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Abstract: Nanopositioning technology is widely used in high-resolution applications. It often uses
piezoelectric actuators due to their superior characteristics. However, piezoelectric actuators exhibit
a hysteresis phenomenon that limits their positioning accuracy. To compensate for the hysteresis
effect, developing an accurate hysteresis model of piezoelectric actuators is very important. This
task is challenging, requiring some considerations of the multivalued mapping of hysteresis loops
and the generalization capabilities of the model. This challenge can be dealt with by developing a
machine learning-based model, whose inverse model can be used to efficiently design an accurate
feedforward controller for hysteresis compensation. However, this approach depends on model
accuracy and the type of data used to train the model. Thus, accurate prediction of the hysteresis
behavior may not be guaranteed in the presence of disturbances. In this paper, a machine learning-
based model is used to design a hysteresis compensator and then combined with a robust feedback
controller to enhance the robustness of a nanopositioning control system. The proposed model
is based on hysteresis operators, the least square support vector machine (LSSVM) method, and
particle swarm optimization (PSO) algorithm. The inverse model is used to design the feedforward
controller, and the RST controller is employed to develop feedback control. Our main contribution
is the introduction of a hybrid controller capable of compensating for the hysteresis effect, and at
the same time, eliminating remaining modeling errors and rejecting disturbances. The performance
of the proposed approach is evaluated through MATLAB simulation, as well as through real-time
experiments. The experimental results of our approach demonstrate superior tracking performance
compared with the PID-LSSVM controller.

Keywords: nanopositioning systems; piezoelectric actuators; RST controller; least-squares support-
vector machine (LSSVM); hysteresis modeling; control

1. Introduction

Nanopositioning technology is very important in many applications that require ultra-
precise motion. Such applications typically use nanopositioners to achieve their desired
performance. The piezoelectric actuator is one of the fine positioning devices that is widely
used in many nanopositioning systems due to its superior characteristics, such as high
resolution, high output force, and fast response, compared with conventional actuators.
However, the hysteretic behavior of piezoelectric actuators is a major obstacle that reduces
their performance. Hysteresis is characterized by a complex nonlinear map [1], so it is hard
to establish an accurate model and practical control of piezoelectric actuators [2].

To obtain a more accurate model of the piezoelectric actuator, multivalued hysteresis
mapping should first be properly transformed into a one-to-one mapping, so that it does
not affect modeling performance. It is also important to develop a generalized modeling
algorithm to accurately describe both rate-independent and rate-dependent hysteresis [3].
Rate-dependent hysteresis is more difficult to model than rate-independent, as its response
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depends not only on the input amplitude but also on the input frequencies [4,5]. Con-
ventional hysteresis models can only characterize rate-dependent hysteresis, such as the
Prandtl–Ishlinskii (PI) model [6], Bouc–Wen model [7], Duhem model [8], and Preisach
model [9]. Some studies have improved these models to describe both types of hystere-
sis [10–12]. However, they are complex, and their inverse model often cannot be used for
ultra-high precision control.

Consequently, artificial neural networks (ANNs) have been used to obtain an appli-
cable inverse model. Although ANN-based models have addressed the computational
complexity issues and introduced an appropriate nonlinear input-output mapping [13–15],
they often suffer from overfitting, as they are prone to falling into local optimums, which
affects their generalization ability [16]. To avoid this effect, the least-squares support vector
machine (LSSVM) [17] has been used. In general, LSSVM is superior to and more accurate
than ANNs, as it can reduce the upper bound of the generalization error, whereas ANNs
can only minimize the training error [18]. As LSSVM only deals with one-to-one mapping,
whereas hysteresis is defined as multi-valued, few studies have attempted to provide a
suitable hysteresis map, often based on expanding input space into multidimensional space.
For instance, the authors in [19–22] used nonlinear autoregressive exogenous (NARX)
models in which the input was expanded to include current and past inputs, as well as
the past outputs. Although the results showed that the outputs could be well-predicted,
the output of the inverse LSSVM-NARX model that is fed to its input usually results in
accumulated errors over time [23,24].

Farrokh in [24] presented a rate-dependent hysteresis model for magnetostrictive actu-
ators using hysteresis memory and a LSSVM-based learning algorithm. The stop operators
were used to construct a discrete memory to solve mapping problems, and the LSSVM
was used to accurately estimate the density function. This model provided a complete
memory for hysteresis and could avoid the accumulation of feedback errors caused by the
LSSVM-NARX model. However, the performance evaluation of both hysteresis modeling
and control has only been conducted through MATLAB simulation. Although the results
have outperformed those obtained by the ANN and LSSVM-NARX models with better
modeling accuracy, practical control issues were not investigated in his study.

In a previous study [25], we improved the learning and generalization capabilities of
the same model (LSSVM and stop operators) using the particle swarm optimization (PSO)
technique. We also evaluated its inverse as a feedforward controller for a piezoelectric
stack actuator, and examined the practical issues associated with implementing our control
scheme. A trade-off between the positioning accuracy and complexity was performed,
which was directly affected by the number of stop operators. The inverse LSSVM model
and PID controller were used in a parallel control structure to achieve high positioning
accuracy with reasonable computational complexity. Further improvements in the accuracy
of this scheme can be made using several stop operators, but this would be at the expense
of a longer execution time. Furthermore, adjustment of PID parameters for this scheme
should be carefully tuned through experiments. This task depends on a trial-and-error
method, which takes a long time to reach the desired level of performance, making the
choice of PID controller parameters difficult.

