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ABSTRACT Low altitude small target group has the special motion characteristics of orderly as a whole

and flexibly as individuals. The performances of traditional target tracking algorithms (such as centroid

tracking, geometric centre tracking, etc.) decrease obviously when the group outline changes. Hence in this

paper, a robust tracking algorithm for target group with dynamic outline is studied. Aiming at the two key

issues of group division and equivalent tracking point estimation, a robust group division algorithm, which

can maintain the stability of group division results under any reference point selection, is firstly introduced.

Then, on this basis, a new optimal tracking point estimation method is proposed by introducing the group

structure into the likelihood function. The simulation results show that this proposed method can effectively

improve the robustness of low altitude small target group tracking in the scene of group merging and group

splitting.

INDEX TERMS Dynamic outlines, equivalent point estimation, group division, group tracking.

I. INTRODUCTION

Low altitude area, of which the altitude is less than 1km, has

great value in applications of agriculture, medical treatment,

transportation, etc [1], [2]. However, low altitude small tar-

get groups (LSTG) such as bird flocks and drone swarms

have become non-ignorable security threats to this area. Due

to their special motion characteristics (orderly as a whole

and flexibly as individuals), existing technologies can hardly

achieve ideal monitoring effects. Each year, these LSTG not

only cause huge economic losses in civil aviation, but also

may be maliciously used to endanger public safety [3], [4].

Therefore, it is particularly necessary to develop effective

LSTG monitoring technologies.

Modern radar has been regarded as one of the most effec-

tive means to detect LSTG, because of its advantages of

long detection range, high resolution and all-day/all-weather

operation ability [5], [6]. There have been many researches

on radar tracking algorithms for single and multiple targets

situations [7]–[10]. However, the problem of tracking target

groups with dynamic outlines has not been fully addressed.
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approving it for publication was Wei Wang .

There are mainly three hot issues in the researches of radar

target group tracking, which are group centre tracking, group

outlines estimation and individual target tracking. This paper

mainly discusses the first, which is the basis of the other two

issues. Early researches mainly focused on formation group

tracking. The basic idea is to take the target group as a whole

and track the centre of the group, that is, the central group

tracking (CGT) algorithm [11]. Afterwards, aiming at the

problem of centre migration caused by miss detections and

occlusions of group members, a formation group tracking

(FGT) algorithm was proposed by Flad and Tenser [12]. The

algorithm maintains the tracks of group centre and edges

at the same time, thus achieving more robust performance

through the mutual assistance of multiple tracks. In 1990,

a general model, which divides the group tracking process

into two aspects of centre tracking and outline tracking,

was established in [13]. Since then, the research focus has

gradually shifted to the latter, i.e., shape modelling of target

group, and formed a number of valuable research results.

For example, in [14], Granstrom and Orguner approximated

the group outline as ellipses and introduced random matrix

(RM) which obeys inverse Wishart distribution to represent

the shape of objects. The motion state and extended state of

the group are then estimated with Bayesian recursionmethod.
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In [15], Amadou et al. modelled the measurements set with

random finite sets (RFS) theory and estimated the group state

with particle filtering method. In order to further improve the

modelling accuracy of group outline, Baum and Hanebeck

proposed a random hypersurface model (RHM) method [16].

The method assumes that the target measurements are gen-

erated from sources on the contour surface of the group, and

describes the extended state of the group with measurement

sources modelling. Furthermore, in order to model target

groups with arbitrary outlines, the level set RHMmethod and

multi-ellipse modelling method are proposed. By making use

of the level set of given shape function for outline transfor-

mation, the former method can model any filled shape [17],

while the latter converts the tracking problem of a non-elliptic

target group into the problem of parameters estimation of

multiple sub-ecliptics [18]. In addition, some filtering algo-

rithms based on particle filtering and Monte Carlo methods

are also used for state estimation of such targets. For example,

in [19] Pang et al. expected to observe only ‘‘small′′ changes
in group structure over short time intervals and proposed

a Markov chain Monte Carlo (MCMC)-particles algorithm.

In [20], Gning et al. used the evolutionary graph network

model to describe the group structure, and used JPDA and

particle filtering to realize track association and filtering,

respectively.

