ.

Proof: We can view p and q as fixed. Since y and z are identically distributed, E [〈y, q〉 − 〈z, q〉] = 0. Since

y and z are independent samples from a product distribution, we have that 〈y, q〉 − 〈z, q〉 =
∑

i∈[d](y
j − zj) · qj

is the sum of 2d independent random variables each of which is bounded by max{||y||∞ , ||z||∞} · ||q||∞ ≤ 1.
Thus, by a Chernoff bound,

P [〈y, q〉 − 〈z, q〉 > τ ] ≤ e−τ2/4d = δ,

as required.

Remark 3. Proposition 2 makes no assumptions about q. Thus soundness holds even if M is not accurate or if
y, z are not sampled from the true population - they need only be sampled from the same product distribution.



B. Correlation Analysis

To prove completeness we must show that 〈xi, q〉 − 〈z, q〉 > τ with good probability for a random i ∈ [n]
when the mechanism’s output is α-accurate. First we give a formal definition of accuracy:

Definition 4 (Accuracy). Let M : {±1}n×d → [−1, 1]d be a (possibly randomized) mechanism. Fix any
p ∈ [−1, 1]d. Consider the following experiment. Let x1, . . . , xn ∼ Pp and then let q ∼M(x1, . . . , xn). We say
that M is α-strongly accurate if for every j ∈ [d],∣∣∣E [qj]− pj∣∣∣ ≤ α
and, moreover, this statement holds even when we condition on all the randomness in columns other than j. That
is, accuracy must hold when we condition on any values of {x−ji }i=1,...,n and q−j and the randomness is taken
only over the remaining variables.

Note that if M satisfies
∣∣∣M(x)j − 1

n

∑
i∈[n] x

j
i

∣∣∣ ≤ α for all x ∈ {±1}n×d and j ∈ [d], then M satisfies
α-accuracy. In Section IV-A, we discuss mechanisms that satisfy a weaker “`1” accuracy condition.

We begin by showing that, under our regularity assumption on D,

E

∑
i∈[n]

(〈xi, q〉 − 〈z, q〉)

 ≥ Cnτ
for an appropriate constant C > 1.

Intuitively,
∑

i∈[n]〈xi, q〉 measures how much the output q ∈ [−1, 1]d of M correlates with the input
x1, · · · , xn ∈ {±1}d of M, whereas 〈z, q〉 measures how much a random member of the population correlates
with q. Thus we are proving that the output ofM is more correlated with the input ofM than with an independent
sample from the population.

By linearity of expectations it suffices to show that E
[∑

i∈[n] x
j
i q
j − zjqj

]
≥ Cnτ/d for each j ∈ [d]. We

now focus on a fixed j ∈ [d] and, for clarity, omit the superscript. The following lemmas yield a proof of this
statement.

First some notation: Let p ∼ ρ denote that p ∈ R is drawn according to the probability distribution given by ρ
(e.g. ρ is a probability density function ρ : R→ R). For p ∈ [−1, 1], let x ∼ p denote that x ∈ {±1} is drawn
with E [x] = p. Let x1···n ∼ ρ denote that x1, · · ·xn ∈ {±1}n are drawn independently with xi ∼ ρ for each
i ∈ [n].

Lemma 5. Let f : {±1}n → R. Define g : [−1, 1]→ R by

g(p) = E
x1···n∼p

[f(x)] .

Then

E
x1···n∼p

f(x) ·
∑
i∈[n]

(xi − p)

 = g′(p) · (1− p2).

This result is similar to [17, Lemma 2.11]. (It can be viewed as a rescaling of said lemma.)
Proof: Since x2 = 1 for x ∈ {±1}, we have the identity

d

dp

1 + xp

2
=
x

2
=

1 + xp

2

x− p
1− p2

for all x ∈ {±1} and p ∈ (−1, 1). By the product rule, we have

d

dp

∏
i∈[n]

1 + xip

2
=
∑
i∈[n]

(
d

dp

1 + xip

2

) ∏
k∈[n]\{i}

1 + xkp

2
=
∑
i∈[n]

xi − p
1− p2

∏
k∈[n]

1 + xkp

2



for all x ∈ {±1}n and p ∈ (−1, 1). Sampling x ∼ p samples each x ∈ {±1} with probability 1+xp
2 . Thus

sampling x1···n ∼ p, samples each x ∈ {±1}n with probability
∏
i∈[n]

1+xip
2 .

Now we can write
g(p) = E

x1···n∼p
[f(x)] =

∑
x∈{±1}n

f(x)
∏
i∈[n]

1 + xip

2
.

Using the above identities gives

g′(p) =
∑

x∈{±1}n
f(x)

d

dp

∏
i∈[n]

1 + xip

2

=
∑

x∈{±1}n
f(x)

∑
i∈[n]

xi − p
1− p2

∏
k∈[n]

1 + xkp

2

= E
x1···n∼p

f(x)
∑
i∈[n]

xi − p
1− p2



Rearranging gives the result.
The following definition is the technical smoothness condition we need the marginals of the distribution to

satisfy.

