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Robust Tracking Enhancement of Robot
Systems Including Motor Dynamics:
A Fuzzy-Based Dynamic Game Approach

Bor-Sen Chengsenior Member, IEEEHuUey-Jian Uang, and Chung-Shi Tseng

Abstract—A robust tracking control design of robot systems approach, the nonlinear uncertain dynamics are assumed to
including motor dynamics with parameter perturbation and ex-  pe norm bounded. A robust controller based on a small gain

ternal disturbance is proposed in this study via adaptive fuzzy hoqrem js then derived to guarantee the global boundedness
cancellation technique. A minimax controller equipped with a

fuzzy-based scheme is used to enhance the tracking performance®f robotic system. The result may be conservative if the
in spite of system uncertainties and external disturbance. The plant perturbations are large. Furthermore, if only stability is
design procedure is divided into three steps. At first, a linear guaranteed, no further tracking performance is achieved.

nominal robotic control design is obtained via model reference H., attenuation control design has been widely studied in

tracking with desired eigenvalue assignment. Next, a fuzzy logic . ; - B
system is constructed and then tuned to eliminate the nonlin- the recent decade for desired disturbance attenuation [12]-[14].

ear uncertainties as possibly as it can to enhance the tracking AN Heo tracking control design has been developed for robotic
robustness. Finally, a minimax control scheme is specified to systems to attenuate the worst-case effect of parameter pertur-
optimally attenuate the worst-case effect of both the residue pations and external noises [15]. However, if the magnitudes
due to fuzzy cancellation and external disturbance to achieve a of uncertain dynamics and external noises are large, the

minimax tracking performance. In addition, an adaptive fuzzy- ffect tracki till be obvi lead t
based dynamic game theory is introduced to solve the minimax €1T€CL ON racking error may sull be obvious or even lead 10

tracking problem. The proposed method is appropriate for the System instability. In this situation, before #h,, attenuation
robust tracking design of robotic systems with large parameter is applied, effectively eliminating uncertain dynamics is an
perturbation and external disturbance. A simulation example of appealing strategy for enhancing tracking performance.

a two-link robotic manipulator driven by dc motors is also given : :
to demonstrate the effectiveness of proposed design method’s Conventionally, adaptive control schemes can be employed

tracking performance. to match this uncertain nonlinear dynamics. However, linear
parametrization must be assumed in conventional adaptive
control schemes, i.e., the unknown parameters must be of
linear structure. In nonlinear uncertain robotic systems this
may not be true. Since fuzzy logic system can be tuned to
I. INTRODUCTION approximate any nonlinear dynamic with model free, in this

N robotics i botic d ) del is al gaper, a fuzzy scheme is used to efficiently eliminate the plant
I ro _otlcs lterature, a robotic dynamic model 1S alWayg,certainties so that tracking performance can be enhanced
described by a second-order differential equation at ez\?a

oint of h th tina t ¢ h t adaptive learning method.
joint of arm wi € acting torque (or force) as the contro Fuzzy techniques have been recently used to effectively

input reference. Extensive approaches had been proposeda ;5roximate unknown nonlinear dynamics [9]—[11]. However,

:hi‘; fte ?]?b;clk c:)mntré)l nofmriobot Iarm; [tl]r_[4], tmt—[?l dAntOrtr?ilin the conventional adaptive fuzzy control, the desired tracking
0ot mode (a_ ynamics pius moto (.""9 uator) dyna Performance cannot be guaranteed from the more theoretical
and the interaction between motors and joints) have rece

been considered in robotic control design [1], [3], [5], [6]antr0| perspective. More recently [26], a., adaptive

Under this circumstance, a third-order robot dynamic modterfaCklng control has been proposed for single-input single-

must be developed to include the actuator dynamics. Owiﬁmput (SISO) unknown nonlinear systems via an adaptive

to factors such as high-velocity moment, highly varying load ngzy control based on feedback linearization technique and

friction, and saturation of actuator, the robotic system becom%%<> control scheme. However, the limitation of this method

uncertain. In [5], a robust control is developed on the baé?sthat It em_ploys feedback I|_near|zat|on-based adapnve fuzzy
control, which contains an inverse term of adaptive fuzzy

of the robust stabilization technique in [16], [17]. In this™. L . ! .
g [16], [27] ﬁogm system. Therefore, it is sensitive, particularly, in the

) ) ] ~case of approaching a small value. Furthermore, only SISO
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becomes a linear system with a cancellation residue. Th&mulation results indicate that a desired robust tracking
a linear H,, control scheme is employed to achieve thperformance can be guaranteed for an uncertain robotic system
robust tracking. Recently, a neural-based adaptiygcontrol via the proposed fuzzy cancellation-based minimax algorithm
has been applied to robotic systems via adaptive feedbasider large time-varying parameter perturbations and ex-
linearization method in [28]. ternal disturbance. Concluding remarks are finally made in
Unlike the adaptive control design method, in this study, Section VI.
linear nominal robotic system is given and only robust tracking
problem for uncertain dynamics and external disturbance is);

addressed. A fuzzy-based minimax scheme is employed to ) ) ) o )
cancel the effects of nonlinear uncertainties to enhance the* dynamic model of robotic manipulator and joint motors is

robust tracking of uncertain robotic systems. The conveftstdescribed. Following Taretal.[3], Beekman and Lee [6],
tional adaptive feedback linearization technique for uncerta@id Mahmoud [5], the joints of robotic manipulators driven by
nonlinear system control design is unnecessary in this worklC motor are considered and a combined dynamic model of
The proposed controller contains two terms, one contailft® robot manipulator plus joint motors is developed herein.
a self-tuning fuzzy logic system which is developed to optﬁ” n-joints r_obot dynarmc (mclud_mg actuators)_ is de_scrlbed
mally cancel the uncertain dynamics to enhance the trackifg follows. FII‘_St,. the motion equations of a robotic manipulator
robustness, the other contains a minimax control algorithffith revolute joints can be expressed as
that is employed to optimally attenuate the worst-case effect Lo o ;
of both the residue due to adaptive fuzzy cancellation and the M'(¢)i+Clg, )i+ G(g) =7+ d 1)
exogenous disturbance below a desired level from a minimax ) )
perspective. where the following notations apply:
The proposed design method attempts to combine the dy- ¢,4,¢ € R" vectors of joint positions, velocities, and
namic game technique and adaptive fuzzy cancellation algo- accelerations;
rithm to guarantee a robust tracking performance for uncertait{'(g) € £"*" matrix of the moment inertia;
robotic control systems including motor dynamics. In theC(g,@)¢ € R™ vector of the centripetal and Coriolis forces;
proposed robust tracking control, the adaptive fuzzy cancel- G(g) € R vector of gravitational force;