These methods have achieved good performances in

extended targets/formation group tracking [21]–[24], but they

have two main problems when modelling group outlines of

LSTG:
1) Current outline modelling methods are essentially pro-

posed for extended targets and formation groups, which

are generally rigid bodies. For this kind of targets,

the outline change of measurements set is mainly due

to the change of target posture, which is essentially

different from the outline change of LSTG such as

bird flocks and drone swarms. Therefore, the above

models cannot achieve ideal performance in describing

the outline characteristics of LSTG.

2) In the researches of outline modelling, the centroid

point is usually used to describe the motion of

the whole group, and on this basis, the interaction

between centroid point and group outline is established.

However, for different target groups or different detec-

tion requirements, whether the centroid point can be

used as the optimal description of the whole motion of

the target group is still a problem to be studied.

In order to distinguish from the centroid point mentioned

in existing literatures, in this paper, the point reflecting the

whole moving state of a target group is called the equivalent

tracking point (equivalent point for short). The selection of

the equivalent points is directly related to the tracking perfor-

mance, on the other hand, it is closely related to the outline

modelling of target groups, hence is the basis and core of

target group tracking.

Therefore, the equivalent point estimation methods and the

influence on tracking performance are studied and analysed

in this paper. Based on the principle of radar measuring,

the theoretical basis of classical equivalent point estimation

algorithms, such as the strongest point, averaged point, cen-

troid point and geometric centre, is combed. Furthermore,

in view of the problems that the above methods fail to make

full use of the structural information of the target group

and are susceptible to non-ideal factors, a maximum group

likelihood estimation method is proposed (for convenience,

the corresponding equivalent point is called MGLE point in

this paper). The performances of the fivemethods are verified

and analysed through simulation. On this basis, the adaptabil-

ity of different algorithms is discussed.

The rest of the paper is arranged as follows: in Section II,

the general process of target group tracking is first introduced,

and on this basis, two important issues of group division and

equivalent point estimation are discussed. The performance

of group division is directly related to the accuracy of equiv-

alent point estimation. Aiming at the problem of instabil-

ity of traditional K-Means algorithm, an improved method

based on nearest neighbour association (NNA) algorithm and

measurements set rearrangement is proposed, which provides

a unified premise for the research of equivalent point esti-

mation. On this basis, the mathematical models of the five

equivalent point estimation algorithms are derived, and their

design ideas are explained from the perspective of radar

detection. In Section III, the above algorithms are simulated

and analysed, the tracking performances of the five equivalent

points are also compared. Finally, in Section IV, the work of

this paper is summarized and the main conclusions are given.

II. TRACKING OF LOW-ALTITUDE SMALL

TARGET GROUPS

The basic theory and framework of multi-target and for-

mation target tracking are mature. Referring to the relevant

research results, the general framework of target tracking

for groups with dynamic outlines is given in [25]. Its main

structure is shown in Figure 1.

Compared with the traditional target tracking framework,

the main difference lies in the additional module of group

division (in this paper, the modules of group separation

detection and group merge detection in the original reference

are also included in the group division module). The main

purpose is to determine whether the measurements belong to

the same group. In view of the special problems of LSTG

tracking, the module of equivalent point estimation is further

introduced to the framework, so as to achieve the optimal

selection of tracking point in different working situations.

A. GROUP DIVISION

In this section, a robust group division algorithm is first intro-

duced. Then, the effects of group distribution on the division

results and the computation complexity are discussed.

1) A NOVEL GROUP DIVISION METHOD WITH ROUND-NNA

In existing literatures, K-Means algorithm is usually used

to implement group division [26]. However, this algorithm
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FIGURE 1. Diagram of LSTG tracking.

usually requires the number of groups in advance, and has the

problem of slow convergence speed, which is not convenient

for practical use. Many improvements have been made to

the algorithm, but the selection of initial reference points

is still not addressed. That is, the K-Means algorithm may

lead to different group division results with different initial

reference points. This will bring additional uncertainty to the

performance evaluation of the subsequent equivalent point

estimation algorithm.

Therefore, a robust group division algorithm based on

NNA and measurements set rearrangement is presented in

this section. For convenience, the algorithm is mentioned

as Round-NNA in the following sections. The algorithm

first determines the individual connection relationships with

NNA, then rearranges the measurements set to avoid the

influence of reference point selection. The algorithm achieves

group division with connected domain analysis and the dia-

gram is shown in Figure 2.

For a measurement set ofN -point, the algorithm starts with

the first member and associates it with other measurements.