In this study, in continuation of our previous work, we extended the feedforward-
feedback control scheme to track the same excitation signals with higher accuracy so that it
would not add further complexity to the control system. Instead of the traditional feedback
control, proper robust control was used to design the control scheme. This was done to
deal with the uncertainty of the system and avoid the limitations of the PID controller.
The methodology of the feedback controller design considered in this study utilized a
pole placement technique with shaping of the sensitivity functions [26–28]. A polynomial
RST digital controller was designed in parallel with an inverse LSSVM hysteresis model.
The RST controller has been successfully applied in many applications [29–32]; it uses
polynomial functions R and S to create robust feedback control components and the poly-
nomial T in the feedforward path to improve tracking performance. The most interesting
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aspect of this paper was the ability to reduce tracking error by imposing certain constraints
on the shape of the closed-loop sensitivity functions. These constraints, as well as the
desired closed-loop poles, helped to ensure a high degree of control under disturbances
while maintaining the stability of the system. To the best of our knowledge, this control
structure has never been evaluated through real-time experiments on a piezo-actuated
nanopositioning system. For performance evaluation, the tracking performance of the
extended control scheme was compared with that obtained from our previous work, which
was based on the inverse LSSVM model and PID controller. The contributions of this study
are listed below:

1. We present a new control structure to demonstrate the capability of the RST controller
combined with inverse LSSVM model-based control to reject disturbances and further
improve the robustness of the design.

2. We evaluate the proposed control scheme using a nanopositioning platform and
provide a comparison with the results from our previous work.

The paper is organized as follows: Section 2 gives an overview of the hardware and
software environments used in our study and describes the hysteresis loops obtained by
different excitation signals; Section 3 describes the proposed model structure; Section 4
presents the considered control design based on the inverse LSSVM-based model and RST
controller; Section 5 discusses modeling and experimental results; and Section 6 concludes
the study with future research directions.

2. Hardware, Software, and Data Description

Data is usually prepared before being introduced to the model. In this study, the
training and testing data were generated by exciting a piezoelectric stack actuator with
different input signals on a nanopositioning platform. This section describes the main
components of the experimental setup and obtained experimental data.

2.1. Hardware and Software Description

We used a platform consisting of six major components: four hardware and two
software. Details of each component are discussed below and illustrated in Figure 1.
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Hardware Components: A high-speed nanopositioner stage (P-752.21C) was used to
provide precise motion in a single axis, manufactured by Physik Instrumente Company,
Germany [33]. This stage contained a piezoelectric stack actuator made of a ceramic
material (PICMA® P-885), which could precisely expand and contract, forcing flexures
to move along the desired axis. This actuator could be excited by an applied voltage
ranging from −20 to 120 V, within a travel range of up to 35 µm, and a displacement
resolution of 0.1 nm. To measure the output displacement, the stage was equipped with a
high-resolution capacitive position sensor (D-015), which had a bandwidth of up to 10 kHz
and a resolution of 0.01 nm. This sensor gave analog outputs in the voltage range of 0–10
V. To drive the piezoelectric actuator, a voltage piezo amplifier module (E-505.00) [34],
from Physik Instrumente Company, Germany, was used. This module had a fixed gain
of 10, and a bandwidth of 3 kHz. The operating input voltage range of this amplifier
was −2 to +12 V and the output voltage response was in the range of −30 to +130 V. The
input/output signals were sent from/to a control board (DS1104, dSPACE Inc, Wixom, MI,
USA) [35] through a connector (dSPACE CLP1104) with 16 BNC ports. The dSPACE1104
board was used to implement control algorithms. It is well-suited for rapid prototyping
and complex control systems [36–38], as it has a high-speed processor (250 MHz), 32 MB
SDRAM, and 8 MB flash memory. The dSPACE1104 was directly connected to a host
computer containing software packages that were used to build control models, generate C
code, and visualize data.

Software: The control model was built using Simulink. The Simulink model was con-
verted into C code with MATLAB so that it could be coupled with a dSPACE ControlDesk.
The dSPACE ControlDesk was utilized for the deployment of C code on the dSPACE 1104,
as well as for the visualization of the experiment results. These software packages made
it possible to execute developed control algorithms on hardware-in-the-loop simulations
(HILS), allowing for easy interfacing of control signals with the piezo-actuated nanoposi-
tioning systems and linking input references and output signals to visualization interfaces.

2.2. Data Description

Proper modeling of hysteresis behavior requires adequate representation of rate de-
pendency. This is useful in examining the generalization ability of the model. Therefore,
in this work, the considered actuator was driven by various input signals ranging from
1 to 20 Hz, with a sampling rate of 0.002 s. Seven excitation signals were used, three of
which (A, B, and C) were used for training, and four (D, E, F, and G) that were used for
testing, as shown in Figure 2. Each sub-figure shows two curves: the first curve is the input
to the piezoelectric actuator (in volts) and the second curve is the output displacement
of the piezoelectric actuator, measured by the capacitive position sensor (in volts). The
reason for giving both curves in volts is to show input and output on the same scale to
demonstrate the lag between them. It should be noted that the output responses lag the
inputs. Figure 3 shows the corresponding input–output relationship, which shows the
characteristics of rate-dependent hysteresis that need to be compensated by the proposed
control strategy in this study. These data were then used in the modeling of the hysteretic
behavior of the piezoelectric actuator and the evaluation of the proposed control approach.
Table 1 shows the performance of the considered piezoelectric actuator without hysteresis
compensation in terms of the root mean square of error (RMSE). Significant positioning
errors (at least 0.4 µm) were observed. This performance could not meet the requirements
of high-precision nanopositioning systems. Thus, it is necessary to work on developing a
precise hysteresis model and control. The hysteresis modeling methods used in this study
are discussed in the next section.
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Table 1. Tracking performance of the considered piezoelectric actuator without hysteresis compensation.