CONTROL DYNAMICS OF ROBOT AND JOINT MOTORS

lation technique plays a role of rough tuning and the minimax T € R™ vector of torques developed at the joint side
attenuation technique plays a role of fine tuning. Unlike of gear bO_XJ
the conventional adaptive control in robotic systems, the d € R" external disturbance.

uncertain dynamics do not need to have a linear parameterize®emark: The matrixA/’ in the robot model (1) is symmet-

structure in this study, i.e., uncertain dynamics can be free positive-definite.

of structure in the proposed fuzzy-based minimax control The relation between the joint positigrand the motor-shaft

systems. Since the adaptive feedback linearization techniqu@sition ¢,,, is given by

is avoided, an inverse adaptive matrix is unnecessary. Hence,

the computational complexity and sensitivity of control al- gm = Ng (2)

gorithm are significantly reduced. Therefore, the proposed

design method is appropriate for the robust tracking controhere N € R™*" is a diagonal matrix of the gear ratios

design of robotic systems with large uncertainties and extertfiat the » joints and N > 0 (which means that the matrix

disturbances. N is positive-definite). By armature-controlled dc motors, the

In this paper, Section Il presents a dynamic model @fectrical model of theith motor is characterized by

the robotic manipulator and joint motors first. The system ‘

has a state vector Compoged of the errors in joint pOSi'RjijJrLj dij t K, dgm; —u;, forj=1,2---n (3)

tion, velocity and acceleration and a control vector com- dt Yoodt

posed Of. t_he armatures input voltages. In _Sectlon .”l’ thv?/hereRj is the resistance of the armature circdit, is the in-

robust minimax tracking problem for uncertain robotic sys- . : .
ductance of the armature circult;; is the back electromotive

tem via fuzzy-based control scheme is described. The unc 2l e (EMF) constant of the motai; is the armature current,

tainty is matched and canceled by an adaptive fuzzy scheme.” o . )
. ; . is the motor shaft position, and; is the armature input
In this approach, we propose a fuzzy-based dynamic ga )
voltage. Let us define

scheme to treat the nonlinear robust tracking control design
of robotic manipulators, including actuator dynamics. The
proposed scheme is simpler and more robust than the ap-

R =diag[Rj], L= diag[Lj], Kb = diag[ij] (4)

proaches proposed in [3]-[6]. In Section IV, the proof of U1 t Tma
the minimax tracking problem via adaptive fuzzy cancellation "= U2 i = 2 O = T 5)
scheme is given and the design procedures is proposed. h e :
In Section V, a simulation example is provided to demon- Un, in I,

strate the design procedure’s effectiveness and to confirm
the performance of the proposed robust tracking control deherediag[-] denotes a diagonal matrix of dimensienThen,
sign for robotic systems with consideration of motor driveshe electrical models of armature-controlled dc motors in (3)
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can be grouped in a compact form Here we denotel = M~!(x,)(R,d’ + L,d’) and assume
d € L,[0,tf]. Therefore, (15) can be rewritten as
di
Ri+ L — + Kygm = u. 6
i+ Lo+ Kigm = (6) 2 0
Furthermore, the developed torque at the joint side is related : 3 + 0 “
u , velop qu joint side i —MHay)D(x) MY (zy)
to the armature current by 0
T = NK;i (7) + ? d (16)

where K, € R"*™ is the diagonal matrix of motor torque

o ; , which represents a typical nonlinear dynamical system with
constants andy; > 0. Substituting (7) into (6) yields

an affine nonlinear input function. In this study, we assume
the state vector: can be measured.
R + LT + Kong = u (8) The state vector in (16) is composed of joint positions,
velocities and accelerations, and the input veatotonsists
where of the armatures’ input voltages. Because of the model’s
complexity and nonlinearity in (16), directly designing control
R, =R(NK))™, L,=LNK;)™', Ky =K,N. (9) laws is not easy. This situation is further compounded by
the drift incurred in on-line measurements of acceleration,
Remark: The indicated inverse in (9) exists due to thehe frequent changes in load and model parameter, and the

physical nature ofV and K. corruption of external disturbances.
Now, to obtain the combined robot dynamic model, we Given a task of a continuously differentiable and uniformly
substitute (1) into (8). Thus bounded trajectory in the joint spagg for which we wish the

robot manipulator to follow. Therefore, we define

Lo M'(0)q" + (B M'(q) + La[M'(q) + C(g, d)))i
+ (R.C(g, ) + an(% q) + Ky )d .
+ R,G(q) + Ln,G(q) = u + Ryd + L, d’

=Q¢— Qe =771 —qd (17)

K

(10) s the joint position error. Tarat al. developed a feedback

@ . o o linearization plus decoupling technique based on differential
where " denotes the third partial time derivative @f The geometric control theory to provide a nonlinear feedback

dynamic model in (10) can be written in the following compaciontrol law for the regulation of robotic arms [3]. However,
form: this design is possible only while the dynamics of the robotic
] dynamic are well known. Assume that,(-) and Dq(,, ")
M(9)¢® + D(q,4,) = u+ Rd + L,d (11) are the nominal estimates 8f(-) and D(-, -, -), respectively.
We follow the notion in [5] and use the following control law:

where
/ w=Mo(q§” — K1§ — Ko — Ksij + o) + Do(a, ) (18)
M(q) =LnM'(q) (12)
D(q,4,§) =(R.M(q) —i—Ln[M'(q) + Clq, PDd where K, K>, K3 are diagonal matrices to be designed and

up 1S an auxiliary control signal yet to be specified.
Substituting (17) and (18) into (16) leads to

2
M=Y(Dy— D)+ MM +d

+ (RaC(g,d) + LnC(q,§) + Kin)d
+ R, G(q) + LnG(q)- (13)

By introducing the state vector

Tl | where
T=|T2| = |q]|- 14 . . .
a:i, g 4 v =g — K1q— K2 — K3 + uo. (20)