For all the associated measurements, they will be assigned the

same group serial number and rearranged to the neighbour

positions of the reference point. For the rearranged measure-

ment set, the process of association and rearrangement is

repeated. The division is implemented after all the measure-

ments have been taken as the reference point.

Assuming that the measurementsM i, i = 1, 2 · · ·N of ini-

tial set A1 are labelled with the sequence they were acquired.

Then the set can be expressed as:

Label : 1 2 3 4 5 · · · N

A1 : M1 M2 M3 M4 M5 · · · MN (1)

The pseudo code of group division is given in

Appendix and the detailed steps of a specific example are

as follows:

Step 1):Take the first measurement M1 as the reference

point, set the total group number k = 1 and the initial group

number g1 = 1, gi = 0 for each measurement:

Label : 1 2 3 4 5 · · · N

A1 : M1 M2 M3 M4 M5 · · · MN

gi : 1 0 0 0 0 · · · 0 (2)

Step 2):For the measurements whose Label = 2 · · ·N ,

if |M1 −M i| < Thr is satisfied, set gi = gr (where Thr is

the association threshold, gr is the group number of reference

measurement, for step 1),gr = 1).For a specific example,

the set can be expressed as:

Label : 1 2 3 4 5 · · · N

A1 : M1 M2 M3 M4 M5 · · · MN

gi : 1 0 1 0 0 · · · 0 (3)

To determine the association threshold, we can sort the

measurements by distance and calculate the distance differ-

ence between adjacent points. Then the association threshold

can be set as γ times the average value of the distance

differences ( γ = 3 in the simulation sections).

Step 3):UpdateA1 by rearranging themeasurements whose

group numbers are 1 to the front of the set, while other

measurements are back shifted. Then the rearranged set A2

can be expressed as:

Label : 1 2 3 4 5 · · · N

A2 : M1 M3 M2 M4 M5 · · · MN

gi : 1 1 0 0 0 · · · 0 (4)

Step 4):Take the second measurement in A2 ( M3 for the

above example) as the new reference measurement and repeat

step 2) - step 3) withmeasurements corresponding to Label =
3, · · ·N , the updated set is recorded asA3 (assuming thatA3 is

just the same with A2 in the example, i.e. none measurement

is associated for Label = 3, · · ·N );

Step 5):Take the third measurement in A3 ( M2 for the

above example) as the new reference measurement. Since

g3 = 0, which means the measurement belongs to a new

group. Set k = 2, g3 = 2 and then repeat step 2)-step 3)

with measurements corresponding to Label = 4, · · ·N ,then

the updated set A4 can be expressed as(assuming thatM4 can

be associated in this step):

Label : 1 2 3 4 5 · · · N

A4 : M1 M3 M2 M4 M5 · · · MN

gi : 1 1 2 2 0 · · · 0 (5)
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FIGURE 2. Diagram of robust group division algorithm.

Similar steps are then conducted for the rest measure-

ments. The general process can be summarized that for the

nth loop, take the nth measurement in An as the reference

measurement:

1) If gn 6= 0, it means the referencemeasurement has been

divided into a certain group. Then step 2)- step 3) is

directly repeated with measurements corresponding to

Label = n+ 1, · · ·N ;

2) If gn = 0 , it means the reference measurement belongs

to a new group. Then set k = k + 1, gn = k and repeat

step 2)- step 3) with measurements corresponding to

Label = n+ 1, · · ·N ;

With N -1 loops, the measurement can be divided

successfully.

2) PERFORMANCE ANALYSIS

The performance of the group division algorithms can be

evaluated from two aspects, i.e. the correctness of the results

and the computation complexity. For the traditional K-Means

algorithm, the group division result is related to the selection

of reference point. Since the measurements are not labelled,

it is difficult to select the ′optimal′ reference point. However,
for the proposed algorithm, the group division result has little

relationship with the selection of reference point (as can be

seen from the simulations in Section III), so we simply choose

the first measurement as the reference point in the simulation.

On the other hand, the distribution of the group outline

(rather than the selection of reference point) may affect

the calculation complexity of the proposed method.Since

the group outline will change all the time, the calculation

complexity is not fixed. The upper and lower bounds of

computation complexity can be given for two extreme dis-

tribution types shown in Figure 3. For an N -member mea-

surement set, the computational complexity are (N − 1)!1
for linear distribution (Figure 3a) and (N − 1) 1 for stellate

FIGURE 3. Group division under different set distribution. (a) linear
distribution, (b) stellate distribution

distribution (Figure 3b), respectively, where 1 means

the unit computational complexity of association between

a pair measurements (the association process repeats N

times for linear distribution, while only once for stellate

distribution).