Data RMSE (µm) RMSE Percentage % to Travel Range

A 1.7466 4.990%
B 2.0566 5.876%
C 0.8623 2.463%
D 1.7708 5.059%
E 0.7140 2.040%
F 0.4443 1.2695%
G 5.8008 16.5736%

The dynamic behavior of the piezoelectric actuator was not only influenced by the
nonlinear hysteresis characteristics, but also by some system properties, such as stiffness
and damping. The effect of system properties on the nonlinear hysteresis characteristics of
the actuator was almost negligible while working at not very high frequencies. However,
their effect on the overall dynamic behavior was determined in our work by identifying the
system transfer function model, significantly based on the input and output data (black-box
identification). Thus, the stiffness and damping properties were not individually identified
in this case, but rather obtained from the information of system properties in the identified
parameters of the transfer function model. For further clarification, some typical properties
of the considered system are presented in Table 2.

Table 2. Typical properties of the considered piezoelectric actuator.

Properties Values

Driven input voltage (V) −20 to 120
Resonant frequency (Hz) 2100

Resolution (nm) 0.1
Travel range (µm) 0–35

Stage mass (kg) 0.35
Electrical capacitance (µF) 3.7

Load capacity (N) 30
Stiffness in motion direction (N/µm) 20

3. Model Structure

The proposed hysteresis model was inspired by the Preisach model [39,40]. The
hysteresis behavior was described in the Preisach model using a hysteresis memory con-
structed by relay operators. Then, it utilized a memoryless mapping function for model
identification, as demonstrated in Figure 4. The relay operator is typically defined by two
thresholds, a1 and a2, where a1 ≤ a2, as shown in Figure 5a. At these thresholds, the relay
operator’s output was either +1 or −1. Assuming that a voltage z(t) drives the piezoelectric
actuator, the output can then be predicted by the Preisach model, as follows:

y(t) =
∫ +∞

0

∫ +∞

−∞
µ(r, s)Rs−r,s+r[z](t)dsdr (1)

where µ represents a density or weight function and Rs−r,s+r[·] is the relay operator with
center s and half-width r. This can be defined in the following formula:

r= (a2 − a1)/2 (2)

Using a dividing curve ψ(t, r), the half-plane r > 0 is divided into two different sections.
Then, the relay takes either +1 or −1. The value −1 is assigned to the upper region of the
relay, and the value +1 is assigned to the lower region. The curve ψ(t, r) is called the play
operator, as shown in Figure 5b, where:

ψ(t, r) = Pr[z](t) ∀r ≥ 0 (3)
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Then, Equation (1) can also be expressed as:

y(t) =
∫ +∞

0

[∫ ψ(t,r)

−∞
µ(r, s)ds−

∫ +∞

ψ(t,r)
µ(r, s)ds

]
dr (4)

Thus, the output of the Preisach model can be predicted by the following equation:

y(t) = Q(r, ψ(t, r)) (5)
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The equation above demonstrates that the Preisach model is composed of the hystere-
sis play operators (hysteresis memory) and a memoryless functional mapping function.
The most difficult aspect of the Preisach model is that the density function must be precisely
estimated and implemented with less computational time. In this study, we used alternative
hysteresis mapping and approximation strategies. The following two sections discusses
the proposed modeling approach. The first section presents a discussion of the discrete
hysteresis memory that was used to expand input space. The second section presents the
LSSVM-based method that was used to accurately estimate the hysteresis model and ex-
plains the improved PSO algorithm that was employed to optimize the LSSVM parameters
to further improve model accuracy.

3.1. Proposed Hysteresis Memory

The hysteresis memory is built in a discrete form; its plane is divided into many
elements using a set of n-stop operators. The stop operator is characterized as shown in
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Figure 5c. It has two thresholds +r and –r and its output for a given input x(t) can be
defined on the interval [ti , ti+1], as follows:

z(0) = Er[x(0)]
z(t) = Er[x(t)− x(ti) + z(ti)]

for ti ≤ t ≤ ti+1; 0 ≤ i ≤ N − 1
(6)

where:
Er[.] = min{max{−r, .},+r} (7)

where z(t) indicates the current state of the operator and Er[·] indicates the stop operator.
The threshold of the stop operator is defined as:

ri =
i

(n + 1)|x|max
, i = 1, 2, 3, . . . , n (8)

where |x|max denotes the maximum absolute value and n denotes the number of operators.

3.2. Memoryless Function

In this study, the density function of the Preisach model was replaced by introduc-
ing a machine learning predictor based on the least-squares support-vector machine
(LSSVM) [17,41]. This model is widely used for classification and regression as it has
the capability of converting inequality constraints into equality constraints and utilizing a
squared loss function that enables the LSSVM method to achieve effective linearization.