For further development, let us define the system uncertain-
Equation (11) is transferred into the following standardes as

form:
. 0 J(@) = M~Y[(Do — D) + (Mo — M)v]. (21)
2
&= 3 + ? u For design purpose, let us denote
—M~"(z1)D(z) M~ x1)

0 q L1 —qd
+ 0 e (15) e=|q| = |72~ da (22)

MY (z)(R,d' + L,d") q Z3 — u
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ol Ill. PROBLEM FORMULATION

C The tracking error dynamics of uncertain robotic manip-
mﬂ ulator with actuator dynamics are described by (25) in the
Logic Systen _ . ~ » above section. If the robotic system is free of uncertainties
BSOS }F‘ ey ﬂ ,’j?‘jj—f R and external disturbance (i.¢f(z) = 0 andd(¢) = 0), by the
nonlinear control law in (18) with adequate choice of linear
controlug(t), the tracking erroe(t) in (25) will asymptotically
converge to zero ag — oo [2]. In practical robotic sys-
tems, however, uncertainties due to parameter perturbations,
unmodeled dynamics, and external noises are inevitable. These
uncertainties deteriorate the tracking performance or even lead
as the state error vector. From (21), if our nominal estimatgs$ system instability in the worst case. Hence, the effect of
of M and D are exact (i.e.Mo = M and Do = D) then the yncertaintiesf () andd(t) on tracking error in (25) must be
system uncertainties will be zero except the external noisgiminated. Since is uncertain, several robust design algorithms
This is impossible in practical robot systems. In order tp6]-[18] have been employed as a robust controller to over-
enhance the robust tracking performance, an adaptive fuzigye the upper norm bound ¢ff (z)||. Due to high nonlinearity
logic system (Fig. 1) is introduced herein to eliminate thgnd uncertainty off(x), estimating its upper norm bound is
uncertainties. a difficult task. Furthermore, effectively suppressing the effect
In the form of (20) and (21), we obtain a simple form of (19pf the external noisé(¢) is not easy, for example, by variable
structure system (VSS) control or dead-zone control based on

Fig. 1. Fuzzy logic system for robot tracking control.

‘ 2 an upper bound of external disturbance to treat this problem.
T = T3 . (23)  All of these robust control methods may lead to conservative
v+ f(z) +d(t) and imprecise result.
) In this paper, the control signal, is divided into two parts
From (17), (19), and (22), we obtain as follows:
g = g Uy = Ue — uf(a:, @) (27)
q® | —K1G— K2G— Kzq+uo+ f(x) +d o ) o
r ~ Under this circumstance, the tracking error dynamics in (25)
Onxn Inxn Onxn | 14 is of the following form:
= Onxn Onxn In,xn (j 9 '
|-Ki -K» —Ks] [q .
0. ] é = Ae+ Bu. + B(f(z) —us(x,©))+Bd  (28)
nXxXn
+ Onxn uo . . .
Lown Wher'eu ;(z,©) is afuzzy logic system an@(¢) is a parameter
:O 3 matrix to be tuned.
xm In (28), the fuzzy logic system;(z, ©) will be tuned to
+ (}nm (f(z) +d). (24) approximate f(z) as closely as possible. Furthermore, the
L nxn i

control signalu.(¢) will be used to attenuate the total effect

The system in (24) represents the robotic tracking errBf the residue off(x) — u,(x,©) and extemal disturbance
dynamics. In terms of the terminology of Garofalo and Leit(?) on the tracking erroe(t) from a minimax perspective. In
mann [18], it is a nominally linear uncertain system. Th&1iS Paper, since the fuzzy logic systerm(z, ©) is employed
nonlinear uncertainties are modeled by the vecfér). A to cancel the uncertairf(z) in (28) to enhance the robust

more convenient form of (24) would be Fracking, the _fuzzylogic systemy(z, ©) in Fig. 1 is described
in the following paragraphs.

é = Ae+ Bug + Bf(x) + Bd(t) @25) The fuzzy logic systems can perform universal appr(_)xima-
tion from the perspective of human experts and can uniformly
approximate nonlinear continuous functions to arbitrary accu-
racy [19], [20]. The fuzzy logic systems in Fig. 1 are qualified

0 I 0 0 as building blocks ofus(x,©) for adaptive cancellation of

A=1| 0 0 I |, B=10]. (26) nonlinear function f(x) in (28). The fuzzy logic systems
-Ki —-K, -Kj I are constructed from the fuzzy If~Then rules using some
specific inference, fuzzification, and defuzzification strategies.
Remark: The control parametets’; , K, and K are speci- Therefore, linguistic information from human experts and the
fied so thatd has desired eigenvalues and the tracking dynaniitformation from state measurement can be incorporated into
in (25) has a desired response while the robotic system is ffeezy logic systems to adjust their parameters to achieve

of uncertaintyf(x) and external disturbanc&). optimal approximation [25].

where
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The basic configuration of a fuzzy logic system depicts Consequentlyy, (xz, @) in (30) is of the following form:
in Fig. 1 as a fuzzy logic system. The fuzzy logic system

us(x, ©) in this work performs a mapping froty € R*® ug, (2,0) =[a(z) z) - ()]
toV € R". LetU = Uy x Uy x Us, whereU; € R", for 0:, ()
1 =1,2,3. A fuzzy rule base consists of a collection of fuzzy y 0i (t)
I*=Then rules [19], [20], [25] :
Oir ()
R(l): If z1is F{,and v and, T3y, IS Fén é §(x)9i(t) (33)
Thenu is G (29)
where 6;(t) = [0;,(t) 6;,(t) - 6, @) for i =
wherez = (z1,x2,---,73,)7 € U anduy; € V. C R* are 1,2,---n. Therefore, the fuzzy logic system for teinput

the input and output of the fuzzy logic system, respective?” output ofn-link roboti<_: system with the same fuzzy basis
andl = 1,2,.--, M. The fuzzy inference engine performs dunctions is of the following form:

mapping from fuzzy sets it/ € R3" to fuzzy sets inR3" s (1, 0) ()0 (t)
based upon the fuzzy If=Then rules in the fuzzy rule base and u;; (x: 6) o(x)Ba(t)
the compositional rule of inference. The fuzzifier maps a crisp up(z,®) = ) =

point x = (xy,xa,---,73,)T € U into a fuzzy setd, in U. :

The defuzzifier maps a fuzzy set Ih to a crisp point inV.
More information can be found in [19], [20], [25].

