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Robust Tracking Enhancement of Robot
Systems Including Motor Dynamics:

A Fuzzy-Based Dynamic Game Approach
Bor-Sen Chen,Senior Member, IEEE,Huey-Jian Uang, and Chung-Shi Tseng

Abstract—A robust tracking control design of robot systems
including motor dynamics with parameter perturbation and ex-
ternal disturbance is proposed in this study via adaptive fuzzy
cancellation technique. A minimax controller equipped with a
fuzzy-based scheme is used to enhance the tracking performance
in spite of system uncertainties and external disturbance. The
design procedure is divided into three steps. At first, a linear
nominal robotic control design is obtained via model reference
tracking with desired eigenvalue assignment. Next, a fuzzy logic
system is constructed and then tuned to eliminate the nonlin-
ear uncertainties as possibly as it can to enhance the tracking
robustness. Finally, a minimax control scheme is specified to
optimally attenuate the worst-case effect of both the residue
due to fuzzy cancellation and external disturbance to achieve a
minimax tracking performance. In addition, an adaptive fuzzy-
based dynamic game theory is introduced to solve the minimax
tracking problem. The proposed method is appropriate for the
robust tracking design of robotic systems with large parameter
perturbation and external disturbance. A simulation example of
a two-link robotic manipulator driven by dc motors is also given
to demonstrate the effectiveness of proposed design method’s
tracking performance.

Index Terms—Fuzzy-based dynamic game theory, fuzzy can-
cellation, tracking enhancement, uncertain robot systems.

I. INTRODUCTION

I N robotics literature, a robotic dynamic model is always
described by a second-order differential equation at each

joint of arm with the acting torque (or force) as the control
input reference. Extensive approaches had been proposed for
the feedback control of robot arms [1]–[4], [7]–[8]. A total
robot model (arm dynamics plus motor (actuator) dynamics
and the interaction between motors and joints) have recently
been considered in robotic control design [1], [3], [5], [6].
Under this circumstance, a third-order robot dynamic model
must be developed to include the actuator dynamics. Owing
to factors such as high-velocity moment, highly varying loads,
friction, and saturation of actuator, the robotic system becomes
uncertain. In [5], a robust control is developed on the basis
of the robust stabilization technique in [16], [17]. In this
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approach, the nonlinear uncertain dynamics are assumed to
be norm bounded. A robust controller based on a small gain
theorem is then derived to guarantee the global boundedness
of robotic system. The result may be conservative if the
plant perturbations are large. Furthermore, if only stability is
guaranteed, no further tracking performance is achieved.

attenuation control design has been widely studied in
the recent decade for desired disturbance attenuation [12]–[14].
An tracking control design has been developed for robotic
systems to attenuate the worst-case effect of parameter pertur-
bations and external noises [15]. However, if the magnitudes
of uncertain dynamics and external noises are large, the
effect on tracking error may still be obvious or even lead to
system instability. In this situation, before an attenuation
is applied, effectively eliminating uncertain dynamics is an
appealing strategy for enhancing tracking performance.

Conventionally, adaptive control schemes can be employed
to match this uncertain nonlinear dynamics. However, linear
parametrization must be assumed in conventional adaptive
control schemes, i.e., the unknown parameters must be of
linear structure. In nonlinear uncertain robotic systems this
may not be true. Since fuzzy logic system can be tuned to
approximate any nonlinear dynamic with model free, in this
paper, a fuzzy scheme is used to efficiently eliminate the plant
uncertainties so that tracking performance can be enhanced
via adaptive learning method.