Let us assume that a piezoelectric actuator has an input z and output response y, then
the LSSVM prediction model can be expressed, as follows:

y(z) = wT∅(z) + b (9)

where ∅(·) is a nonlinear mapping function, w indicates the weight vector, and b is a
bias term. These parameters can be optimized by training the model using a dataset with
an adequate number of samples N. Then, the optimization problem can be solved by
minimizing the cost function, as follows:

min
w,e,b

Jp(w, e) =
1
2

wTw + C
1
2

N

∑
k=1

e2
k (10)

Equality constraints are expressed as:

yk = wT∅
(

zk
)
+ b + ek (11)

where ek represents error variables and C is the regularization factor that gives the relative
weight to errors. The regularization parameter has a direct influence on the generalization
ability of the LSSVM model; therefore, a more effective optimization should be used for
better training. The optimization technique used in this study will be described later.
The LSSVM algorithm usually utilizes the Lagrangian function to solve this optimization
problem; thus, Equation (10) can be reformulated as follows:

L(w, b, e; α) = Jp(w, e)−
N

∑
k=1

αk

[
wT∅

(
zk
)
+ b + ek − yk

]
(12)

where αk are the Lagrange multipliers. For the linear solution, the Karush–Kuhn–Tucker
(KKT) conditions are used. The KKT equations are expressed as:

∂L
∂w

= 0→ w =
N

∑
k=1

αk∅
(

zk
)

(13)
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∂L
∂ek

= 0→ αk = Cek (14)

∂L
∂b

= 0→
N

∑
k=1

αk = 0 (15)

∂L
∂αk

= 0→ wT∅
(

zk
)
+ b + ek − yk (16)

By substituting the KKT equations in Equation (12), the linear equations are obtained,
as follows: [

0 1T
N

1N Ω + I/C

][
b
α

]
=

[
0
y

]
(17)

where I denotes the identity matrix, y = [y1, y2, . . . , yN ]
T , 1N is a unity vector, and Ω is

the Gram matrix. The Gram matrix can be defined as:

Ωkj = K
(

zk, zj
)
= ∅

(
zk
)
∅
(

zj
)

, k, j = 1, 2, . . . , N (18)

where K denotes the kernel function. We used the radial base function (RBF) kernel,
which is the most effective kernel and widely used for nonlinear regression problems. It is
defined as:

K
(

z, zk
)
= exp

(
−‖z− zk‖

σ2

)
(19)

where σ is the kernel parameter that denotes the variance of the Gaussian function and
often affects the generalization performance of the model.

Therefore, the LSSVM-based predictor can be given by:

ŷ(z) = ∑N
k=1 αkK

(
z, zk

)
+ b (20)

Tuning the hyper-parameters C and σ2 has a considerable impact on the accuracy
of the LSSVM model. In this work, the global optimization of the LSSVM parameters
was realized using the particle swarm optimization (PSO) technique, due to its intelligent
searching strategy, inspired by the behavior of a flock of birds in search of food [42,43]. In
the optimization process, each particle i moves in the space to find the optimal food location
via inter-group communications. During every iteration t, each particle moves toward the
one that is closest to the food while updating its position and velocity. This update is then
shared among all the particles. This process is repeated until the best possible position is
found. This can be formulated as the following:

vi(t) = ηvi(t− 1) + c1r1(pbest,i − pi(t− 1)) + c2r2(gbest − pi(t− 1))
pi(t) = pi(t− 1) + vi(t)

(21)

where vi(t) is the velocity of ith particle and pi(t) is the position of ith particle. The η is
called the inertia weight, which is used to adjust the balance between global search and
local search, gbest indicates the current global best, pbest,i indicates the current personal
best, c1 is the learning factor for personal movement, c2 is the learning factor for group
movement, and r1 and r2 are random numbers that are uniformly selected in the range
[0, 1] at each iteration. In this study, cross-validation was used to evaluate fitness on the
training dataset. The flowchart of the PSO-LSSVM algorithm is presented in Figure 6.



Actuators 2022, 11, 324 10 of 23

Actuators 2022, 11, x FOR PEER REVIEW 10 of 24 
 

 

𝑣𝑖(𝑡) = 𝜂𝑣𝑖(𝑡 − 1) + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡,𝑖 − 𝑝𝑖(𝑡 − 1)) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑝𝑖(𝑡 − 1))  

𝑝𝑖(𝑡) = 𝑝𝑖(𝑡 − 1) + 𝑣𝑖(𝑡) 

(21) 

where 𝑣𝑖(𝑡) is the velocity of 𝑖𝑡ℎ particle and 𝑝𝑖(𝑡) is the position of 𝑖𝑡ℎ particle. The η 

is called the inertia weight, which is used to adjust the balance between global search and 

local search, 𝑔𝑏𝑒𝑠𝑡 indicates the current global best, 𝑝𝑏𝑒𝑠𝑡,𝑖 indicates the current personal 

best, 𝑐1 is the learning factor for personal movement, 𝑐2 is the learning factor for group 

movement, and 𝑟1 and 𝑟2 are random numbers that are uniformly selected in the range 

[0,1] at each iteration. In this study, cross-validation was used to evaluate fitness on the 

training dataset. The flowchart of the PSO-LSSVM algorithm is presented in Figure 6. 

 

Figure 6. Flowchart of the PSO-LSSVM algorithm. 

The model described above was used to fit different curves of the hysteresis loop 

under different excitation amplitudes and frequencies. The numerical simulation results 

Figure 6. Flowchart of the PSO-LSSVM algorithm.

The model described above was used to fit different curves of the hysteresis loop
under different excitation amplitudes and frequencies. The numerical simulation results
for the performance of the model will be given and discussed in detail in Section 5 of
this paper.