The fuzzy logic systems of Fig. 1 comprise an extremely 0 ()
rich class of static systems mapping froli C R>" to .

V C R™ because many different choices are available within

each block. In addition, many combinations of these choices 6 (t)

can result in a useful subclass of fuzzy logic systems. One 62(t) (34)
X . 34

subclass of fuzzy logic systems is used here as building blocks
of our adaptive fuzzy approximation (cancellation) controller 9,,,'(t)
and is described by the following important result.

Lemma [25]: The fuzzy logic systems with center-averagée.,
defuzzifier, product inference and singleton fuzzifier are in the

following form: up(z,0) = {(x)O(t) (35)
M 3n where
Z i H fip (i) i
=1 j=1 zy O -~ 0O
U f; (z,0) = (30) . :
M [ 3n £(z) = 0 <=z :
> pr () S :
=1 \u=t L 0 e 0 o)
where#;; is the point at which the given membership function zlgg
ppi(z;) achieves its maximum value, and we assume that o(t) = 2'
pp(0) = 1. :
f L6, (1)
Let us denote the fuzzy basis functions as
Remarks:
Sl 1) The membership functiop: can be triangular or any
H pope (i) . 7
e type of membership functions.
J=

qlz) = (32) 2) In general, as the numbéf of fuzzy basis functions ap-
M (3" ) proaches infinite [25], fuzzy logic systemy(x,®) can

Z H HF! () approximate any uncertain functigf{z) by adequately
=1 \s=t selecting parameter matri® in (35).
3) In this design, the membership functions are specified
for i =1,2,---,M and denote by the designer’s experience or knowledge regarding the
uncertainties of a robotic system and the param@etes
[ci(z) lz) - ou(x)] (32) to be tuned according to the tracking eredgt).

1]>3

s(x)
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In practical control design, for the convenience of computa- Our design objective involves how to tune the parameters
tion and implementation, the number of fuzzy basis functiors the fuzzy logic system to eliminate the tefrfé — ©¢ and
of fuzzy logic system is chosen as small as possible. Und&en to specify an adequate minimax control lawt) in (37)
this circumstance, an adaptive law must be developed to twsw that the worst-case effect @f(¢) on e(¢) is guaranteed
the paramete®(¢) to construct a fuzzy logic systemy(x,®) to be less than or equal t@ Under the case(0) = 0 and
with adequate dimension approximate f6x) as closely as é(O) = 0, (39) can be rewritten as the following minimum
possible. Ly-gain problem:

Now define the following optimal approximation [25]:

. . 1/2 1/2
0% = arg min max I/ (z) — €0 (36) min max [[@7%e(t) R ue(t)]| L.
o (D)EL2[0,t ;] w(t)ELo [0t ] lw(®)|| L,
where|| - || denotes the Euclidean norm, i.¢g|| = VaTz. Q <p (40)

and Q. denote the sets of suitable bounds @) and z,
respectively. We assume th&i(t) and = never reach the
boundary of2 and ©2,, and f(z) = £0* + £(t),e(t) < €
in  and ©,, for somez > 0. Otherwise, the projection
algorithm such as described in the remark following the proof QY 2et) RY?u.(®)]l|L,
of Theorem must be introduced to prevent the divergence of
o(t).

Consequently, the tracking error dynamic (28) can be rewrit-
ten as follows:

&= Ac + Bu, 4+ B(£0" — £0) + B(f(z) — £6%) However, in the case(0) # 0 and©(0) # 0, the minimax
+ Bd(t) effect problem in (40) must be modified to (39) to consider
¢(0) and©(0) as some kind of disturbance [12], [13].

At present [12]-[15], the minimax control (or the minimun
H,, control) is the most efficient method of eliminating
L#]a worst-case effect of the uncertair(¢) on e(t) in (37).

erefore, it will be employed to attenuate the effect.dt)

to achieve the minimax robust tracking in our fuzzy-based
o(t) 2o - o(t). (38) control design of robotic system.

. o . . The expression in (40) implies that the inducég norm
Our design procedure is divided into two steps. In the firgty, w(t) to QY2%¢(t) and RY/2u.(t) must be less than
step, the adaptive fuzzy algorithay (x, ©) is tuned viad(#)  or equal top. The physical meaning is that the worst-case

to optimally cancel the uncertain terfi). Under such a ihq,ence ofw(t) on e(#) andw(t) must be less than or equal
circumstance, the tergo* —§@ = £0 WI||. f!nally vanish. If. to p for any w(t) € L»[0.#;] from an energy perspective.
the effect ofw(¢) can not be eliminated efficiently, the trackmgOWing to this reasoning, we are actually dealing with the
performance will be deteriorated, particularly, in the case Ofifinimay tracking problem for the model reference robotic
small number of membership functions in (32). This is a weal | systems via an adaptive fuzzy cancellation scheme.
point to overcome in fuzzy-based control design methodgne rimary difference between the proposed algorithm and

However, the cancellation error and external disturbance (i'fﬁe conventionaH.., control is that an adaptive fuzzy control
. . o>
w(t)) are uncertain and cannot be estimated perfectly and, ;. gy js employed in our design to eliminate the uncertain

canceled completely. If such a situation arises, their wor grm f(z) as much as possible to enhance the tracking

case effect on tracking error must be attenuated as fully 33, stness before minimax contral () is used. In the
possible. Therefqre, in the second step, the control signd) ., entional H.. control design, onylyHoo control w, (t)
should b_e specified such that the worst-case effeet(of on _is employed to directly attenuate the uncertain tef(x).
the tracking erroe(t).must be at_tenuated as m.uch as possm nce f(z) is generally very large, it may lead to system
and pelow a prescribed level €., the following minimax instability. Furthermore, its effect on tracking error will be
tracklng pgrformance must be satisfied for the tracking errgf very large even whetH., attenuation is used. The study
dynamics in (37) (see [12], [13], [27]) in [15] is a case ofH,, tracking control design of robotic

tr manipulator without employing the adaptive fuzzy cancellation

: T T

e (DTal0 ] w0, ] /0 (e (1)Qe(t) +uc (DRuc(t)  scheme to eliminate the uncertainties. Therefore, the result is

wherellw(®)lz, £ \/J wT(t)w(t) dt and

1173

\// 7 0Qelt) + T (1) Ru (1) dr
0

= Ae + Bu, + B£O© + Buw(t) (37)

where w(t) 2 f(z) — £€©* + d(t) denotes the sum of the
optimal cancellation error via fuzzy logic system and extern
disturbance an®(¢) is defined as