Fuzzy techniques have been recently used to effectively
approximate unknown nonlinear dynamics [9]–[11]. However,
in the conventional adaptive fuzzy control, the desired tracking
performance cannot be guaranteed from the more theoretical
control perspective. More recently [26], an adaptive
tracking control has been proposed for single-input single-
output (SISO) unknown nonlinear systems via an adaptive
fuzzy control based on feedback linearization technique and

control scheme. However, the limitation of this method
is that it employs feedback linearization-based adaptive fuzzy
control, which contains an inverse term of adaptive fuzzy
logic system. Therefore, it is sensitive, particularly, in the
case of approaching a small value. Furthermore, only SISO
systems have been discussed, but robotic tracking systems are
multi-input multi-output (MIMO) nonlinear systems. Unlike
conventional fuzzy control schemes for the nonlinear robotic
system, the proposed adaptive scheme is used to cancel the
nonlinear part of robotic system so that the robotic system
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becomes a linear system with a cancellation residue. Then
a linear control scheme is employed to achieve the
robust tracking. Recently, a neural-based adaptivecontrol
has been applied to robotic systems via adaptive feedback
linearization method in [28].

Unlike the adaptive control design method, in this study, a
linear nominal robotic system is given and only robust tracking
problem for uncertain dynamics and external disturbance is
addressed. A fuzzy-based minimax scheme is employed to
cancel the effects of nonlinear uncertainties to enhance the
robust tracking of uncertain robotic systems. The conven-
tional adaptive feedback linearization technique for uncertain
nonlinear system control design is unnecessary in this work.

The proposed controller contains two terms, one contains
a self-tuning fuzzy logic system which is developed to opti-
mally cancel the uncertain dynamics to enhance the tracking
robustness, the other contains a minimax control algorithm
that is employed to optimally attenuate the worst-case effect
of both the residue due to adaptive fuzzy cancellation and the
exogenous disturbance below a desired level from a minimax
perspective.

The proposed design method attempts to combine the dy-
namic game technique and adaptive fuzzy cancellation algo-
rithm to guarantee a robust tracking performance for uncertain
robotic control systems including motor dynamics. In the
proposed robust tracking control, the adaptive fuzzy cancel-
lation technique plays a role of rough tuning and the minimax
attenuation technique plays a role of fine tuning. Unlike
the conventional adaptive control in robotic systems, the
uncertain dynamics do not need to have a linear parameterized
structure in this study, i.e., uncertain dynamics can be free
of structure in the proposed fuzzy-based minimax control
systems. Since the adaptive feedback linearization technique
is avoided, an inverse adaptive matrix is unnecessary. Hence,
the computational complexity and sensitivity of control al-
gorithm are significantly reduced. Therefore, the proposed
design method is appropriate for the robust tracking control
design of robotic systems with large uncertainties and external
disturbances.

In this paper, Section II presents a dynamic model of
the robotic manipulator and joint motors first. The system
has a state vector composed of the errors in joint posi-
tion, velocity and acceleration and a control vector com-
posed of the armatures’ input voltages. In Section III, the
robust minimax tracking problem for uncertain robotic sys-
tem via fuzzy-based control scheme is described. The uncer-
tainty is matched and canceled by an adaptive fuzzy scheme.
In this approach, we propose a fuzzy-based dynamic game
scheme to treat the nonlinear robust tracking control design
of robotic manipulators, including actuator dynamics. The
proposed scheme is simpler and more robust than the ap-
proaches proposed in [3]–[6]. In Section IV, the proof of
the minimax tracking problem via adaptive fuzzy cancellation
scheme is given and the design procedures is proposed.
In Section V, a simulation example is provided to demon-
strate the design procedure’s effectiveness and to confirm
the performance of the proposed robust tracking control de-
sign for robotic systems with consideration of motor drives.

Simulation results indicate that a desired robust tracking
performance can be guaranteed for an uncertain robotic system
via the proposed fuzzy cancellation-based minimax algorithm
under large time-varying parameter perturbations and ex-
ternal disturbance. Concluding remarks are finally made in
Section VI.

II. CONTROL DYNAMICS OF ROBOT AND JOINT MOTORS

A dynamic model of robotic manipulator and joint motors is
first described. Following Tarnet al. [3], Beekman and Lee [6],
and Mahmoud [5], the joints of robotic manipulators driven by
dc motor are considered and a combined dynamic model of
the robot manipulator plus joint motors is developed herein.
An -joints robot dynamic (including actuators) is described
as follows. First, the motion equations of a robotic manipulator
with revolute joints can be expressed as

(1)

where the following notations apply:

vectors of joint positions, velocities, and
accelerations;
matrix of the moment inertia;
vector of the centripetal and Coriolis forces;
vector of gravitational force;
vector of torques developed at the joint side
of gear box;
external disturbance.