Definition 6 (Strong Distribution). A probability distribution ρ on [−1, 1] is (α, γ)-strong if

E
p∼ρ

[
g′(p)(1− p2)

]
≥ γ

for all polynomials g : [−1, 1]→ [−1, 1] satisfying |g(p)− p| ≤ α for all p ∈ [−1, 1].

We give some meaning to this definition in Section II-D. Intuitively, it suffices for a distribution to have a
“smooth” probability density function that is sufficiently “spread out.” In particular, the uniform distribution on
[−1, 1] is (1/3, 1/3)-strong.

Lemma 7. Let f : {±1}n → [−1, 1]. Define g : [−1, 1]→ [−1, 1] by

g(p) = E
x1···n∼p

[f(x)] .

Assume that |g(p)− p| ≤ α for all p ∈ [−1, 1]. Let ρ be a (α, γ)-strong probability distribution. Then

E
p∼ρ,x1···n∼p,z∼p

f(x)
∑
i∈[n]

(xi − z)

 ≥ γ.
Proof: By Lemma 5 and Definition 6,

E
p∼ρ,x1···n∼p,z∼p

f(x)
∑
i∈[n]

(xi − z)

 = E
p∼ρ,x1···n∼p

f(x)
∑
i∈[n]

(xi − E
z∼p

[z])


= E
p∼ρ

[
g′(p) · (1− p2)

]
≥γ.



We now make an observation that will allow the construction of a high-power attack. Suppose f : {±1}n →
[−1, 1] can be written as f(x) = f∗

(
1
n

∑
i∈[n] xi

)
for some f∗ : [−1, 1] → [−1, 1]. Then, by symmetry, the

conclusion of Lemma 7 can be altered to

∀i ∈ [n] E
p∼ρ,x1···xn∼p,z∼p

[f(x) · (xi − z)] ≥
γ

n
.

Formally, we have the following definition and Lemma.

Definition 8. A function f : Vn → R (where V is a vector space) is symmetric if there exists a function
f∗ : V → R such that f(x) = f∗

(
1
n

∑
i∈[n] xi

)
for all x ∈ {±1}n.

Lemma 9. Let f : Rn → V be symmetric and let X1, · · · , Xn ∈ R be independent and identically distributed.
Then

E
X

[
f(X)(Xk − E [Xk])

]
=

1

n
E
X

f(X)
∑
i∈[n]

(Xi − E [Xi])


for all k ∈ [n].

Proof: By Definition 8,

E
X

f(X)
∑
i∈[n]

(Xi − E [Xi])

 =
∑
i∈[n]

E
X

f∗( 1

n

∑
k∈[n]

Xk)(Xi − E [Xi])

 (1)

Since X1, · · · , Xn are independent and identically distributed, the pair (
∑

k∈[n]Xk, Xi) is identically distributed
for all i. Thus f∗( 1

n

∑
k∈[n]Xk)(Xi − E [Xi]), being a function of (

∑
k∈[n]Xk, Xi), is identically distributed for

each i. Consequently, all the terms in (1) are the same, which implies the lemma.
Combining the above Lemmas shows that, if p is drawn from a strong distribution and M is α-accurate, then

we have large expected score.

Proposition 10. Suppose the distribution D is a product distribution in which each marginal is (α, γ)-strong.
Suppose the mechanism M : {±1}n×d → [−1, 1]d is α-accurate. Let x1, · · ·xn, z ∼ Pp and q ∼M(x1, · · · , xn).

1) Then we have

∀j ∈ [d] E
p,x1,··· ,xn,z

∑
i∈[n]

(
〈xji , q

j〉 − 〈zj , qj〉
) ≥ γ.

Moreover, this bound holds even when conditioned on all the randomness in columns other than j. That is,
the bound holds when we condition on any value of p−j , {x−ji }i=1,...,n, z

−j , q−j and the randomness is only
over the remaining variables.

2) If, in addition, M is symmetric, then

∀j ∈ [d] ∀i ∈ [n] E
p,x1,··· ,xn,z

[
〈xji , q

j〉 − 〈zj , qj〉
]
≥ γ

n

and hence
∀i ∈ [n] E

p,x1,··· ,xn,z,M
[〈xi, q〉 − 〈z, q〉] ≥

γd

n
.

Proof: We view z−j , q−j , x−ji as fixed and we average over the coins of M. Now the only randomness
is the choice of pj and zj , xj1 · · ·x

j
n ∼ pj . Since M does not see pj or zj , we can write qj = f(xj) for some

f : {±1}n → [−1, 1]. By the assumption that M is α-accurate, | E
x1··· ,n∼p

[f(x)]− p| ≤ α for all p ∈ [−1, 1]. The

result now follows from Lemmata 7 and 9.



C. Completeness Analysis

Now that we have shown that E
[∑

i∈[n] (〈xi, q〉 − 〈z, q〉)
]

is large, we can turn this into a high probability
statement.