4. Control Design

In a previous study, we proposed a control methodology based on a kernel-based learn-
ing method for hysteresis compensation. However, its success significantly depended on a
sufficient amount of representative training data and adjustment of the optimal parameters
to get an adequate approximation of piezoelectric actuator behavior. As rate-dependent
hysteresis is quite sensitive to disturbance, the accurate prediction of the hysteresis behavior
may not be guaranteed at increasingly strong disturbances, which can affect the overall
control performance. The solution to typically used address this problem is to insert a
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robust feedback controller into the control loop to form a hybrid control structure capable
of handling such disturbances and internal uncertainties.

For this purpose, a parallel controller structure consisting of an inverse LSSVM con-
troller and an RST controller was proposed in this paper, as shown in Figure 7. The input
control signal for the piezoelectric actuator was generated by summing two commands: a
feedforward command generated by the inverse model and feedback command generated
by the RST controller. According to a previous study [44], it was found that the use of RST
in parallel with inverse feedforward control could efficiently control different nonlinear
processes with more precise motion tracking than the cascade control structure. In addition,
the inverse feedforward controller, based on the LSSVM model, may not guarantee accurate
convergence of the output to the reference in the cascade control structure. This is because
the outputs of the RST controller are given as inputs to the inverse model, whereas the
inverse LSSVM model is usually trained by the desired displacement values. The RST
controller is well-suited to be combined with our approach because of its simple structure,
fast response, and insensitivity to disturbances [27]. Therefore, this approach integrates
the advantages of the LSSVM-based controller, which allows high modeling accuracy for
piezoelectric hysteresis, and the RST controller, which helps to overcome disturbances and
enhances the robustness of tracking. The details of the inverse model and RST controller
are presented in the coming sections.
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4.1. Inverse LSSVM Hysteresis Model

Although inverse model compensation has been widely used to control piezoelectric
actuators [45], finding the exact inverse of a hysteresis model is often challenging [3,46]. This
is because it significantly depends on the efficiency of the algorithm of the hysteresis model
and its ability to describe different types of hysteresis loops. Moreover, the algorithms
that can provide accurate models may be too complicated to be implemented in real time.
The advantage of the PSO-LSSVM method based on stop operators is that it exhibits
high precision compared with other hysteresis modeling methods [22,25], and its inverse
model is easy to obtain. In this study, the PSO-LSSVM algorithm was used to develop the
inverse hysteresis model. The LSSVM inverse model was inversely trained with offline
datasets (A, B, and C). During offline training, the output displacement was selected as the
input for the LSSVM training, and the corresponding reference input as the output. After
sufficient training, the LSSVM inverse model was used to produce the feedforward control
signal, as shown in Figure 8. One major limitation of the LSSVM inverse model, based
on hysteresis operators, was its long execution time, which occurred due to the increase
in the number of operators. To avoid this issue, the order of the stop operators was set
to 55 in this study, as we recommended in a previous study [25]. In this way, the size of
the kernel matrix was reduced, decreasing the time complexity of the proposed control
scheme. Such a compromise would guarantee the desired tracking speed and accuracy,
allowing an additional feedback controller to be inserted into the control loop without
more time complexity.
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Usually, the feedforward compensator cannot eliminate the tracking error in the
presence of strong disturbances. Therefore, a robust RST feedback controller was inserted
into the control loop. This will be discussed in the next subsection.

4.2. RST Controller

In this study, a robust digital RST controller was combined with the feedforward
controller. The RST controller usually involves the placement of a closed-loop pole with
sensitivity function shaping in the frequency domain [27]. The shaping of the sensitivity
functions is achieved by suitably selecting the poles of the closed-loop system, so that
the desired performances in terms of tracking, disturbance rejection, and robustness are
achieved. Thus, the design of the RST controller depends on the mathematical model of the
piezoelectric actuator. We assume that the discrete-time transfer function for the open-loop
system to be controlled is given by:

G(z) =
B(z)
A(z)

(22)

The structure of the RST controller is shown in Figure 9, where R, S, and T are
polynomials and constitute the RST controller K(z), which can be computed as follows:

R
(

z−1
)
= r0 + r1 z−1 + · · · (23)

S
(

z−1
)
= s0 + s1 z−1 + · · · (24)

T
(

z−1
)
= t0 + t1 z−1 + · · · (25)
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The above equations demonstrate that the RST controller design is considered to
be an optimization problem, where the coefficients of R and S have to be optimized to
match the desired regulation performance. As for the polynomial T, it is made equal to a
constant, where T = R (1), which helps to ensure a steady state gain of unity between the
reference and output to match the desired tracking performance. To reach the optimum
solution, constraints relating to the desired performance and stability requirements of the
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piezo-actuated stage were imposed on the closed loop sensitivity functions. Such sensitivity
functions had the following expressions:

S0

(
z−1
)
=

A
(
z−1)S(z−1)

A(z−1)S(z−1) + B(z−1)R(z−1)
(26)

T0

(
z−1
)
=

B
(
z−1)T(z−1)

A(z−1)S(z−1) + B(z−1)R(z−1)
(27)

KS0

(
z−1
)
=

A
(
z−1)R(z−1)

A(z−1)S(z−1) + B(z−1)R(z−1)
(28)

where S0 is the output sensitivity function, which is the transfer function between the
disturbance d and the piezoelectric actuator output y; T0 is the complementary sensitivity
function, which is the transfer function between the reference yd and the output y; and KS0
is the input sensitivity function, which is the transfer function between the disturbance d
and piezoelectric actuator input u. The constraints of these functions are given below [26]:

Constraint 1: To achieve the desired robustness, the maximum peak magnitude of
S0 needed to be less than 6 dB, ‖S0

(
z−1)‖∞ < 6 dB, ∀ω. This constraint helped to ensure

sufficient stability margin and achieve good robustness performance.
Constraint 2: For the same reasons that “Constraint 1” was required to be imposed, the

maximum peak magnitude of T0 needed to be less than 3.5 dB, ‖T0
(
z−1)‖∞ < 3.5 dB, ∀ω.