Remark: The matrix in the robot model (1) is symmet-
ric positive-definite.

The relation between the joint positionand the motor-shaft
position is given by

(2)

where is a diagonal matrix of the gear ratios
for the joints and (which means that the matrix

is positive-definite). By armature-controlled dc motors, the
electrical model of the th motor is characterized by

for (3)

where is the resistance of the armature circuit, is the in-
ductance of the armature circuit, is the back electromotive
force (EMF) constant of the motor, is the armature current,

is the motor shaft position, and is the armature input
voltage. Let us define

(4)

...
...

...
(5)

where denotes a diagonal matrix of dimension. Then,
the electrical models of armature-controlled dc motors in (3)
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can be grouped in a compact form

(6)

Furthermore, the developed torque at the joint side is related
to the armature current by

(7)

where is the diagonal matrix of motor torque
constants and . Substituting (7) into (6) yields

(8)

where

(9)

Remark: The indicated inverse in (9) exists due to the
physical nature of and .

Now, to obtain the combined robot dynamic model, we
substitute (1) into (8). Thus

(10)

where denotes the third partial time derivative of. The
dynamic model in (10) can be written in the following compact
form:

(11)

where

(12)

(13)

By introducing the state vector

(14)

Equation (11) is transferred into the following standard
form:

(15)

Here we denote and assume
. Therefore, (15) can be rewritten as

(16)

which represents a typical nonlinear dynamical system with
an affine nonlinear input function. In this study, we assume
the state vector can be measured.

The state vector in (16) is composed of joint positions,
velocities and accelerations, and the input vectorconsists
of the armatures’ input voltages. Because of the model’s
complexity and nonlinearity in (16), directly designing control
laws is not easy. This situation is further compounded by
the drift incurred in on-line measurements of acceleration,
the frequent changes in load and model parameter, and the
corruption of external disturbances.

Given a task of a continuously differentiable and uniformly
bounded trajectory in the joint space for which we wish the
robot manipulator to follow. Therefore, we define

(17)

as the joint position error. Tarnet al. developed a feedback
linearization plus decoupling technique based on differential
geometric control theory to provide a nonlinear feedback
control law for the regulation of robotic arms [3]. However,
this design is possible only while the dynamics of the robotic
dynamic are well known. Assume that and
are the nominal estimates of and respectively.
We follow the notion in [5] and use the following control law:

(18)

where are diagonal matrices to be designed and
is an auxiliary control signal yet to be specified.

Substituting (17) and (18) into (16) leads to

(19)

where

(20)

For further development, let us define the system uncertain-
ties as

(21)

For design purpose, let us denote

(22)
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Fig. 1. Fuzzy logic system for robot tracking control.

as the state error vector. From (21), if our nominal estimates
of and are exact (i.e., and ) then the
system uncertainties will be zero except the external noise.
This is impossible in practical robot systems. In order to
enhance the robust tracking performance, an adaptive fuzzy
logic system (Fig. 1) is introduced herein to eliminate the
uncertainties.

In the form of (20) and (21), we obtain a simple form of (19)

(23)

From (17), (19), and (22), we obtain

(24)

The system in (24) represents the robotic tracking error
dynamics. In terms of the terminology of Garofalo and Leit-
mann [18], it is a nominally linear uncertain system. The
nonlinear uncertainties are modeled by the vector . A
more convenient form of (24) would be

(25)

where

(26)

Remark: The control parameters and are speci-
fied so that has desired eigenvalues and the tracking dynamic
in (25) has a desired response while the robotic system is free
of uncertainty and external disturbance .