B. EQUIVALENT POINT ESTIMATION

In this section, the theoretical basis of four classical

equivalent point estimation algorithms, i.e., the strongest

point, averaged point, centroid point and geometric centre,

is combed first. Then, a maximum group likelihood estima-

tion method is proposed. Aiming at the problem of large

computation, the corresponding engineering implementation

is also discussed.
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1) CLASSICAL METHODS

a: TRACKING THE STRONGEST POINT

For narrowband radar systems with relatively low range

resolution, the strongest point is usually selected for target

measuring and tracking. It is assumed that the measurement

set can be expressed as:

ςn={(Zi, ai) |i = 1, 2 · · ·N } (6)

whereZi is the target measurement, generally including range

distance, azimuth and elevation angles information, and ai is

the corresponding magnitude of the target.

Based on the strongest point tracking principle, the equiv-

alent point can be expressed as:

Z0 = Zk , k = max
i
{ai} (7)

However, with the improvement of radar resolution, the tra-

ditional point targets become extended targets, or indistin-

guishable targets become group targets that are individually

distinguishable. Therefore, the strongest point is no longer

used in modern high-resolution radar target tracking.

b: TRACKING THE AVERAGED POINT

Assuming that the group members are independently and

identically distributed (i.i.d.), based on the central limit the-

orem, they can be modelled as Gaussian distribution with

tracking point Z0 as the mean. Then, the joint probability

density function (PDF) can be expressed as:

H =
∏

i

1√
2πσ 2

exp

[

− (Zi − Z0)2
2σ 2

]

(8)

where σ 2 is distribution variance.

The corresponding logarithmic likelihood function is:

η = lnH

= − ln
√

2πσ 2 − 1

2σ 2

∑

i

(Zi − Z0)2 (9)

Ignoring the constant − ln
√
2πσ 2, then the tracking point

can be obtained with maximum likelihood estimation (MLE).

The analytic expression is as follows:

max
z0

η = min
z0

∑

i

(Zi − Z0)2

⇒ Z0 =
1

N

∑

i

Zi (10)

That is, average all the member measurements.

c: TRACKING THE CENTROID POINT

Furthermore, according to the theory of radar measuring,

the accuracy of target measurement is related to signal to

noise ratio (SNR). Therefore, by considering the SNR dif-

ferences, Equation (8) can be rewritten as follows:

H =
∏

i

1
√

2πσ 2
i

exp

[

− (Zi − Z0)2

2σ 2
i

]

(11)

where σ 2
i is distribution variance of measurement Zi .

The corresponding logarithmic likelihood function is:

η = lnH

= −
∑

i

ln

√

2πσ 2
i −

∑

i

(Zi − Z0)2

2σ 2
i

(12)

Then the maximum likelihood estimation is:

Z0 =

∑

i

Zi
σ 2
i

∑

i

1

σ 2
i

(13)

Furthermore, we have:

1

σ 2
i

∝ SNR =
a2i

σ 2
n

(14)

where ai is the amplitude of Zi,σ
2
n is the noise power.

By taking (14) into (13), the following result can be

obtained:

Z0 =

∑

i

a2i Zi

∑

i

a2i
(15)

It can be concluded that the averaged point and centroid

point are essentially maximum likelihood estimates of mea-

surement set under the assumption of Gaussian distribution.

The former considers uniform measurement accuracy, while

the latter considers the differences of measurement accuracy

under different SNRs.

d: TRACKING THE GEOMETRIC CENTRE

Assuming that the obtained radar measurements are

recorded as:

Zi=
[

ri αi βi
]T

, i = 1, 2, · · ·M (16)

where ri, αi, βi are the range, azimuth and elevation angles

of the ith measurement respectively.

The geometric centre of the measurement set can then

expressed as:

Zi=
[

ri αi βi
]T = 1

2





min (r)+max (r)

min (α)+max (α)

min (β)+max (β)



 (17)

where min (·) and max (·) are functions to estimate the mini-

mum and maximum value of a set, respectively.

This method does not require any prior knowledge of the

group structure, nor does it involve the magnitude informa-

tion of member measurement.