Constraint 3: As the gain of the amplifier in our system was 10, the maximum peak
magnitude of KS0 needed to be less than 20 dB, ‖KS0

(
z−1)‖∞ < 20 dB, ∀ω, to avoid the

saturation issues of the command signal.
Constraint 4: To achieve more precise tracking control, a constraint on tracking errors

was required in our design. Therefore, a maximum tracking error of 0.2% of the travel range
was allowed, in the range of 0–20 Hz. This constraint could be expressed by imposing a
limit on the output sensitivity function, where

∣∣S0
(
z−1)∣∣ < −23 dB, 0 < ω < ωT .

The optimum solution for this problem was reached by placing the closed-loop poles
within a specified region that yielded good performance under these constraints. We
assumed that the closed-loop poles should be placed at desired locations, as specified by
the polynomial P (z−1). This polynomial was factorized to emphasize the dominant and
auxiliary poles, as follows:

P(z−1) = PD(z−1)·PF(z−1) (29)

where PD and PF define the dominant and auxiliary poles, respectively. To find the con-
troller polynomials R and S, the following Bizout equation needed to be solved:

P(z−1) = A
(

z−1
)

S
(

z−1
)
+ B

(
z−1
)

R
(

z−1
)

(30)

The polynomials R(z−1) and S(z−1) generally contain pre-specified fixed parts, which
are HR(z−1) and Hs(z−1), respectively; thus, they were also factored as follows:

R(z−1) = HR(z−1)·R′(z−1) (31)

S(z−1) = HS(z−1)·S′(z−1) (32)

By substituting Equations (29), (31) and (32) in Equation (30), we obtain:

PD(z−1)·PF(z−1) = A
(

z−1
)

HS(z−1)S′
(

z−1
)
+ B

(
z−1
)

HS(z−1)R′
(

z−1
)

(33)

Therefore, the polynomials R′(z−1) and S′(z−1) need to be solved to design R(z−1),
S(z−1), and T(z−1). The design procedures of the RST controller in this paper consist of
eight steps, which can be summarized as follows:
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1. Estimate the transfer function of the piezoelectric stage model and obtain B(z−1)
and A(z−1).

2. Choose dominant poles PD(z−1), and determine PF(z−1), HR(z−1), and HS(z−1).
3. From Equation (33), solve R′

(
z−1) and S′

(
z−1).

4. Compute R
(
z−1) and S

(
z−1) using Equations (31) and (32), respectively.

5. Compute T
(
z−1) from the equation T

(
z−1) = R(1).

6. Compute the sensitivity functions S0
(
z−1), T0

(
z−1), and KS0

(
z−1) by Equations (26)–(28),

respectively.
7. Evaluate the shaping of the sensitivity functions using the considered constraints and

performance specifications.
8. Repeat steps 2 to 7 until the optimum solution is reached.

5. Results and Discussion

In this section, the performance of the proposed model and controller are discussed
and compared with previous results published in [25].

5.1. Modeling Examination

In this section, the effectiveness of the proposed PSO-LSSVM model was examined.
Simulations were conducted using MATLAB (version R2021b, Mathworks, Natick, MA,
USA) and the LSSVMlab Toolbox (version 1.8, KU Leuven, Leuven, Belgium) [47]. The
model was first trained by training data A, B, and C, and then its generalization ability to
describe the rate-dependent hysteresis loops was tested by datasets D, E, F, and G. The
simulations were run for both training and testing at a sample rate of 0.002 s or 500 samples
per second. The maximum absolute value |x|max was set to 8.5. According to a literature
review [24,25], an increased number of stop operators comes at an increased computational
cost, making it unsuitable for real-time implementation. This issue was investigated in our
previous study [25], and we found that n = 55 was a good balance between computational
complexity and accuracy that guaranteed significant improvement in the proposed model
performance. Therefore, the same number of stop operators (n = 55) was applied in the
present study as well.

The PSO algorithm was used to select the optimal hyper-parameters σ2 and C of
the LSSVM model. The initial parameters were set according to previous recommenda-
tions [48,49], as well as our experiments. In most practical problems, a population size of 20
to 50 achieves the best performance. The amount of 30 particles and 100 iterations was large
enough to get the minimum error. The values of acceleration coefficients were suggested
to be equal (c1 = c2 = 2) to achieve a balance that provided a faster convergence speed,
and at the same time, enhanced the capability of escaping any local optimum to search
for the global optimum. The inertia weight was set to be decreased linearly from 0.9 to
0.4. The optimum hyper-parameters obtained using the PSO algorithm were σ2 = 3.13544
and C = 3.8155× 103. The model was then trained with all these parameters, and the best
values for bias b and support vectors were found, as shown in Table 3.

Figure 10a–d depicts the simulation results that compare the hysteresis loops obtained
from the proposed model with experimental loops. Our model performed well in model-
ing the rate-independent and rate-dependent hysteresis loops. The evaluation of model
performance was carried out using the root mean square of error (RMSE), which measured
the difference between the predicted output and experimented output. The RMSE values
ranged from 0.01061 to 0.0126 µm (D = 0.01061, E = 0.01086, F = 0.0123, and G = 0.0126 µm),
which indicated high prediction accuracies on all test data.
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Table 3. The selected and identified hysteresis model parameters.