III. PROBLEM FORMULATION

The tracking error dynamics of uncertain robotic manip-
ulator with actuator dynamics are described by (25) in the
above section. If the robotic system is free of uncertainties
and external disturbance (i.e., and ), by the
nonlinear control law in (18) with adequate choice of linear
control , the tracking error in (25) will asymptotically
converge to zero as [2]. In practical robotic sys-
tems, however, uncertainties due to parameter perturbations,
unmodeled dynamics, and external noises are inevitable. These
uncertainties deteriorate the tracking performance or even lead
to system instability in the worst case. Hence, the effect of
uncertainties and on tracking error in (25) must be
eliminated. Since is uncertain, several robust design algorithms
[16]–[18] have been employed as a robust controller to over-
ride the upper norm bound of . Due to high nonlinearity
and uncertainty of , estimating its upper norm bound is
a difficult task. Furthermore, effectively suppressing the effect
of the external noise is not easy, for example, by variable
structure system (VSS) control or dead-zone control based on
an upper bound of external disturbance to treat this problem.
All of these robust control methods may lead to conservative
and imprecise result.

In this paper, the control signal is divided into two parts
as follows:

(27)

Under this circumstance, the tracking error dynamics in (25)
is of the following form:

(28)

where is a fuzzy logic system and is a parameter
matrix to be tuned.

In (28), the fuzzy logic system will be tuned to
approximate as closely as possible. Furthermore, the
control signal will be used to attenuate the total effect
of the residue of and external disturbance

on the tracking error from a minimax perspective. In
this paper, since the fuzzy logic system is employed
to cancel the uncertain in (28) to enhance the robust
tracking, the fuzzy logic system in Fig. 1 is described
in the following paragraphs.

The fuzzy logic systems can perform universal approxima-
tion from the perspective of human experts and can uniformly
approximate nonlinear continuous functions to arbitrary accu-
racy [19], [20]. The fuzzy logic systems in Fig. 1 are qualified
as building blocks of for adaptive cancellation of
nonlinear function in (28). The fuzzy logic systems
are constructed from the fuzzy If–Then rules using some
specific inference, fuzzification, and defuzzification strategies.
Therefore, linguistic information from human experts and the
information from state measurement can be incorporated into
fuzzy logic systems to adjust their parameters to achieve
optimal approximation [25].
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The basic configuration of a fuzzy logic system depicts
in Fig. 1 as a fuzzy logic system. The fuzzy logic system

in this work performs a mapping from
to . Let , where , for

. A fuzzy rule base consists of a collection of fuzzy
If–Then rules [19], [20], [25]

If is and and is

Then is (29)

where and are
the input and output of the fuzzy logic system, respectively,
and . The fuzzy inference engine performs a
mapping from fuzzy sets in to fuzzy sets in
based upon the fuzzy If–Then rules in the fuzzy rule base and
the compositional rule of inference. The fuzzifier maps a crisp
point into a fuzzy set in .
The defuzzifier maps a fuzzy set in to a crisp point in .
More information can be found in [19], [20], [25].

The fuzzy logic systems of Fig. 1 comprise an extremely
rich class of static systems mapping from to

because many different choices are available within
each block. In addition, many combinations of these choices
can result in a useful subclass of fuzzy logic systems. One
subclass of fuzzy logic systems is used here as building blocks
of our adaptive fuzzy approximation (cancellation) controller
and is described by the following important result.

Lemma [25]: The fuzzy logic systems with center-average
defuzzifier, product inference and singleton fuzzifier are in the
following form:

(30)

where is the point at which the given membership function
achieves its maximum value, and we assume that

.

Let us denote the fuzzy basis functions as

(31)

for and denote

(32)

Consequently, in (30) is of the following form:

...

(33)

where for
. Therefore, the fuzzy logic system for theinput

output of -link robotic system with the same fuzzy basis
functions is of the following form:

...
...

. . .
...

...
. . .

. . .
...

...
(34)

i.e.,

(35)

where

...
...

...
. . .

. . .
...

...

Remarks:

1) The membership function can be triangular or any
type of membership functions.