2 T conservative and more control effort is deemed necessary. In
— prw' (tyw(t)) dt . . X ;
1. R our design, using an adaptive fuzzy logic systen(z,©)
< eT(O)Pe(O)—k; 07(0)0(0) (39) involves eliminating the uncertain ternfi(z) as much as

possible to enhance the tracking robustness. Employirg)
wherey > 0 is a weighting factorQ = QT > 0, P = PT > 0 to attenuate the effect af(¢) involves achieving a prescribed
and R > 0 are some positive definite weighting matrices anlacking performance. The role of adaptive fuzzy cancellation
the final time¢; > 0 [12]-[15]. in the proposed robust tracking control design of uncertain
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robotic systems is discussed in the simulation example ofFollowing some arrangement, we obtain
Section V.

Remarks: _ . J(e, e, w) =L (0)Pe(0) — T (t;) Pe(ty)

1) In general, the cancellation error and external distur- 1o~y = 1~y =~
bancew(t) always exists;p < 1 is necessary for the 2 07 (0)0(0) — — ©°(t;)O(ty)
attenuation ofw(t) to achieve robust tracking. I§ — ¢
oo, then the robust minimax tracking performance design + / e (H)Qe(t) 4+ ul (t) Ru.(t)
is reduced to a conventional; optimal tracking control 0
design without considering the attenuatioma(ft) (see — 2w (H)w(t) + a (X (t)Pe(t))
[12]-[15]). In this case, the tracking performance is dt
deteriorated byw(¢) and is indicated in our simulation + 1d (éT(t)é(t)):| dt
example in Section V. v dt

2) The performance in (39) or (40) is of finite-time mini- :cT(O)Pc(O) — cT(tf)Pc(tf)
max (or H..) tracking control sow(¢) can be finite in 1o 1 oag
[0,%f]. If t; — oo, the integrations/s® ¢ (¢)Qe(t) + +3 ©7(0)8(0) — = ©° (t)0(ty)
uX' () Ru.(t) dt and [5° w? ()w(t) dt may increase to t
co. However, the integral inequality (40) always holds +/ T (1)Qe(t) + ul (t)Rue(t)
true. 0

Our design objective involves in specifying an updated law = PPwT (Hw(t) + " (t)Pe(t)

of ©(¢) for fuzzy logic system¢(z)©(t) and a control law + T (B Pe(t) + 1 o) H6(#)

u,(t) for the tracking error dynamic in (37) such that the robust vy

minimax tracking performance (39) or (40) is guaranteed. The 1 ~p,

updated law foru.(t) plays a prominent role in rough tuning + v © (t)@(t)} dt. (43)

and the specification of..(¢) plays a role in fine tuning for
the robust tracking control of the uncertain robotic system Substituting (37) into the above equation yields
in (11). A more detailed description is given in the next

section. J(e,ue, w) =e”(0)Pe(0) — e" (t;)Pe(ty)

IV. MINIMAX TRACKING OF ROBOTIC SYSTEMS

tr
T T
VIA ADAPTIVE FUZzY CANCELLATION SCHEME /0 e (A P+ PA+Q)e(t)

+
From the analysis in the above section, the robust tracking + uT(t) Ru(t) — p?wT (t)w(t)
control design of uncertain robotic systems is formulated as T T T
a minimax tracking control problem via an adaptive fuzzy +ue (B Pe(t) + ¢ (1) PBuc(?)

control us(x,©) = &(x)O(¢) to eliminate uncertaintieg(z) + T (t)PBE(2)O(t)

as fully as possible and then via a minimax contg(t) to + 0T ()% (x)BY Pe(t) + ¥ (t) PBuw(t)
attenuate the worst-case influencewoft) on tracking error - - 1 :T .

below a prescribed level The first step in our design involves +w' (HB" Pe(t) + — © ()O(1)

2

specifying an updated law fa®(¢) and a control lawu,(t) 1. .
such that for anyw(t) € L»[0,¢;] the following minimax += 0T1)O(t)| dt (44)
problem is achieved, i.e.: 7
, then we get the following main result.
min max / ! (T (H)Qe(t) Theorem: For the uncertain robotic system (15) or (16), if
ue (D€L [0t,] wt)el2[0t,] Jo the controlwu(t) is chosen as

+ ul (t)Ru,(t)
— pPuwT (®w(t)) dt u(t) = Mo(q® — K1§ — Kz — Ksi+ ue — £0)
< T(0)Pe(0) + % &7 (0)6(0). (41) + Do(q. 4, ) (45)

Subject to the tracking error dynamic equation in (37), Ié’¥'th

us define the cost function .
© =+¢" (z) BT Pe(t) (46)

J(e, te, w) = /Olf L (1) Qe(t) 4+ ul (1) Rue (t) ue =—R7"B" Pe(t) (47)

— pPwl (Hyw(t) dt. (42) whereR = RT > 0 is a weighting matrix and® = P7 > 0 is
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the solution of the following algebraic Riccati-like equation: From (48) and using the technique of completion of the
squares we get

_ 1 - -
PA+AP+Q-PB <R i I) BP=0 (48)  Je,u,w)=cF(0)Pe(0) + ~ 67 (0)8(0)
Y
1 - .
then the minimax tracking in (39) or (40) is guaranteed for — T (tp)Pe(ty) — = ©T(t)O(ty)
. ) v
a prescribedp and the corresponding worst cas€ (¢) to t
deteriorate the tracking performance is of the form +/ {(Rue(t) + BT Pe(t))Y R
0
1 Ru.(t) + B Pe(t
w(t) = = BT Pe(t). (49) X (Ruc(t) + B Pe(t))
p

1 T
- <pw(t) - = BTPe(t)>
Remark: w*(¢) denotes a possible disturbanceZig[0, ¢ /], 1p
which leads to the worst-case influence on tracking error from X <pw(t) -= BTPe(t)ﬂ dt. (52)
the La-norm perspective. P
Proof: From (44) and after some rearrangement, we get From (52) and the dynamic game theory [13], [14], [27] we
obtain the optimal control.(t) as (47) and the worst case