Lemma 11. Suppose the distribution D is a product distribution in which each marginal is (α, γ)-strong. Suppose
the mechanism M : {±1}n×d → [−1, 1]d is α-accurate. Assume d > O(n2 log(1/δ)/γ2). Let x1, · · ·xn, z ∼ Pp
and q ∼M(x1, · · · , xn). Then

P
p,x1···n,z,M

∑
i∈[n]

(〈xi, q〉 − 〈z, q〉) <
γ

2d

 ≤ δ.
Moreover, if M is symmetric, then

∀i ∈ [n] P
p,x1···n,z,M

[
〈xi, q〉 − 〈z, q〉 <

γd

2n

]
≤ δ.

The formal proof of this Lemma is quite involved, but unenlightening. Thus we defer it to the full version of
this work and give a proof sketch here instead.

Proof: [Proof Sketch] Write∑
i∈[n]

(〈xi, q〉 − 〈z, q〉) =
∑
j∈[d]

qj ·
∑
i∈[n]

(xji − z
j) =:

∑
j∈[d]

Aj .

We have E [Aj ] ≥ γ for all j ∈ [d]. Suppose the Aj random variables were independent. Then we could apply a
Chernoff bound. Using |Aj | ≤ 2n, gives

P

∣∣∣∣∣∣
∑
j∈[d]

Aj

∣∣∣∣∣∣ > 1

2
γd

 ≤ exp

(
−(γd/2)2

(4n)2d

)
≤ δ,

as required. The second half of the lemma is similar.
The Aj variables are not independent, but it turns out their sum concentrates nonetheless. The key observation

is that E [Aj ] ≥ γ even if we condition on A1, · · · , Aj−1, Aj+1, · · · , Ad. Namely

E [Aj | A1 = a1, · · · , Aj−1 = aj−1, Aj+1 = aj+1, · · · , Ad = ad] ≥ γ

for all j ∈ [d] and a ∈ Rd.
Now we can finally prove completeness.

Proposition 12 (Completeness). Suppose the distribution D is a product distribution in which each marginal is
(α, γ)-strong. Assume d > O(n2 log(1/δ)/γ2). Suppose the mechanism M : {±1}n×d → [−1, 1]d is α-accurate.
Let x1, · · · , xn, z ∼ Pp and q =M(x1, · · · , xn). Then

P
p,x1···n,z,M

[∃i ∈ [n] Aδ,d(xi, q, z) = IN] ≥ 1− δ.

Proof: By Lemma 11,
∑

i∈[n] (〈xi, q〉 − 〈z, q〉) ≥
γ
2d > n · τ = n · 2

√
d log(1/δ) with high probability. Thus,

with high probability, we have 〈xi, q〉 − 〈z, q〉 > τ for at least one i ∈ [n].
We also state the high-power completeness we get from assuming that M is symmetric.

Proposition 13 (High-Power Completeness). Suppose the distribution D is a product distribution in which each
marginal is (α, γ)-strong. Assume d > O(n2 log(1/δ)/γ2). Suppose the mechanism M : {±1}n×d → [−1, 1]d is
α-accurate and symmetric. Let x1, · · ·xn, z ∼ Pp and q ∼M(x1, · · · , xn). Then

∀i ∈ [n] P
p,x1,··· ,xn,z,M

[Aδ,d(xi, q, z) = IN] ≥ 1− δ.

Proof: By Lemma 11, for all i ∈ [n] we have 〈xi, q〉−〈z, q〉 ≥ γd
2n > τ = 2

√
d log(1/δ) with high probability.

Thus, for all i ∈ [n], we have 〈xi, q〉 − 〈z, q〉 > τ with high probability.



D. Interpreting Strong Distributions

The notion of strong distributions (Definition 6) is critical in the completeness analysis of our attack—it ensures
that the output of M correlates with its input. In this section we show that this condition is met by a large class
of distributions and give some intuition for its meaning.

To gain some intuition for the meaning of the definition, we consider some example distributions that do not
satisfy the strong distribution assumption.

(i) Suppose ρ is a point mass on p∗. Let3

g(p) =


p− α p > p∗ + α
p∗ |p− p∗| ≤ α

p+ α p < p∗ − α
.

Then E
p∼ρ

[
g′(p)(1− p2)

]
= 0.4 Thus a point mass is not (α, γ)-strong for any α, γ > 0.

This g corresponds to a mechanism M that knows p∗ and outputs p∗ instead of 1
n

∑
i∈[n] xi (unless∣∣∣ 1n∑i∈[n] xi − p∗

∣∣∣ > α, which is unlikely). Since this mechanism’s answers don’t depend on its input, we
cannot hope to trace the members of the dataset.

(ii) Example (i) can be generalized: Any distribution supported on an interval of length α is not (α, γ)-strong
for any α, γ > 0.