2) NOVEL METHOD BASED ON MGLE

The classical methods did not consider the group structure

information. Hence, the performance may degrade with the

change of member status and environments. To address these

issues, a novel method based on maximum group likelihood

estimation (MGLE) is proposed in this section. By consider-

ing the association of groupmembers to groupmeasurements,
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FIGURE 4. Typical association between measurements and group
members.

the maximum likelihood function is built to describe the

group structural information. On this basis, the optimal point

is estimated.

Assuming that the target group is composed ofM members

whose true locations are:

β =
[

β1 β2 · · · βM
]

(18)

The measurement set of the current frame is:

α =
[

α1 α2 · · · αN
]

(19)

Considering of the possibility of false alarms and missed

detections, the measurement number N is not equal to the

target number M in general. The purpose of equivalent point

estimation is to find an optimal tracking point from multiple

scattering points, which need not be a specific target scatterer,

but the point β0 needs to satisfy the following characteristics:

1) The group motion can be correctly reflected and the

tracking error should be as small as possible.

2) The point β0 is stable in the group.

The relationship between the tracking point and the mem-

bers of the target group can be modelled as follows:

βi = β0 + β̃i, i = 1, 2 · · ·M (20)

where β̃i the position deviation of the ith member.

Assuming that the measurement αj generates from the ith

member, and then we have:

αj = βi + nj, j = 1, 2 · · ·N (21)

where nj is the measurement noise obeys the standard Gaus-

sian distribution N
(

0, σ 2
)

.

As shown in Figure 4, a possible association between mea-

surement setα and target groupβ constitutes an observational

event Ak (more than one measurements may be false alarms

and more than one group member may be miss detected.

But for the real measurements, their connections should be

mutually exclusive, i.e., one measurement connects to only

one member in an event). The joint PDF of event Ak can be

expressed as:

p (Ak) =
∏

m

pm
(

αj|βi
)

· Pc (22)

where pm
(

αj|βi
)

represents the PDF of the mth connection

in event Ak , since all the members of measurement set α and

target group β should be connected,m ∈ [1,max(M ,N )]; Pc
represents the probability of occurrence of a specific connec-

tion, it can be defined as:

Pc =











Pfa, αj is a false alarm

1− Pd , βi is loss detection

Pd , else

(23)

For the specific connection between αj and βi, the PDF can

be written as follows by combining (20) and (21):

p
(

αj|βi
)

= 1√
2πσ 2

exp

[

−
(

αj − βi
)2

2σ 2

]

= 1√
2πσ 2

exp






−

(

αj − β0 − β̃i

)2

2σ 2






(24)

For the convenience of analysis, we assume that the mea-

surements have the same noise variance. Then substituting

(24) into (22), the logarithm likelihood function of event Ak
can be expressed as:

L (Ak) = Ck −
1

2σ 2

∑

m

(

αj − β0 − β̃i

)

m

2
(25)

where Ck is a constant which can be expressed as:

Ck = ln

[(

Pd√
2πσ 2

)n

(1− Pd )M−nPN−nfa

]

(26)

where n is the number of non-false alarms from group

members.

For all possible connections between measurements α and

target group β, we can obtain the events set:

A =
[

A1 A2 · · · AK
]

(27)

The likelihood function of the set is the sum of all the sub-

event likelihood functions:

L (A) =
K

∑

i=1
L (Ak) (28)

The maximum likelihood solution can be achieved:

β̂0 = argmax
β0

L (A|β0) (29)

When implementing the algorithm, the key step is to build

the eventsAk , which is essentially determining the association

between measurements and target members.

For a target group contains M members and a set contains

N measurements, ignoring the situations of miss detections

and false alarms, there are M connection selections for the

first measurement. After the first measurement is connected,

there areM−1 connection selections for the secondmeasure-

ment, and so on. For all the N measurements, there are totally

M (M−1) · · · (M−N+1) possible connections, which mean

there are about 3.63 million possible connections for the case

of M = N = 10. The calculation is so huge that it is almost

impossible to be implemented in engineering uses. Therefore,

it is necessary to explore efficient computing methods.
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FIGURE 5. Full connection between measurements and group members.

For the specific the connection between αj and βi, the like-

lihood function is:

Lij =
1

2σ 2

(

αj − β0 − β̃i

)2
(30)

In calculating the PDF of A, Equation (30) will be accu-

mulated forK= (M−1) · · · (M−N + 2) times. Since the sub-

scripts i and j can take any value from 1 to N and 1 to M ,

respectively. The group likelihood function is equivalent to

K times the full connections (as shown in Figure 5.) between

α and β. Therefore, for the same case of 10 targets and

10 measurements, it requires only 100 connections.