2) In general, as the number of fuzzy basis functions ap-
proaches infinite [25], fuzzy logic system can
approximate any uncertain function by adequately
selecting parameter matrix in (35).

3) In this design, the membership functions are specified
by the designer’s experience or knowledge regarding the
uncertainties of a robotic system and the parameteris
to be tuned according to the tracking error .
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In practical control design, for the convenience of computa-
tion and implementation, the number of fuzzy basis functions
of fuzzy logic system is chosen as small as possible. Under
this circumstance, an adaptive law must be developed to tune
the parameter to construct a fuzzy logic system
with adequate dimension approximate to as closely as
possible.

Now define the following optimal approximation [25]:

(36)

where denotes the Euclidean norm, i.e.,
and denote the sets of suitable bounds on and ,
respectively. We assume that and never reach the
boundary of and and
in and for some . Otherwise, the projection
algorithm such as described in the remark following the proof
of Theorem must be introduced to prevent the divergence of

.
Consequently, the tracking error dynamic (28) can be rewrit-

ten as follows:

(37)

where denotes the sum of the
optimal cancellation error via fuzzy logic system and external
disturbance and is defined as

(38)

Our design procedure is divided into two steps. In the first
step, the adaptive fuzzy algorithm is tuned via
to optimally cancel the uncertain term . Under such a
circumstance, the term will finally vanish. If
the effect of can not be eliminated efficiently, the tracking
performance will be deteriorated, particularly, in the case of a
small number of membership functions in (32). This is a weak
point to overcome in fuzzy-based control design methods.
However, the cancellation error and external disturbance (i.e.,

are uncertain and cannot be estimated perfectly and
canceled completely. If such a situation arises, their worst-
case effect on tracking error must be attenuated as fully as
possible. Therefore, in the second step, the control signal
should be specified such that the worst-case effect of on
the tracking error must be attenuated as much as possible
and below a prescribed level, i.e., the following minimax
tracking performance must be satisfied for the tracking error
dynamics in (37) (see [12], [13], [27])

(39)

where is a weighting factor,
and are some positive definite weighting matrices and
the final time [12]–[15].

Our design objective involves how to tune the parameters
of the fuzzy logic system to eliminate the term and
then to specify an adequate minimax control law in (37)
so that the worst-case effect of on is guaranteed
to be less than or equal to. Under the case and

, (39) can be rewritten as the following minimum
-gain problem:

(40)

where and

However, in the case and the minimax
effect problem in (40) must be modified to (39) to consider

and as some kind of disturbance [12], [13].
At present [12]–[15], the minimax control (or the minimun

control) is the most efficient method of eliminating
the worst-case effect of the uncertain on in (37).
Therefore, it will be employed to attenuate the effect of
to achieve the minimax robust tracking in our fuzzy-based
control design of robotic system.

The expression in (40) implies that the induced norm
from to and must be less than
or equal to . The physical meaning is that the worst-case
influence of on and must be less than or equal
to for any from an energy perspective.
Owing to this reasoning, we are actually dealing with the
minimax tracking problem for the model reference robotic
control systems via an adaptive fuzzy cancellation scheme.
The primary difference between the proposed algorithm and
the conventional control is that an adaptive fuzzy control

is employed in our design to eliminate the uncertain
term as much as possible to enhance the tracking
robustness before minimax control is used. In the
conventional control design, only control
is employed to directly attenuate the uncertain term .
Since is generally very large, it may lead to system
instability. Furthermore, its effect on tracking error will be
still very large even when attenuation is used. The study
in [15] is a case of tracking control design of robotic
manipulator without employing the adaptive fuzzy cancellation
scheme to eliminate the uncertainties. Therefore, the result is
conservative and more control effort is deemed necessary. In
our design, using an adaptive fuzzy logic system
involves eliminating the uncertain term as much as
possible to enhance the tracking robustness. Employing
to attenuate the effect of involves achieving a prescribed
tracking performance. The role of adaptive fuzzy cancellation
in the proposed robust tracking control design of uncertain
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robotic systems is discussed in the simulation example of
Section V.