(iii) Suppose ρ is supported on p∗ and p∗∗ with p∗ < p∗∗−α. We can construct a piecewise linear g : R→ R with
g′(p) = 0 if |p− p∗| ≤ α/3 or |p− p∗∗| ≤ α/3 and g(p∗) = p∗ and g(p∗∗) = p∗∗. This gives |g(p)− p| ≤ α
for all p and E

p∼ρ

[
g′(p)(1− p2)

]
= 0. Thus this distribution is not (α, γ)-strong for any α, γ > 0.

This g corresponds to a mechanism M that knows p∗ and p∗∗ and returns one of the two if they are
sufficiently accurate. Again, with high probability, the output of M is not sensitive to changes in the input.
That means the output of M does not contain much information that is specific to its input. This makes
tracing impossible.

(iv) Example (iii) can be generalized to any distribution supported on points that are separated by distance α.
This can be generalized further to distributions supporeted on many intervals of size α that are also separated
by distance α. These distributions amount to separated narrow clumps of probability mass.

The above examples demonstrate what a strong distribution avoids. Instead a strong distribution is “spread out”
and “smooth.”

In the special case of α = 0, which corresponds to M giving unbiased answers, any distribution is (0, 1 −
E
p∼ρ

[
p2
]
)-strong.

In general, the “ideal” strong distribution (cf. [20]) is as follows. Let ρ have support [−a, a] and probability
density function ρ(p) ∝ 1/(1− p2). Then, for g : [−1, 1]→ [−1, 1] satisfying |g(p)− p| ≤ α for p ∈ {±a},

E
p∼ρ

[
g′(p)(1− p2)

]
=

∫ a

−a
g′(p)(1− p2)ρ(p)dp =

g(a)− g(−a)∫ a
−a(1− p2)−1dp

≥ 2a− 2α

log(1 + a)− log(1− a)
.

For example, setting a = 0.85 makes ρ (0.5, 0.27)-strong.
It is unreasonable to expect that this exact distribution will arise in nature. However, we can show that a

reasonably large class of distributions (including the uniform distribution) are all strong.
First we prove a technical lemma that reinterprets the strong condition.

3This g is not continuously differentiable, but may be approximated arbitrarily well by a continuously differentiable g̃.
4In fact, we can construct g with E

p∼ρ

[
g′(p)(1− p2)

]
� 0.



Lemma 14. Let ρ : [a, b] → R be a continuously differentiable probability density function. Let g : [−1, 1] →
[−1, 1] be continuously differentiable. Then

E
p∼ρ

[
g′(p)(1− p2)

]
= 1− E

p∼ρ

[
p2
]

+ (g(b)− b)(1− b2)ρ(b)− (g(a)− a)(1− a2)ρ(a)

+ 2 E
p∼ρ

[(g(p)− p)p]−
∫ b

a
(g(p)− p)(1− p2)ρ′(p)dp. (2)

In particular, if [a, b] = [−1, 1] or ρ(b) = 0 = ρ(a), then

E
p∼ρ

[
g′(p)(1− p2)

]
= 1− E

p∼ρ

[
p2
]

+ 2 E
p∼ρ

[(g(p)− p)p]−
∫ b

a
(g(p)− p)(1− p2)ρ′(p)dp. (3)

Proof: We have

E
p∼ρ

[
g′(p)(1− p2)

]
= E

p∼ρ

[
1− p2 + (g′(p)− 1)(1− p2)

]
= 1− E

p∼ρ

[
p2
]

+

∫ b

a
(g′(p)− 1)(1− p2)ρ(p)dp. (4)

Integration by parts gives∫
(g′(p)− 1)(1− p2)ρ(p)dp = (g(p)− p)(1− p2)ρ(p)−

∫
(g(p)− p)(−2pρ(p) + (1− p2)ρ′(p))dp.

The fundamental theorem of calculus gives∫ b

a
(g′(p)− 1)(1− p2)ρ(p)dp =(g(b)− b)(1− b2)ρ(b)− (g(a)− a)(1− a2)ρ(a)

+ 2

∫ b

a
(g(p)− p)pρ(p)dp−

∫ b

a
(g(p)− p)(1− p2)ρ′(p)dp. (5)

Combining (4) with (5) gives (2). If [a, b] = [−1, 1] or ρ(b) = 0 = ρ(a), then (1− b2)ρ(b) = 0 = (1− a2)ρ(a),
which implies (3).

Now we can use Lemma 14 to show that various distributions are strong:

Corollary 15. Let ρ : [−1, 1] → R be a continuously differentiable probability density function. Then ρ is
(α, γ)-strong for all α and

γ = 1− E
p∼ρ

[
p2
]
− 2α E

p∼ρ
[|p|]− α

∫ 1

−1

∣∣ρ′(p)∣∣ (1− p2)dp.
Corollary 16. Let ρ : [a, b] → R be a continuously differentiable probability density function. Then ρ is
(α, γ)-strong for all α and

γ = 1− E
p∼ρ

[
p2
]
− α(ρ(b) + ρ(a))− 2α E

p∼ρ
[|p|]− α

∫ b

a

∣∣ρ′(p)∣∣ (1− p2)dp.
Corollaries 15 and 16 give sufficient conditions for a distribution to be strong. Intuitively, Corollary 15 says

that a smooth distribution (meaning
∫ 1
−1 |ρ

′(p)| (1− p2)dp = O(1)) is (α, γ)-strong for γ = 1− E
[
p2
]
−O(α).