In case of false alarms or miss detections, Assuming that

αk (βk ) is a false alarm (miss detected), the likelihood function

of event set can be expressed as:

Lαk=fa = K [[α ∼ β]]−
N

∑

k=1
[[αk ∼ β]]

= (K − 1) [[α ∼ β]] (31)

where [[α ∼ β]] means likelihood function of the full connec-

tion between α and β.

It is not difficult to prove that the likelihood function for the

case of l false alarms can be expressed as (K − l!) [[α ∼ β]] .

Therefore, the likelihood function of the whole group events

can be expressed as multiple of full connection:

L (A) = N0[[α ∼ β]] (32)

where N0 is a constant. This coefficient does not affect the

final estimation result, so optimal estimation of the event set

can be obtained by directly optimizing the full connection

likelihood function.

III. SIMULATIONS AND ANALYSIS

A. SCENES AND PARAMETERS

Two situations are considered in this section to verify the per-

formance of the above group tracking methods. The motion

transition of the group member is defined by Couzin et al.

model which is usually used for swarm behaviour modelling

of birds, fishes, etc [27]. Themodel assumes that themembers

movewith a fixed rate v, and only considers the changes of the

position and direction of the members. Recording the spatial

position and motion direction at time t of the ith member as
⇀
r i (t) and

⇀

θ i (t), respectively, then the target motion state at

time t +1t can be expressed as:
⇀

θ i (t+1t) = rand
[

⇀

d i (t+1t)
]

⇀
r i (t+1t) = ⇀

r i (t)+
⇀

θ i (t+1t) v1t (33)

FIGURE 6. Interaction areas of Couzin model.

TABLE 1. Simulation parameters.

where
⇀

d i (t+1t) means the expected direction at t + 1t ,

rand [·] is random perturbations.

According to the SAC (separation, alignment and cohe-

sion) rules [28], the Couzin model divides the perceptual

regions of individuals into three zones, i.e. zone of repulsion

(ZOR), zone of orientation (ZOO) and zone of attraction

(ZOA) (as shown in Figure 6).

Let N zor
i ,N zoa

i ,N zoo
i represent the target set in correspond-

ing zones, then the motion direction update can be conducted

with the following equations:

⇀

d i (t+1t) =







































−
∑

j∈N zor
i

⇀
r j(t)−⇀

r i(t)
∥

∥

∥

⇀
r j(t)−⇀

r i(t)

∥

∥

∥

, N zor
i 6= ∅

∑

j∈N zoa
i

⇀
r j(t)−⇀

r i(t)
∥

∥

∥

⇀
r j(t)−⇀

r i(t)

∥

∥

∥

+
∑

j∈N zoo
i

⇀
θ j(t)

∥

∥

∥

∥

⇀
θ j(t)

∥

∥

∥

∥

, N zor
i = ∅

(34)

The main parameters used in the simulation are shown

in Table 1.

B. ANALYSIS OF GROUP DIVISION

In order to investigate the effects of reference point selection

on the group division performance, we first consider only

one group with 100 measurements, whose positions follow

the Gaussian distribution of (200m, 200m) as the centre

and standard deviation 20m. In the group division process,

each measurement is taken as the reference point in turn,

and the association threshold is set to 100m. The ranges of
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FIGURE 7. Effects of reference point selection on the group division
performance.

group centre after division are calculated with the following

equation and shown as Figure 7, in which the x axis (reference

sequence) means the series number of the measurement in the

measurement set.

x0 =
1

N

∑

i

xi

y0 =
1

N

∑

i

yi

R0 =
√

x02 + y02 (35)

where xi and yi are the coordinates of the ith member of the

group.

It can be seen that for the K-Means algorithm, the range of

the group centre fluctuates significantly (peak to peak value

117m), while the centre range of the Round-NNA algorithm

are much more stable. Hence it can be indicated that the

selection of reference points has little effect on the group

division results with Round-NNA algorithm.