Remarks:

1) In general, the cancellation error and external distur-
bance always exists; is necessary for the
attenuation of to achieve robust tracking. If

, then the robust minimax tracking performance design
is reduced to a conventional optimal tracking control
design without considering the attenuation of (see
[12]–[15]). In this case, the tracking performance is
deteriorated by and is indicated in our simulation
example in Section V.

2) The performance in (39) or (40) is of finite-time mini-
max (or tracking control so can be finite in

. If , the integrations
and may increase to

. However, the integral inequality (40) always holds
true.

Our design objective involves in specifying an updated law
of for fuzzy logic system and a control law

for the tracking error dynamic in (37) such that the robust
minimax tracking performance (39) or (40) is guaranteed. The
updated law for plays a prominent role in rough tuning
and the specification of plays a role in fine tuning for
the robust tracking control of the uncertain robotic system
in (11). A more detailed description is given in the next
section.

IV. M INIMAX TRACKING OF ROBOTIC SYSTEMS

VIA ADAPTIVE FUZZY CANCELLATION SCHEME

From the analysis in the above section, the robust tracking
control design of uncertain robotic systems is formulated as
a minimax tracking control problem via an adaptive fuzzy
control to eliminate uncertainties
as fully as possible and then via a minimax control to
attenuate the worst-case influence of on tracking error
below a prescribed level. The first step in our design involves
specifying an updated law for and a control law
such that for any the following minimax
problem is achieved, i.e.:

(41)

Subject to the tracking error dynamic equation in (37), let
us define the cost function

(42)

Following some arrangement, we obtain

(43)

Substituting (37) into the above equation yields

(44)

then we get the following main result.
Theorem: For the uncertain robotic system (15) or (16), if

the control is chosen as

(45)

with

(46)

(47)

where is a weighting matrix and is
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the solution of the following algebraic Riccati-like equation:

(48)

then the minimax tracking in (39) or (40) is guaranteed for
a prescribed and the corresponding worst case to
deteriorate the tracking performance is of the form

(49)

Remark: denotes a possible disturbance in ,
which leads to the worst-case influence on tracking error from
the -norm perspective.

Proof: From (44) and after some rearrangement, we get

(50)

From (46)-(49) we get

(51)

From (48) and using the technique of completion of the
squares we get

(52)

From (52) and the dynamic game theory [13], [14], [27] we
obtain the optimal control as (47) and the worst case

as (49). Then

(53)

The above inequality holds by the fact that
and . From (42) it is seen

(54)

This is (41): if and , then (54) is reduced
to (40).

Remarks:

1) To guarantee the positive definite solution of in
the algebraic Riccati-like equation (48), the following
constraint must hold [13]:

(55)

For a prescribed attenuation level, the weighting
matrix on the control in (47) must satisfy the
above constraint to guarantee the solvability of minimax
tracking control of the uncertain robotic system in (11).
Hence, a robust tracking design with an arbitrary attenu-
ation of is possible by the proposed method with an
adequate choice of . However, if the attenuation level

is specified as an extremely small value, from (55)
must be of an extremely large value. Under this

circumstance, may require a large control energy.
There is a tradeoff between and .

2) Notably, and do not need to be known or speci-
fied beforehand. Since is bounded by the univer-
sal approximation theorem [25] and the assumption of
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bounded external disturbances, is bounded. More-
over, additional tools concerning projection algorithm
[21] can be used to analyze the bounded problems of

. Assume that the constraint set is specified as

, where is a positive constant.
Then, the parameter update law in (46) must be modified
as [21]

(56)

where

if or
and

if and

Since
, it can be shown

by geometric argument that the angle between and
is larger than at projection case. So .

We obtain and

. By the same
procedure as the proof in the Theorem, the minimax tracking
performance (41) can also be guaranteed via the updated
law (56).

From above analysis, a design procedure for the minimax
tracking of uncertain robotic systems with motor driving is
outlined as follows.