Now we can give examples of strong distributions:
• The uniform distribution on [−1, 1] is (α, 2/3− α)-strong for all α ≤ 2/3.
• The uniform distribution on [a, b] is (α, γ)-strong for

γ = 1− b2 + ab+ a2

3
− 2α

b− a
− 2α ≥ 2

3
− 2

3
(b− a)− 2α

b− a
− 2α.

• The (scaled) Beta distribution, with ρ(p) ∝ (1 + p)u−1(1− p)v−1 (where u > 0 and v > 0 and the support
is [−1, 1]), is (α, γ)-strong for

γ =
4uv

(u+ v + 1)(u+ v)
− 2α

√
1− 4uv

(u+ v + 1)(u+ v)
− 2α

v|u− 1|+ u|v − 1|
u+ v

.



III. TRACING FROM FEWER STATISTICS

In the previous section we focused on tracing from very weak assumptions—weakly accurate answers and
only a single reference sample. The price of these weak assumptions is that we (provably) need d = Ω(n2) and
can only trace a single individual. In this section we show that if the mechanism gives more accurate answers,
then we can trace with smaller d, and can trace many individuals in the dataset. In exchange, we require a larger
reference sample. More precisely, we show that if the mechanism is α-accurate (for some α ≥ n−1/2), and we
are given roughly 1/α2 independent reference samples from the distribution, then we can trace when the dataset
has dimension only O(α2n2), and we can successfully trace Ω(1/α2) individuals in the dataset. We summarize
our results in the following informal theorem, which effectively generalizes Theorem 1 from the introduction.

Theorem 17 (Informal). For every δ > 0, n ∈ N, α ≥ 1/n1/2, d ≥ O(α2n2 log(1/δ)), m ≥ O(log(n)/α2), and
t ≤ Ω(1/α2), there exists an attacker A∗ : {±1}d × [±1]d × ({±1}d)m+1 → {IN,OUT} the following holds.

Let D be a product distribution on [−1, 1]d such that each marginal satisfies a technical smoothness condition
(Definitions 6 and 27). LetM : {±1}n×d → [−1, 1]d be α-accurate. Let p ∼ D and x1, · · · , xn, y, z0, z1, . . . , zm ∼
Pp. Let q ∼M(x1, · · · , xn). Then

P [A∗(y, q, (z0, z1, . . . , zm)) = IN] ≤ δ, and

P [|{ i ∈ [n] | A∗(xi, q, (z0, z1, . . . , zm)) = IN}| ≥ t] ≥ 1− δ.

The modified attack is described below. In the attack, y represents the targeted individual, q is a vector of the
mechanism’s answers, and z0, z1, . . . , zm represent m+ 1 independent reference samples from the distribution.
The first reference sample z0 is used exactly as before as an unbiased estimate of p. The remaining m samples
z1, . . . , zm will be averaged to form an independent unbiased estimate of p with much lower variance. We will
set m ≈ 1/α2 so that this estimate is α-accurate.

A∗δ,α,d,m(y, q, ~z)

1. Input: y, z0, z1, . . . , zm ∈ {±1}d, and q ∈ [±1]d.
2. Let z = z0 and w = (1/m)

∑m
i=1 zi.

3. Let η := 2α and let bq − weη ∈ [−η, η]d be the entrywise truncation of q − w, to [−η, η].
4. Compute

〈y − z, bq − weη〉 =
∑
j∈[d]

(yj − zj) ·
⌊
qj − wj

⌉
η
.

5. If 〈y − z, bq − weη〉 > τ := 4α
√
d log(1/δ), output IN; otherwise output OUT.

Figure 2. Attack with a Large Reference Sample

A. Soundness

Proposition 18 (Soundness). Fix any q, z1, . . . , zm, p ∈ [−1, 1]d. Suppose y, z0 ∼ Pp are independent from each
other and from q, z1, . . . , zm. Then

P
[
A∗δ,α,d,m(y, q, ~z) = IN

]
≤ δ.

Proof: Since y and z0 are identically distributed, and q, z1, . . . , zm are fixed

E
[
〈y − z, bq − weη〉

]
= 0



(recall z = z0 and w = (1/m)
∑m

i=1 zi). Since y and z0 are independent samples from a product distribution, we
have that 〈y − z, bq − weη〉 =

∑
i∈[d](y

j − zj) · bq − wejη is the sum of 2d independent random variables, each
of which is bounded by η = 2α. Thus, by Hoeffding’s inequality,

P
[
〈y − z, bq − weη〉 > τ

]
≤ e−τ2/16dα2 ≤ δ.