Parameter Symbol Value

Sampling rate fs 0.002 s
Maximum absolute input |x|max 8.5

Stop operator order n 55
No. of particles np 30

Maximum number of iterations i 100
Learning factors c1= c2 2
Inertia weights [wmin, wmax] [0.4, 0.9]

Regularization factor C 3.8155× 103

Kernel parameter σ2 3.13544
Bias b 1.831
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Figure 10. Simulation results of the PSO−LSSVM model on: (a) test data D; (b) test data E; (c) test
data F; and (d) test data G.

Figure 11 shows the error level between the actual output of the considered piezoelec-
tric actuator and estimated output of the proposed model. These results could be improved
by increasing the number of stop operators, but this would be at the expense of model
complexity. A detailed discussion about the complexity of the proposed model was given
in our previous paper [25]. A comparison between our method and other hysteresis models
was presented in that paper as well. The results showed that this model could achieve
higher generalization performance than comparative models. As this model provides high
accuracy with reasonable computation time (0.23 ms/sample), its inverse model is suitable
to design a real-time compensator for the considered piezoelectric actuator.
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5.2. Experimental Results of Reference Tracking

A hybrid controller was designed, composed of feedforward and feedback algorithms.
The inverse PSO-LSSVM controller was used to compensate for hysteresis nonlinearity,
whereas the RST was used to eliminate system disturbances and achieve precise tracking. To
design the RST controller, a linear dynamics model G(z) corresponding to the piezoelectric
actuator was required. Thus, the actuator was excited by a chirp voltage signal with a
small amplitude to neglect the hysteresis effect on the output response. The input and
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output of the piezoelectric stage were used for open-loop identification to characterize the
plant model. The parameter estimation was carried out using the recursive least squares
(RLS) algorithm. The simulation results showed that a fourth-order model was suitable
to characterize the linear dynamics of the considered actuator, as shown in Figure 12.
It should be noted that the predicted output closely fit the actual output and the error
of the fourth-order model was small, which could be handled by the robustness of the
RST controller. The plant mode G(z) was identified and its numerator and denominator
polynomials were obtained, as follows:

B(z) = 0.6521z3 − 0.80572 z2 + 0.3978z + 0.26× 103 (34)

A(z) = z4 − 1.646z3 + 1.657z2 − 1.1253z + 0.386 (35)
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To design the RST controller, the procedures mentioned above in Section 4.2 were
followed step-by-step, and the polynomials R and S were obtained as follows:

R(z−1) = 0.247− 0.454z−1 + 0.214z−2 + 0.479z−3 − 0.375z−4

+0.0025z−5 + 0.0001z−6 + 0.0589z−7 (36)

S(z−1) = 1− 0.978z−1 − 0.277z−2 + 0.369z−3 + 0.0018z−4

−0.0539z−5 − 0.0607z−6 + 4.074z−7 (37)

T(z−1) = 0.17298 (38)

The shaping of all closed loop sensitivity functions was achieved, as shown in
Figure 13. It should be noted that all these functions satisfied all of the constraints men-
tioned above. After designing the RST controller, it was combined with the inverse LSSVM
model to achieve good trajectory tracking in the presence of disturbances and improve
control performance.

The four test reference signals used in modeling were also used to evaluate the
effectiveness of the proposed control scheme. The experimental results of the proposed
hybrid controller are shown in Figures 14 and 15. These figures compare the desired
input with the output displacement of the considered piezoelectric stage. The output
of the controlled piezoelectric stage showed good tracking and achieved a highly linear
relationship with the desired displacement curve. The RMSEs corresponding to the test
inputs D, E, F, and G were 0.0182, 0.0219, 0.0162, and 0.0227 µm, respectively. These errors
accounted for 0.0520, 0.0626, 0.0463, and 0.0649% of the travel range, which indicated that
the RST-LSSVM controller had greater enhancement of tracking capabilities. To further
evaluate the generalization ability of the proposed control scheme, four new datasets (H, I, J,
and K) with different amplitudes and frequencies were also considered. Figure 16 shows the
experimental results, where the proposed control scheme tracks the new desired trajectories
with satisfactory performance. The RMSEs of the test inputs H, I, J, and K were 0.0164,
0.0158, 0.0187, and 0.0181 µm, respectively, which accounted for 0.0469, 0.0451, 0.0534, and
0.0517% of the travel range, respectively. Figure 17 shows much closer relationships to the
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desired linear relationship on all test inputs. These results have been compared with those
obtained from the PID-LSSVM controller that was proposed in our previous work [25].
The comparison results are shown in Tables 4 and 5. The proposed RST-LSSVM control
scheme had smaller RMSEs than the PID-LSSVM control scheme. Although the difference
in mean RMSE values, presented in Tables 4 and 5, was small (3.4 and 7.1 nm, respectively),
this small difference is considerable in ultra-precise positioning applications, such as in
microscopy. In addition, the difference in RMSE values with some datasets (E, H, I, and K)
is obvious (4.8, 6.9, 12.3, and 8.3 nm respectively), which demonstrates the performance
improvements with the proposed control scheme. The mean values for all test inputs used
in this study were also calculated, and it was found that the RST-LSSVM controller gave
an improved mean value (18.6 nm) compared with the PID-LSSVM controller (23.8 nm).
Figures 18 and 19 compare the obtained results in terms of position tracking errors over
time. Better positioning precision was achieved with the proposed RST-LSSVM control
scheme compared with the PID-LSSVM control scheme.
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Table 4. Comparison of tracking control with PID-LSSVM approach on test data D, E, F, and G.