J(e,ue, w) =eF(0)Pe(0) — ¥ (tf)Pe(t ) w*(t) as (49). Then
+ = OT(B(0) - = O7(t)e(t)) min max (e, )
+/ [ THATP+ PA+Q)elt) = 7' (0)Pe(0) + % 67(0)6(0)
0
+uT (£) Ruc (t) + ul (£) BT Pe(t) T (t)Pelty) — = BT (¢,)0(t;)
+ I OPBu) + )T ()PBO) i L
T -
. % &7 06w + 1 @T( o < T (0)Pe0) + - 67(0)6(0). (53)
~ The above inequality holds by the fact thd =
+O(t )BTPe(t)gT( )+ w! (H)B" Pe(?) PT >0,R=R" >0andy > 0. From (42) it is seen
+ef' () PBw(t) — p*w’ (t)w(t)| dt. (50 tr
e ( ) w( ) pw ( )w( ) ( ) Iurel%g 133};( /0 (GT(t)QG(t) +uZ(t)Rue(t)
From (46)-(49) we get — PuwT (Bw(t)) dt
J(e,ue,w) =T (0)Pe(0) + % 67 (0)6(0) < (0)Pe(0) + % 07 (0)6(0). (54)
T () Pe(ty) — % OT(t))0(t) o 1;25)5 (41): ife(0) = 0 and©(0) = 0, then (54) is reduced
Remarks:

n /0 K [GT(t)(PA +ATP 4+ Q)e(t)

1) To guarantee the positive definite solution Bf in

- 5 T the algebraic Riccati-like equation (48), the following
tue () Rue(t) — p*w (t)w(t)} dt constraint must hold [13]:
1 . _ 1
=¢T(0)Pe(0) + = 67(0)0(0) R — 120 o p*I > R. (55)
v
1 OT(+)0 For a prescribed attenuation level the weighting
— — ©7(t5)O(ty) : ! !
~y matrix R on the controhu.(t) in (47) must satisfy the
T T above constraint to guarantee the solvability of minimax
+/0 O rA+AP+Q tracking control of the uncertain robotic system in (11).
1 Hence, a robust tracking design with an arbitrary attenu-
- PB(R'— I) BTP> e(t) ation of w(t) is possible by the proposed method with an
T P v T adequate choice aR. However, if the attenuation level
+ ue (B) Rue(t) + u (8)B” Pe(?) p is specified as an extremely small value, from (55)
+ ' (1)PBu,(t) + ¢* (1) PBR™ Pe(t) R~! must be of an extremely large value. Under this
— pP*wT (Ow(t) + w? ()BT Pe(t) _(I:_irr]cum_stancezﬁ(t)ﬁn;ay require;\ large control energy.
+ T (#) P Bu(?) ere is a tradeoff betweem and u.(t).

2) Notably,©? and 2. do not need to be known or speci-
1 Tt )pBBTpC(t)} dt. (51) fied beforehand. Since(¢) is bounded by the univer-
p? sal approximation theorem [25] and the assumption of
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bounded external disturbancest) is bounded. More-
over, additional tools concerning projection algorithm
[21] can be used to analyze the bounded problems of
O(¢). Assume that the constraint s@tis specified as

Q 2 {0] ||©|| < M}, where M is a positive constant.
Then, the parameter update law in (46) must be modified
as [21]

© = 7¢7(2) BT Pe(t) - U(0O) (56)

where

0
if |© <M or(||® <M

andeT¢T BT Pe(t) < 0)
U(@) = o @TgT(.’L')BTPG(t) &O
! [CE BC motor

if |©|| > M and©T¢% BT Pe(t) > 0). *

Fig. 2. The two-link robotic manipulator driven by dc motors.

since(P(OPBE@)OW) + (176 (0O@) =
(T () PBET (2)0O()/]|0(1)]1?) ©T(+)O(t), it can be shown
by geometric argument that the angle betwé¥n) and ©(¢) [ (my + ma)12

The parameters for the equation of motion (1) are

is larger thanz/2 at projection case. S®7(t)0(t) < 0. M'(q)=
- T -

We obtain ¢”'(t)PBE()O(t) + &+ © (1)O(t) < 0 and

o7 (1)eT (x) BT Pe(t) 4 (1/+) 6T (t)6(t) < 0. By the same

malily(s182 4 c1e2)
mglllg(slsg + 0102) mﬂ%

. 0  —o
C(q,q) =malila(crsa — s162) [ . Oqﬂ
-1

procedure as the proof in the Theorem, the minimax tracking —(my + ma)ligs,
performance (41) can also be guaranteed via the updated G(q) I{ —malagsy }
law (56).

From above analysis, a design procedure for the minimahereq € k? and the shorthand notations = cos(q1),c2 =
tracking of uncertain robotic systems with motor driving isos(¢»),s; = sin(q;) and s, = sin(g2) are used.

outlined as follows. Assume that the trajectory planning problem for a weight-
Design Procedure: lifting operation is considered and the two-link manipulator
Step 1 Specifyi;, Ko, and K3 to determine matrixd with  suffers from time-varying parametric uncertainties and exoge-
desired eigenvalues. nous disturbances.

Step 2 Determine the fuzzy architectufér) and specify . The resistance matrix of the armature circuit is
the desired attenuation levgl

Step 3 Select positive—definite weighting matricgsand R, = [16 0 }
R with R < p?I to guarantee the solvability of the 0 16
minimax tracking.

Step 4 Solve the positive-definite matri¥ from the
Riccati-like equation (48). 0.048 0

Step 5 Compute the minimax tracking control law (47) and L= [ 0 0.048}

the parameter update law in (46) and thegft) in
(45). ¢ The back EMF constant of the motor is

¢ The inductance matrix of the armature circuit is

In the next section, a design example is given according to 019 0
the above design procedure to demonstrate the effectiveness K = [ 0 0_19}

of the proposed design method.
e The motor torque constant is

V. A SIMULATION EXAMPLE K, = {

In this section, we test our proposed fuzzy-based minimax
control on the robust tracking design of a two-link robot by ¢ The gear ratio is
using a computer. Consider a two-link manipulator driven
by dc motor as Fig. 2 with system parameters as: link mass N = [
my,meo (Kg), lengthsly,l> (m), angular positiong;, ¢> (rad).