Design Procedure:

Step 1 Specify and to determine matrix with
desired eigenvalues.

Step 2 Determine the fuzzy architecture and specify
the desired attenuation level.

Step 3 Select positive–definite weighting matricesand
with to guarantee the solvability of the

minimax tracking.
Step 4 Solve the positive-definite matrix from the

Riccati-like equation (48).
Step 5 Compute the minimax tracking control law (47) and

the parameter update law in (46) and then in
(45).

In the next section, a design example is given according to
the above design procedure to demonstrate the effectiveness
of the proposed design method.

V. A SIMULATION EXAMPLE

In this section, we test our proposed fuzzy-based minimax
control on the robust tracking design of a two-link robot by
using a computer. Consider a two-link manipulator driven
by dc motor as Fig. 2 with system parameters as: link mass

(kg), lengths (m), angular positions (rad).

Fig. 2. The two-link robotic manipulator driven by dc motors.

The parameters for the equation of motion (1) are

where and the shorthand notations
and are used.

Assume that the trajectory planning problem for a weight-
lifting operation is considered and the two-link manipulator
suffers from time-varying parametric uncertainties and exoge-
nous disturbances.

• The resistance matrix of the armature circuit is

• The inductance matrix of the armature circuit is

• The back EMF constant of the motor is

• The motor torque constant is

• The gear ratio is
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The proposed adaptive fuzzy-based model reference control
with the minimax tracking performance is employed to treat
this robust robotic trajectory planning problem. For the con-
venience of simulation, the nominal parameters of the robotic
system are given as (kg), (kg), (m),

(m), m/s and the initial conditions
. The desired

reference trajectories are
respectively.

Assume that the parameters and be perturbed in the
following form:

respectively. Moreover, the exogenous disturbancesand
are assumed as

Obviously, the parameter uncertainties and exogenous dis-
turbances are extremely large. Therefore, the proposed fuzzy-
based minimax tracking control algorithm is employed to treat
this robust tracking control design.

Now, following thedesign procedurein the above section,
the robust tracking control design is given by the following
steps.

Step 1 Specify

such that the eigenvalues of the nominal tracking
system are , ,

, , , and .
Step 2 The following membership functions are selected:

where and , , ,
.Because the system

has six state variables, forty-two fuzzy rules of the

following form are included in the fuzzy rule bases.
Denote

If is then is for

and

If is then is for

and

If is then is for

and

If is then is for

and

If is then is for

and

If is then is for

and

Denote

The attenuation level is selected as
and respectively. In the case of

(i.e., the optimal tracking control is used
but without attenuation of , we only want to
reveal the deterioration of tracking performance by

.
Step 3 Select weighting matrix

and to guarantee the solvability of the
minimax tracking problem [see (55)].

Step 4 Solve the Riccati-like equation (48). In the
case, we can solve

In the cases of and , we can solve
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Fig. 3. TheH2 optimal tracking results without attenuation ofw(t)
(desired trajectory: “,” actual trajectory: “ ”).

In this simulation, we use the function “are” in the
WINDOW MATLAB to solve the algebraic Riccati-
like equation.

By using the control algorithms (45)–(47) to obtain the
minimax tracking controller the voltage control
input and the update law for are obtained as
follows:

Step 5 In the case, the minimax tracking controller
is of the following form:

and

Fig. 4. Control signals of theH2 optimal tracking case.

where is the nominal value of in (13).

In the case, the minimax tracking controller is
obtained as
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Fig. 5. RobustH1 tracking results with attenuation level� = 0:1 (desired
trajectory: “,” actual trajectory: “ ”).

and

In the case, the minimax tracking controller is of
the following form:

Fig. 6. Control signals with case� = 0:1:

and

Figs. 3–8 present the simulation results. Results obtained
from the optimal tracking case (i.e., are shown in
Fig. 3. In Figs. 5 and 7, simulation results of the proposed
adaptive fuzzy-based minimax tracking have demonstrated
the tracking performance for attenuation levels and

, respectively. Figs. 4, 6, and 8 show the control inputs
under different attenuation levels. Figs. 9 and 10 show the
fluctuations of the adaptive parameters for the cases of
and , respectively.