Furthermore, for the two target groups in Table 1, the ref-

erence point of error division (with K-Means algorithm) is

shown in the red circle in Figure 8(a). It can be seen that the

FIGURE 8. Performance of group division.

error division occurs when the reference point is occasionally

located between the two groups, in which case the division

threshold should be reduced. However, since the location

of the reference point cannot be known a prior in practice,

which means the division threshold cannot be optimized

a prior either. For the proposed algorithm, there is no such

problem. The target groups can be divided correctly for any

reference point. For the target groups with different distances,

the true groups are recorded and compared with the group

division results, then the correct division probability of the

two algorithms is evaluated and shown in Figure 8(b). It can

be seen that the proposed method can achieve more stable

group division performance at a smaller group distance.

C. ANALYSIS OF EQUIVALENT POINT ESTIMATION

1) GROUP TRACKING WITH DIFFERENT EQUIVALENT POINTS

Two scenes of different complexity are considered in this

section. The tracking process is first simulated, and then the

range accuracies of the tracks are evaluated.

a: CASE 1: SIMPLE SCENE WITH TWO GROUPS

In this section, a simple scene with two groups is consid-

ered. The range-azimuth and time-range changing of each
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FIGURE 9. Group Tracking Results of simple scene.

group member during the simulation period are shown in

Figure 9(a) and (b), respectively. In Figure 9(b), the plots

indicate the ranges of the individual targets to the radar and

the different colours indicate different target groups. The

group members first distribute randomly in a large area, then

quickly gather and form two sub target groups, and finally

move separately. Due to the occlusion between group mem-

bers and the performance of detection algorithm, the number

of measurements obtained at each time sampling duration is

not necessarily equal to the number of group members, that

is, there may be miss detections and false alarms. It can be

seen that, a target group shows a unified overall movement

trend, but at the same time, there are some track crossing,

merging andmoving away of local members. All these factors

may lead to the variation of group structure, thus affecting the

tracking performance.

Figure 9(c) shows the tracks of the strongest point. Because

of the dramatically changes of the tracking point caused

by individual attitude fluctuation, it can hardly form stable

tracks when the two groups are not well separated. Besides,

the tracks vibrate severely and the interruption occurs when

two groups cross.

The tracking results of averaged point, centroid point and

geometric centre are shown in Figure 9(d) - (f), respectively.

The tracking performances of these three equivalent points

are similar to each other on the whole. When two target

groups are clearly separated, all of them can form stable

tracks, while for the cases of group fusion and split, the tracks

are all interrupted due to the position mutation of the equiva-

lent points.

Figure 9(g) shows the track of the MGLE point proposed

in this paper. It can be seen that the MGLE point has good

adaptability to both the changes of internal structure and

external contour of the group. It maintains continuous and

stable group tracks in the situations of group crossing.

b: CASE 2: COMPLEX SCENE WITH MORE GROUPS

AND INDIVIDUALS

To further evaluate the performance of the algorithm, we con-

sider a more complex scene. In this scenario, the originally

evenly distributed 150 targets were split into six groups and an

individual target. Among them, group 1 to 4 consist of more

members and have typical group structures; while group 5

and group 6 have fewer members(Figure 10(a) and (b)). It can

be seen from Figure 10 (c)-(f) that as the complexity of the

scene increases, the performance of traditional algorithms

deteriorates obviously.

At the beginning of the simulation, the measurements have

not yet formed clear groups. At this time, the strongest point

(Figure 10 (c)) cannot form any stable track. Only when

the groups are well separated, the continuous tracks are

initiated and the tracks jitter severely. The tracking results

of the averaged point (Figure 10 (d)), the centroid point

(Figure 10 (e)) and the geometric center (Figure 10 (f)) are

obviously better than that of the strongest points. But for

group 3 and group 5, their tracking results do not accurately

reflect the motion characteristics. The group 3 first moved

slowly around 1000m. Later, due to the influence of group 2,

its movement direction gradually became the same as that

of group 2. And the group 5 always moves slowly around

900m. However, the above three methods incorrectly merged

the measurements of group 5 and group 3, so the track of

group 3 disappeared after the 600th frame and only the track

of group 5 was retained.

For the proposedmethod, it can maintain continuous tracks

for all the six groups and the individual target (Figure 10 (g)).

Meanwhile, the tracking results correctly reflected the move-

ment of each target (group). For the group 5, its track is

always around 900m; while for the group 3, its track changes

from being almost fixed to gradually approaching after the

600th frame, and its movement is similar to the track of

group 2.
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FIGURE 10. Group Tracking Results of complex scene.