0.2613 0
0 0.2613 |

62.55 0
0 107.81 |°
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The proposed adaptive fuzzy-based model reference control
with the minimax tracking performance is employed to treat
this robust robotic trajectory planning problem. For the con-
venience of simulation, the nominal parameters of the robotic
system are given ag; = 4.6(kg), m2 = 2.3(kg), [y = 0.5(m),

Iy = 0.2(m), ¢ = 9.8 m/$, and the initial conditions;; (0) =
2, QQ(O) =1, ql(O) = QQ(O) = ql(O) = QQ(O) = 0. The desired
reference trajectories ar@q(t) = sin(t), goq(t) = cos(t),
respectively.

Assume that the parameters andms be perturbed in the
following form:

Amy(t) = 0.1sin(2t) and Amo(t) = 0.1sin(2t)

respectively. Moreover, the exogenous disturbamrkesndd,
are assumed as
dy = 0.1sin(2t), do = 0.05sin(2t).

Obviously, the parameter uncertainties and exogenous dis-
turbances are extremely large. Therefore, the proposed fuzzy-
based minimax tracking control algorithm is employed to treat
this robust tracking control design.

Now, following thedesign procedurén the above section,
the robust tracking control design is given by the following
steps.

Step 1 Specify

9 0 10 0 5 0
Kl_[o 7}’K2_[0 14}’K3_[0 8}

such that the eigenvalues of the nominal tracking
system are-1.3037 4 1.4359z, —1.3037 — 1.4359¢,
—2.3926, —5.7913, —1.2087, and —1.0000.

Step 2 The following membership functions are selected:

[ <(g;i —3x ai)>2-
ppr = exp |—| ————~
; b;
[ <(xz—2><ai)>2-
fip> = €xp | —
; b;
[ <(azz—1><ai)>2-
Hps = €Xp | —
: b;
o ) -
4 = €X — &
HF: p <bz>
[ (.’IZZ +1x ai) 2]
pps = exp | — .
[ <(xz+2><ai)>2-
fips = €xp | —
; b;
<(l’Z + 3 x CLZ))
fpp = €Xp | = T

where: = 1,2,3, anda; = 0.5, az = 1, az = 2,
by = 10,bo = 20,b3 = 30.Because the system
has six state variables, forty-two fuzzy rules of the
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following form are included in the fuzzy rule bases.
Denote
RY: If zyis F} thenusisG) forj=1,2,---7
and/l=1,2,---7.
R If zyis Fj thenusis Gy forj=1,2,---7
and/ = 8,9,.--14.
RY: If wais Fi thenuyis Gy forj=1,2,---7
andl = 15,16, - -- 21.
R If zyis F] thenusis Gy forj=1,2,---7
andl = 22,23, - -- 28.
R If x5 is FY thenusisGY forj=1,2,---7
andl = 29,30, - -- 35.
R If zgis F thenusis Gy forj=1,2,---7
and! = 36,37, - - - 42.
Denote
7
D,, = H NFf (xz)
=1 =1
r 3 3
H HEL () H ppr (i)
g(.’f) — =1 =1
Drn Drn
_[st@) 0
5(37) = I 0 g(a}):|
@(t) = [911 912 917 921 922 927]-

The attenuation levep is selected agp = oo, p =
0.1, and p = 0.05, respectively. In the case of
p = oo (i.e., theHs optimal tracking control is used
but without attenuation ofv(t)), we only want to
reveal the deterioration of tracking performance by
w(t).

Step 3 Select weighting matri¢ = diag[100{,, 1015, I5],

and R = p’I to guarantee the solvability of the
minimax tracking problem [see (55)].

Step 4 Solve the Riccati-like equation (48). In the= o

case, we can solve

r17.35 0 10.05 0 0.031 0
0 17.35 0 10.05 0 0.031
10.05 0 1741 0 0.054 0
0 10.05 0 17.42 0 0.054 |
0.031 0 0.054 0 0.031 0
L O 0.031 0 0.054 0 0.031

the cases op = 0.1 andp = 0.05, we can solve

r23.97 0 15.46 0 0.556 0

0 18.05 0 11.10 0 0.714
15.46 0 11.10 0 2.046 0

0 11.10 0 19.24 0 1.150 |
0.556 0 2.046 0 1.409 0

0 0.714 0 1.409 0 0.769
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Fig. 3. The H, optimal tracking results without attenuation of(¢) Fi9- 4. Control signals of théf> optimal tracking case.

(desired trajectory: “,” actual trajectory_*___").

ur(t) =42 — 9(q1 — qra) — 10(G1 — Gra)

In this simulation, we use the function “are” in the — 51 — Gra) — uy,

WINDOW MATLAB to solve the algebraic Riccati-

like equation. up(t) = g — 7(q2 — q24) — 14(d2 — d2a)
By using the control algorithms (45)—(47) to obtain the — 8(go — Goa) — uy,
minimax tracking controlleru.(t), the voltage control
input »(¢) and the update law foB(t) are obtained as whereDy is the nominal value oD(g, ¢, §) in (13).
follows: . . In the p = 0.1 case, the minimax tracking controller is

Step 5 In thep = oo case, the minimax tracking controller -
. . obtained as
is of the following form:
) NEPUONICIN
2

@1 = —05556((]1 — q1d) — 20461((]1 — (jld)
—1.4092(¢1 — G1a)
@2 = —07143((_{2 — q2d) — 11497((]2 — (_22(1)
— 0.7687(G2 — G2a)
Ue, = —55.5556(q1 — q1q) — 204.6070(¢1 — ¢14)
ug(t) = |“+ 1 = e@yerr) g
! Ug, (t) — 1409214((11 — qld)
uez = —714286((]2 — q2d) — 1149660((]2 — QQd)

©1 =—0.0307(q1 — qua) — 0.0539(¢1 — G1q)
— 0.0313(¢; — G1q)

Oy = —0.0309(g> — g24) — 0.0539(d2 — G2q)
— 0.0310(¢2 — Gizq)

and — 76.8707(ijs — doa)
~ [0.0051 0.0004] [uy (t) Cun®]
wt) = [0.0002 0.0002} [W(t)} Do us(t) = [u; (t)} = &@)00)
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Fig. 5. RobustH . tracking results with attenuation level= 0.1 (desired Fig. 6. Control signals with case = 0.1.