According to the simulation results of the above three
attenuation level cases, a specification of smaller attenuation
level may yield a better tracking performance. In the case of

optimal tracking, the effect of on tracking error has
not been attenuated and subsequently leads to poor tracking
performance. According to these results, tracking performance
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Fig. 7. RobustH1 tracking results with attenuation level� = 0:05 (desired
trajectory: “,” actual trajectory: “ ”).

is unsatisfactory and even unstable. The effect of the combined
disturbance on tracking error is attenuated evidently as

decreases. However, the voltage control inputs also indicate
a high-gain effect of the designed controller asdecrease,
particularly, at the beginning of control. In practical control
engineering design, this effect due to the residue of fuzzy
cancellation and exogenous disturbance must be diminished
in fuzzy-based control systems. Otherwise, it will damage
the entire system, particularly, in using a small number of
membership functions. However, the attenuation levelcannot
be decreased without considering the increase of the control
input. This is a tradeoff between the amplitude of control signal
and the tracking performance.

In [5], the following control is employed for robust tracking
of robot system with dc motor

(57)

where and
is solved by the following Riccati-like equation:

(58)

Fig. 8. Control signals with case� = 0:05:

Some comparisons are given as follows:

1) In control algorithm of [5], the second term in (57) is
employed to override the uncertainties or disturbance
directly through a high-gain control that is proportional
to , , and . If the initial is
not very small, it will lead to a very high-control signal
and the control system will diverge. By applying the
control algorithm in [5] to our simulation example,
we have found the tracking system diverges even with
small initial . Obviously, it is not a good design
to override the uncertainties directly. In our method, an
adaptive fuzzy scheme is employed to optimally cancel
the uncertainties beforehand. Therefore, we only need

to eliminate the effect of residue with a little
effort.

2) The choice of control parameters and
in [5] are complex and case by case. However, in
our case, a simple design procedure is proposed by a
systematic method. Furthermore, a comparison with
conventional optimal tracking control without
uncertain cancellation is shown in Figs. 3 and 4.
From the results in Figs. 5–8, it is seen that the
proposed method has much better performance than
that of the conventional optimal tracking control.
The reason is that the effort of uncertain parameters
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Fig. 9. The fluctuations of the adaptive parameters�i for the case of
� = 0:1.

Fig. 10. The fluctuations of the adaptive parameters�i for the case of
� = 0:05.

and external disturbance is efficiently eliminated
by the proposed fuzzy-based minimax cancellation
scheme.

VI. CONCLUSION

In this paper, an adaptive fuzzy cancellation technique and
a minimax (or attenuation technique have functioned in
the roles of a rough tuning and a fine tuning, respectively,
and are combined together to enhance the robust tracking
performance of uncertain robotic systems including motor
dynamics. The solvability of this robust minimax tracking
problem for uncertain robot system is also observed. Accord-
ing to our results, a desired minimax tracking performance
can be achieved if the weighting matrix on control signal is
adequately specified.

Actually, the proposed fuzzy-based minimax tracking
method can be applied to any robust control design of
an uncertain nonlinear mechanical system of the form in
(11) or (15). With the aid of adaptive fuzzy cancellation

algorithm, the minimax tracking control design can be
extended from exactly known linear systems toward nonlinear
uncertain systems. Furthermore, by employing minimax
attenuation technique, the tracking performance of fuzzy-
based control design for uncertain nonlinear mechanical
systems can be significantly improved. Therefore, the proposed
design algorithm is appropriate for practical control design
of mechanical systems with large parameter perturbations
and external disturbances. The proposed design method is
simple, the number of membership functions for the proposed
control law can be extremely small. However, because of
the use of fuzzy cancellation technique and minimax tracking
scheme, the results are less conservative than the other robust
control methods. Simulation results have indicated that the
desired robust tracking performance of uncertain dc motor-
driven robotic systems can be achieved via the proposed
method.
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