This completes the proof.

B. Correlation Analysis

We have the following proposition, analogous to Proposition 10 in Section II-B.
Before diving into the analysis, we need to slightly strengthen our definition of accuracy. Instead of assuming

merely that the expected error of the mechanism is α, we want to assume that the mechanism’s error is bounded
by α with high probability.

Definition 19 (Strong Accuracy). Let M : {±1}n×d → [−1, 1]d be a (possibly randomized) mechanism. Fix any
p ∈ [−1, 1]d. Consider the following experiment. Let x1, . . . , xn ∼ Pp and then let q ∼M(x1, . . . , xn). We say
that M is (α, β)-strongly accurate if for every j ∈ [d],

P
[
|qj − pj | > α

]
≤ β,

and, moreover, this statement holds even when we condition on all the randomness in columns other than j. That
is, accuracy must hold when we condition on any values of {x−ji }i=1,...,n and q−j and the randomness is taken
only over the remaining variables.

Note that if M satisfies
∣∣∣M(x)j − (1/n)

∑
i∈[n] x

j
i

∣∣∣ ≤ α for all x ∈ {±1}n×d and j ∈ [d], then M satisfies(
α+ λ, e−λ

2n/2
)
-strong accuracy for all λ ≥ 0. That is, if M is close to the empirical mean of its input samples

and n is large, then M is also close to the population mean p.

Lemma 20. Let M : {±1}n×d → [−1, 1]d be (α, β)-strongly accurate, let η = 2α, and let the distribution D be
a product distribution where every marginal is (α, γ)-strong. Consider the following experiment. Let p ∼ D, let
x1, . . . , xn, z0, z1, . . . , zm ∼ Pp, and q ∼M(x1, . . . , xn). Then for every j ∈ [d],

E

∑
i∈[n]

(xji − z
j) bq − wejη

 ≥ γ − 4n
(
β + e−α

2m/2
)
,

where z = z0 and w = (1/m)
∑m

i=1wi.
Moreover, this statement holds even when we condition on everything pertaining to columns other than j. That

is, the bound on the expectation holds when we condition on any value of p−j , {x−ji }i=1,...,n, {z−ji }j=0,1,...,m,
and q−j and the randomness is taken only over the remaining variables.

Proof: Since M is α-accurate and the distribution is (α, γ)-strong, by Proposition 10

E

∑
i∈[n]

(xji − z
j) · (qj − wj)

 ≥ γ.
So it remains to show that

E

∑
i∈[n]

(xji − z
j)(qj − wj − bq − wejη)

 ≤ 4n
(
β + e−α

2m/2
)
.

Since
∣∣∣∑i∈[n](x

j
i − zj) · (qj − wj −

⌊
qj − wj

⌉
η
)
∣∣∣ ≤ 4n and

∑
i∈[n](x

j
i − zj)(qj − wj −

⌊
qj − wj

⌉
η
) = 0 when

|qj − wj | ≤ η, it suffices to show that P
[
|qj − wj | > η

]
≤ β + e−α

2m/2. By strong accuracy, we have



P
[
|qj − pj | > α

]
≤ β, and by a Chernoff bound, we have P

[
|pj − wj | > α

]
≤ e−α

2m/2. This completes
the proof.

Proposition 21. Suppose the distribution D is a product distribution in which each marginal is (α, γ)-strong.
Suppose M : {±1}n×d → [−1, 1]d is (α, β)-strongly accurate for β ≤ γ/24n. Let d > O(α2n2 log(1/δ)/γ2)
and m ≥ 2 log(24n/γ)/α2. Let x1, . . . , xn, z0, z1, . . . , zm ∼ Pp. Let q ∼M(x1, . . . , xn) Then

P

∑
i∈[n]

(
〈xi − z, bq − weη〉

)
<
γd

2

 ≤ δ
(recall z = z0, w = (1/m)

∑m
i=1 zi, and η = 2α).

The proof of Proposition 21 is analogous to that of Lemma 11 and is deferred to the appendix.
Proposition 21 establishes a lower bound on the sum of the expected scores. Next we will upper bound the

2-norm of the expected scores. Upper bounding the 2-norm will establish that the scores are “spread out,” so
there must be many (roughly 1/α2) expected scores that are large (larger than the threshold τ ).

Our analysis relies on the following technical lemma.

Lemma 22. Let X1, · · · , Xn ∈ R be independent random variables such that E [Xi] = 0 and E
[
X2
i

]
≤ 1 for

every i ∈ [n]. Let Y ∈ R be another (not necessarily independent) random variable. Then∑
i∈[n]

E [XiY ]2 ≤ E
[
Y 2
]
.

Proof: For i ∈ [n], let ci = E [XiY ]. Define h : Rn → R by h(x) =
∑

i∈[n] cixi. Then

E
[
h(X)2

]
=
∑
i,j∈[n]

cicjE [XiXj ] ≤
∑
i∈[n]

c2i

and
E [h(X)Y ] =

∑
i∈[n]

ciE [XiY ] =
∑
i∈[n]

c2i .