trajectory: “,” actual trajectory:

"),

and
(1) = [0:0051 0.0004] [y (t)
W= 10.0002 0.0002 | |ua(t)

u () I(J;(L::}) - 9(q1 — qua) — 10(d1 — Gra)
—5(q1 — Gra) — vy,

us(t) = (JS}) — (g2 — q2a) — 14(d2 — Goa)
— 8(d2 — Goa) — uf, .

|+

In the p = 0.05 case, the minimax tracking controller is of

the following form:
6=0)|g}] - vee)
2
O1 = —0.5556(q1 — qra) — 2.0461(d1 — d1a)
— 1.4092(G1 — G1a)
Oy = — 0.7143(g2 — goa) — 1.1497(do — ou)
— 0.7687(i2 — iizg)
Ue, =—222.2222(q1 — q1q) — 818.4282(¢1 — G1a)
— 563.6856(41 — G1a4)
L = —285.7143(go — goa) — 459.8639(do — d24)
— 307.4830(G2 — G2a),
wrtt) =[20) ] = ey

g, (

Ue,

and
(1) = [0:0051 000047 fus (1)
W= 10.0002 0.0002 | |ua(t)
u (1) IQSB - 9(q1 — qua) — 10(d1 — Gra)
—5(G1 — qra) —up,
ua(t) = QS}) — (g2 — q2a) — 14(d2 — doa)
— 8(G2 — G2a) — uy, .

|+

Figs. 3-8 present the simulation results. Results obtained
from the H, optimal tracking case (i.eg = oc) are shown in
Fig. 3. In Figs. 5 and 7, simulation results of the proposed
adaptive fuzzy-based minimax tracking have demonstrated
the tracking performance for attenuation levgls= 0.1 and
0.05, respectively. Figs. 4, 6, and 8 show the control inputs
under different attenuation levels. Figs. 9 and 10 show the
fluctuations of the adaptive parameters for the casgs-oD.1
and 0.05, respectively.

According to the simulation results of the above three
attenuation level cases, a specification of smaller attenuation
level p may vyield a better tracking performance. In the case of
H, optimal tracking, the effect ofs(¢) on tracking error has
not been attenuated and subsequently leads to poor tracking
performance. According to these results, tracking performance
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Fig. 7. Robust{ .. tracking results with attenuation level= 0.05 (desired
trajectory: “,” actual trajectory: £ ").
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Fig. 8. Control signals with case = 0.05.

is unsatisfactory and even unstable. The effect of the combined®®Me comparisons are given as follows: . _
disturbancew(t) on tracking error is attenuated evidently as 1) In control algorithm of [5], the second term in (57) is

p decreases. However, the voltage control inputs also indicate

a high-gain effect of the designed controller @slecrease,
particularly, at the beginning of control. In practical control

engineering design, this effect due to the residue of fuzzy
cancellation and exogenous disturbance must be diminished
in fuzzy-based control systems. Otherwise, it will damage
the entire system, particularly, in using a small number of

membership functions. However, the attenuation lgwennot

be decreased without considering the increase of the control
input. This is a tradeoff between the amplitude of control signal

and the tracking performance.
In [5], the following control is employed for robust tracking
of robot system with dc motor

BT Pe(t)

BT Ere(®)] +¢
(57)

uole(t)] = —pBT Pae(t) — p(c(t))

e>0

wherep(c(t)) = arlle(t)]] + azlle(®)]|* + as|le(t)]|* + a4 and
P, is solved by the following Riccati-like equation:
(58)

employed to override the uncertainties or disturbance
directly through a high-gain control that is proportional
to |le(®)]], |le(®)]|?, and |le()]|®. If the initial ¢(0) is

not very small, it will lead to a very high-control signal
and the control system will diverge. By applying the
control algorithm in [5] to our simulation example,
we have found the tracking system diverges even with
small initial ¢(0). Obviously, it is not a good design
to override the uncertainties directly. In our method, an
adaptive fuzzy scheme is employed to optimally cancel
the uncertainties beforehand. Therefore, we only need
u.(t) to eliminate the effect of residue with a little
effort.

2) The choice of control parameters,, s, 3, and ey

in [5] are complex and case by case. However, in
our case, a simple design procedure is proposed by a
systematic method. Furthermore, a comparison with
conventional optimal H, tracking control without
uncertain cancellation is shown in Figs. 3 and 4.
From the results in Figs. 5-8, it is seen that the
proposed method has much better performance than
that of the conventional; optimal tracking control.
The reason is that the effort of uncertain parameters
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algorithm, the minimax tracking control design can be
extended from exactly known linear systems toward nonlinear
uncertain systems. Furthermore, by employing minimax
attenuation technique, the tracking performance of fuzzy-
based control design for uncertain nonlinear mechanical
systems can be significantly improved. Therefore, the proposed
design algorithm is appropriate for practical control design
of mechanical systems with large parameter perturbations
and external disturbances. The proposed design method is
simple, the number of membership functions for the proposed
control law can be extremely small. However, because of
the use of fuzzy cancellation technique and minimax tracking
scheme, the results are less conservative than the other robust
control methods. Simulation results have indicated that the
desired robust tracking performance of uncertain dc motor-
driven robotic systems can be achieved via the proposed

Fig. 9. The fluctuations of the adaptive parametgrsfor the case of method.

p = 0.1.
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Fig. 10. The fluctuations of the adaptive parametgrdor the case of
p = 0.05.
[10]

and external disturbance is efficiently eliminateg
by the proposed fuzzy-based minimax cancellation
scheme. (12

[13]

VI. CONCLUSION [14]

In this paper, an adaptive fuzzy cancellation technique and
a minimax (orH) attenuation technique have functioned iz
the roles of a rough tuning and a fine tuning, respectively,
and are combined together to enhance the robust track('tg&
performance of uncertain robotic systems including motor
dynamics. The solvability of this robust minimax trackin
problem for uncertain robot system is also observed. Acco?HZ]
ing to our results, a desired minimax tracking performance
can be achieved if the weighting matrix on control signal g8l
adequately specified.

Actually, the proposed fuzzy-based minimax tracking
method can be applied to any robust control design &l
an uncertain nonlinear mechanical system of the form gy,
(11) or (15). With the aid of adaptive fuzzy cancellation
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