Model
RMSE (µm)

Mean
Data D Data E Data F Data G Mean Percentage % to

Travel Range

PID-LSSVM 0.0214 0.0267 0.0195 0.0250 0.0232 0.0663%
RST-LSSVM 0.0182 0.0219 0.0162 0.0227 0.0198 0.0566%

Table 5. Comparison of tracking control with PID-LSSVM approach on test data H, I, J, and K.

Model
RMSE (µm)

Mean
Data H Data I Data J Data K Mean Percentage % to

Travel Range

PID-LSSVM 0.0233 0.0281 0.020 0.0264 0.0244 0.0697%
RST-LSSVM 0.0164 0.0158 0.0187 0.0181 0.0173 0.0494%
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Figure 14. Experimental results of reference tracking in a closed loop with RST control and LSSVM
compensation. These results were obtained by: (a) test reference D; (b) test reference E; (c) test
reference F; and (d) test reference G.
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Figure 15. The effect of the proposed control scheme on hysteresis loops of the considered piezo-
electric actuator. The loops shown were obtained by: (a) test reference D; (b) test reference E; (c) test
reference F; and (d) test reference G.
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compensation corresponding to: (a) test reference H; (b) test reference I; (c) test reference J; and
(d) test reference K.
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electric actuator. The loops shown were obtained by: (a) test reference H; (b) test reference I; (c) test
reference J; and (d) test reference K.
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To evaluate the effectiveness of our proposed control scheme, we compared our
achieved results with those obtained by other control schemes (mentioned in the literature
review of this paper) for the piezoelectric platform. Comparison results are presented in
Table 6, where it is shown that our proposed scheme had better results compared with
the other control methods. The average root mean square error obtained by the improved
Preisach model [12] was 0.15 µm, which was better than those obtained by the recurrent
neural networks [15] (0.465 µm) and the LSSVM algorithm approach without modeling
hysteresis inverse [50] (0.62 µm). The control method that was based on the LSSVM-
NARX algorithm [19] had satisfactory performance, with an average RMSE of 0.03 µm;
however, the performance with LSSVM based on the stop operator and incremental PID was
superior [25] (0.0238 µm). Indeed, our proposed method, which used the inverse LSSVM
model combined with the hysteresis operators and RST controller, was more accurate,
achieving the lowest average tracking error (RMSE of 0.0186 µm) compared with the other
methods. These results indicate that the proposed control method presented in this paper
has a high generalization ability to track different trajectories with different amplitudes
and frequencies, as well as high tracking performance in the presence of disturbances.

Table 6. Comparison between the proposed method and previous studies.

Contributor Method RMSE

Qingsong Xu [50] Feedforward–feedback scheme based on the least squares support vector machine without
modeling hysteresis inverse. 0.62

Yongcheng Xiong et al. [15] Control scheme based on recurrent neural networks. 0.465

Wei Tech Ang et al. [12] Control scheme based on the improved Preisach. 0.15

Liangsong Huang et al. [19] Feedforward–feedback scheme based on the least squares support vector machine, combined with
NARX model and PID controller. 0.03

PID-LSSVM [25] Feedforward–feedback scheme based on particle swarm optimization and least squares support
vector machine, combined with discrete memory (stop operators) and incremental PID controller. 0.0238

The proposed RST-LSSVM Feedforward–feedback scheme based on particle swarm optimization and least squares support
vector machine, combined with discrete memory (stop operators) and RST controller. 0.0186
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6. Conclusions

This paper presents a hybrid control strategy for a piezoelectric actuator. The authors
used a kernel-based learning method to design the feedforward controller, and pole place-
ment with sensitivity function shaping methodology was used to design a digital RST
feedback controller. The feedforward controller was constructed employing an inverse
model using a stop operator to solve the multi-mapping problem while its parameters were
identified using the PSO-LSSVM algorithm. The simulation results demonstrated that the
PSO-LSSVM model produced high modeling accuracy (RMSE: D = 0.01061, E = 0.01086,
F = 0.0123, and G = 0.0126 µm), with a reduced number of stop operators (n = 55). The
feasibility of the proposed control strategy was investigated using a nanopositioning plat-
form. The experimental results showed that the inverse LSSVM model could effectively
track the desired displacement. The remaining errors caused by modeling errors and the
disturbance effect were addressed by a RST feedback controller. The results showed that
the proposed hybrid control strategy outperformed the PID-LSSVM control strategy in
terms of robustness and generalizing ability from controlling the rate-dependent hysteresis
effect (RSME: D = 0.0182, E = 0.0219, F = 0.0162, G = 0.0227, H = 0.0164, I = 0.0158, J = 0.0187,
and K = 0.0181 µm). The mean of tracking errors obtained from all test datasets with
the PID-LSSVM controller was 0.0238 µm, whereas the RST-LSSVM controller achieved
0.0186 µm.

A high-speed controller is required in applications that require high-speed positioning
in real time. This can be done by solving the computational complexity problem. This task
becomes very difficult for multi-axes nanopositioning applications. The universality of our
proposed control method should be examined with more experiments on other types of
piezoelectric actuators. These issues should be examined further in future research.
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