Thus

0 ≤ E
[
(h(X)− Y )2

]
= E

[
h(X)2

]
− 2E [h(X)Y ] + E

[
Y 2
]
≤
∑
i∈[n]

c2i − 2
∑
i∈[n]

c2i + E
[
Y 2
]
.

Rearranging gives ∑
i∈[n]

c2i ≤ E
[
Y 2
]
,

as required.

Lemma 23. Fix p ∈ [−1, 1]d and let M : {±1}n×d → [−1, 1]d be any mechanism. Fix any w and let
x1, · · · , xn, z0 ∼ Pp and q ∼M(x1, · · · , xn). Then for every j ∈ [d],√√√√∑

i∈[n]

E
[
〈xji − zj , bqj − wjeη〉

]2
≤ η
√

2

(recall z = z0). Moreover, this statement holds even when we condition on everything pertaining to columns other
than j. That is, the bound holds when we condition the expectations on any value of {x−ji }i=1,...,n, z

−j
0 , and q−j

and the randomness is taken only over the remaining variables.



Proof: We apple Lemma 22 with Xi = xji − zj and Y =
⌊
qj − wj

⌉
η
.

Once again, we would like to apply a concentration result to turn our bound on the sum of the squares of the
expected scores into a high confidence bound on the sum of the squares of the scores themselves. Once again,
this issue is complicated by a lack of independence. Nonetheless, we prove a suitable concentration bound for the
sum of the squares of the scores in the full version of this work. Using this concentration bound we can prove
the following.

Proposition 24. Fix p ∈ [−1, 1]d and let M : {±1}n×d → [−1, 1]d be any mechaniam. Assume d ≥ 64(n +√
log(1/δ)). Let x1, · · · , xn, z0, z1, · · · , zm ∼ Pp, and let q ∼M(x1, · · · , xn). Then

P

√∑
i∈[n]

〈xi − z, bq − weη〉
2 ≤ 2ηd

 ≥ 1− δ

(recall z0 = z and w = (1/m)
∑n

i=1 zi).

Proof: By applying the triangle inequality to Lemma 23, we have√√√√∑
i∈[n]

E
[
〈xi − z, bq − weη〉

]2
≤ dη

√
2.

By our concentration result from the full version of this work, for any λ > 0,

P

√∑
i∈[n]

〈xi − z, bq − weη〉
2 > λ+ dη

√
2

 ≤ exp

(
nd

2
− λ2

16η2

)
.

The theorem follows by setting λ = 4η
√

nd
2 + log(1/δ) ≤ ηd

2 .
Combining Proposition 21 with Proposition 24, we can show that, with high probability, the attack says IN for

many target individuals xi. To do so, we need the following elementary lemma.

Lemma 25. Let σ ∈ Rn satisfy
∑

i∈[n] σi ≥ A and
∑

i∈[n] σ
2
i ≤ B2. Then∣∣∣∣{i ∈ [n] : σi >

A

2n

}∣∣∣∣ ≥ ( A

2B

)2

.

Proof: Let τ = A/2n and S = {i ∈ [n] : σi > τ}. Let σS ∈ R|S| denote the restriction of σ onto the
coordinates indexed by S. Then

A ≤
∑
i∈[n]

σi =
∑

i∈[n]\S

σi +
∑
i∈S

σi

≤(n− |S|)τ + ||σS ||1
≤nτ +

√
|S| · ||σS ||2

≤nτ +
√
|S| · ||σ||2

≤nτ +
√
|S| ·B.

Rearranging gives

|S| ≥
(
A− nτ
B

)2

=

(
A

2B

)2

,

as required.



Proposition 26 (Completeness with a Large Reference Sample). Suppose the distribution D is a product
distribution in which each marginal is (α, γ)-strong. SupposeM : {±1}n×d → [−1, 1]d is (α, β)-strongly accurate
for β ≤ γ/24n. Let d > O(α2n2 log(1/δ)/γ2) and m ≥ 2 log(24n/γ)/α2. Let x1, . . . , xn, z0, z1, . . . , zn ∼ Pp.
Let q ∼M(x1, . . . , xn). Then

P
[∣∣{i ∈ [n] : A∗δ,α,d,m(xi, q, ~z) = IN

}∣∣ ≥ γ2

256α2

]
≥ 1− 2δ.

Proof: By Proposition 21, with probability at least 1− δ,∑
i∈[n]

(
〈xi − z, bq − weη〉

)
≥ γd

2
=: A.

By Proposition 24, with probability at least 1− δ,√∑
i∈[n]

〈xi − z, bq − weη〉
2 ≤ 2ηd =: B.

By a union bound, both of these events occur with probability at least 1−2δ. Assuming they both occur, Lemma 25
implies ∣∣∣∣{i ∈ [n] : 〈xi − z, bq − weη〉 ≥

A

2n

}∣∣∣∣ ≥ ( A

2B

)2

=
( γ

16α

)2
.