2) PERFORMANCE EVALUATION

Because the change of group motion state is caused by the

interaction between individuals, it is hard to define the real

track. Therefore, a fourth-order differential method [29] is

introduced, and on this basis, the tracking performance of

different equivalent points is evaluated.

The fourth-order differential method considers that in a

measurement set, the true value and the system errors are

slowly-time-varying functions which can be represented by

a polynomial; while the random error is a stationary process.

The measurement sequence can be expressed as:

yi =
P

∑

j=1
Aj−1t

j−1
i + ξi (36)

where P is the polynomial order, Aj−1 is the polynomial

coefficients, and ξi is random error.

FIGURE 11. Tracking accuracies of different equivalent point.

Considering the slowly-varying characteristics of the true

value and system errors, the random error can be calculated

with P-order difference to the measurement sequence

1Pyi =
P

∑

j=0
ajyi+j (37)

where aj = (−1)jC j
P.

Then the tracking accuracy, i.e. the root mean square

(RMS) value of the random error, can be expressed as

σ =

√

(P!)2
(2P)!mean

(

(

1Pyi
)2

)

(38)

To evaluate the algorithm performance, the track accuracy

assessment method is designed as follows:

1) taking range measurements as an example, the standard

deviation of its measurement error is increased from

10m to 100m.

2) in a simulation, when all the tracks in the scene are

successfully tracked, the simulation is considered valid;

3) calculate the average accuracy of all tracks as the output

of the accuracy assessment, where the accuracy of a
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single track is still given by the Equation (38) in the

paper;

4) for each error deviation, 50 repeated experiments are

performed:

a) when the success rate is greater than 90%,

the average value of multiple accuracy evaluation

results is calculated as the final output.

b) otherwise the algorithm is regarded as failed.

For the two scenarios above, the track accuracy evaluation

results are shown in Figure 11. It can be seen that:

1) The tracking accuracy of the strongest point is the

lowest and the adaptability to the measurement error

is also the smallest;

2) The tracking performances of the averaged point, cen-

troid point and geometric centre are comparable. In the

simple scenario, all of they can keep stable tracking;

while in complex scenario, the success tracking rate

decreases when the error is large;

3) For the proposed method, it has the lowest tracking

error and the best tracking continuity. In the com-

plex scenario, when the range measurement error is

greater than 100m, the algorithm cannot track the tar-

get group. This is because that the measurement error

at this time is larger than the distribution range of

the group, hence the stable group structure cannot be

maintained.

IV. CONCLUSION

Group division and equivalent point estimation are two

important modules in group tracking. It is directly related

to the performance of group centre tracking, as well as

the accuracy of group outline estimation. For the for-

mer issues, the paper proposes a group division method

based on improved nearest neighbour Association. Compared

with the traditional K-means algorithm, it can avoid the

division differences caused by the selection of reference

points. For the latter, the paper analyses the mathemat-

ical basis of four traditional equivalent point estimation

methods, and on this basis, proposes a maximum group like-

lihood equivalent point estimation method using group struc-

ture information. The simulation results show that MGLE

point can keep a stable track with the none ideal fac-

tors of group fusion, group splitting or large measurement

errors.

V. APPENDIX:PSEUDO CODE OF GROUP DIVISION

Input:

Measurement set:

A = [M1 M2 · · · MN ]

Initial group series of measurements:

G : {gi = −1, i = 1, 2 · · ·N }
Initial total number of groups:

G0 = 0

for i = 1 to N

// Set the reference measurement and its group serial

number

X0← A(i)

if gi = −1, then
G0← G0 + 1

gi← G0

end if;

// Association of reference measurement and group

member

for j = i+ 1 to N

if |X0 − A(j)| < Thr , then

gj← G0

end if;

end for;

// Rearranging the measurement set and the group serial

numbers

Y1← A(1 : i)
P1← G(1 : i)
k1← 0

k2← 0

for j = i+ 1 to N

if gj = G0, then

k1← k1 + 1

Y2(k1)← A(j)

P2(k1)← G(j)

else

k2← k2 + 1

Y3(k2)← A(j)

P3(k2)← G(j)

end if;

end for;

A← [Y1 Y2 Y3]

G← [P1 P2 P3]

end for;

for i = 1 to G0

Find measurements in A whose group serial number is i

Forming group C i with these measurements

end for;

Output:

Divided measurement groups:

C i, i = 1, 2 · · ·G0
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