We have A/2n = γd/4n ≥ τ = 4α
√
d log(1/δ), which implies the result.

IV. EXTENSIONS

A. Robustness: Mechanisms with `1-Bounded Error

We have taken M being accurate to mean
∣∣∣∣∣∣E [q]− p

∣∣∣∣∣∣
∞
≤ α for all p, where q =M(x) and the expectation

is taken over the randomness of M and x. This condition is quite strong. Ideally, we would only need to assume,
say,

∣∣∣∣∣∣E [q]− p
∣∣∣∣∣∣
1
≤ αd – a very weak average-case error guarantee.

To achieve this, we must alter the definition of a strong distribution:

Definition 27 (Robustly Strong Distribution). A probability distribution ρ on [−1, 1] is (η, γ)-robustly strong if

E
p∼ρ

[
g′(p)(1− p2) +

1

η
|g(p)− p|

]
≥ γ

for any polynomial g : [−1, 1]→ [−1, 1].

It can be verified that the uniform distribution is (1/2, 1/3)-robustly strong.
Soundness holds as before, but Completeness can be strengthened to the following.

Proposition 28 (Robust Completeness). Suppose the distribution D is a product distribution on [−1, 1]d in which
each marginal is (η, γ)-robustly strong. Assume d > O(n2 log(1/δ)/γ2). Let M : {±1}n×d → [−1, 1]d. Let
p ∼ D, x1, · · ·xn, z ∼ Pp, and q =M(x1, · · · , xn). Then

P [||q − p||1 > αd ∨ ∃i ∈ [n] Aδ,d(xi, q, z) = IN] ≥ 1− δ.



A′δ,d,σmax
(y, q, z)

1. Input: y, z ∈ Rd and q ∈ [−1, 1]d.
2. Compute 〈y, q〉 =

∑
j∈[d] y

j · qj and 〈z, q〉 =
∑

j∈[d] z
j · qj .

3. If 〈y, q〉 − 〈z, q〉 > τ ′ := 2σmax

√
d ln(1/δ), output IN; otherwise output OUT.

Figure 3. Our Privacy Attack for Real-Valued Data

B. Generalizations to Real-Valued Data

The results of the previous sections generalize nearly directly to Gaussian data with a fixed variance. Specifically,
suppose that the data X ∈ Rn×d is drawn independently with xji ∼ N(µj , σ

2
j ), where µj , σj are themselves

random variables distributed over [−1, 1] and [0, σmax] respectively according to a product distribution.
The attack is modified slightly in Figure 3.
Verifying soundness of our attack is again straightforward.

Proposition 29 (Soundness). Let q, µ ∈ [−1, 1]d and σ ∈ [0, σmax]d. Suppose y, z ∼ N(µ,diag(σ)2) are
independent from each other and from q.5 Then

P
[
A′δ,d,σmax

(y, q, z) = IN
]
≤ δ.

Proof: We have that y − z ∼ N(0, 2 · diag(σ)2). Thus 〈y, q〉 − 〈z, q〉 ∼ N(0, 2
∑

j∈[d] σ
2
j q

2
j ). Since

2
∑

j∈[d] σ
2
j q

2
j ≤ 2dσ2max, we have

P
[
〈y, q〉 − 〈z, q〉 > τ ′

]
≤ 1

2
exp

(
−τ ′2

2 · 2dσ2max

)
≤ δ,

as required.
The relevant notion of smoothness is now the following.

Definition 30. A distribution ρ on pairs (µ, σ) ∈ [−1, 1] × [0, σmax] is (α, γ)-strong for Gaussians if for all
continuously differentiable functions g : [−1, 1]×[0, σmax]→ [−1, 1] such that |g(µ, σ)−µ| ≤ α for all µ ∈ [−1, 1]
and σ ∈ [0, σmax], we have

E
(µ,σ)∼ρ

[
σ2

∂

∂µ
g(µ, σ)

]
≥ γ.

Proposition 31 (Completeness). Suppose pairs (µ1, σ1), · · · , (µd, σd) ∈ [−1, 1]×[0, σmax] are independent random
variables whose distributions are all (α, γ)-strong for Gaussians. Assume d > O(n2σ2max log(1/δ)/γ2). Suppose
the mechanism M : Rn×d → [−1, 1]d is α-accurate. Let x1, · · ·xn, z ∼ N(µ,diag(σ)2) and q =M(x1, · · · , xn).
Then

P
[
∃i ∈ [n] A′δ,d,σmax

(xi, q, z) = IN
]
≥ 1− δ.

Moreover, if M is symmetric, then

∀i ∈ [n] P
[
A′δ,d,σmax

(xi, q, z) = IN
]
≥ 1− δ.

5x ∼ N(µ, diag(σ)2) denotes that each xj is drawn independently from a Gaussian distribution with mean µj and variance σ2
j .
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