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ABSTRACT

Sound source tracking is an important function for a robot operat-

ing in a daily environment, because the robot should recognize

where a sound event such as speech, music and other environ-

mental sounds originates from. This paper addresses sound source

tracking by integrating a room and a robot microphone array. The

room microphone array consists of 64 microphones attached to

the walls. It provides 2D (x-y) sound source localization based on

a weighted delay-and-sum beamforming method. The robot mi-

crophone array consists of eight microphones installed on a robot

head, and localizes multiple sound sources in azimuth. The lo-

calization results are integrated to track sound sources by using

a particle filter for multiple sound sources. The experimental re-

sults show that particle filter based integration reduces localization

errors and provides accurate and robust 2D sound source tracking.

1. INTRODUCTION

Robust and real-time robot audition in the real world is essential

to realize natural human-robot communication, because humans

use a lot of information obtained from environmental sounds in-

cluding speech signals for their communication. To realize such

robot audition, we propose spatial integration. Spatial integration

means the use of multiple microphone arrays, and integrates them

for better sound processing. We considered two types of micro-

phone arrays – a robot-embedded microphone array, and a micro-

phone array installed in a room (hereafter, referred to as robot-

MA and room-MA, respectively). The former is promising to im-

prove robot audition directly. Actually, some work [1, 2] has been

reported that an 8 ch robot-MA has better performance in sound

source localization and separation. However, it has two defects.

One is that the performance, while the robot is in motion, is worse

because it is difficult to synchronize signal capturing with motion

precisely and to adapt to acoustic environmental changes after a

robot’s motion. The other is that it does not give any solution to

extract accurate information from a distant talker due to the small

size microphone array. On the other hand, the latter can solve

these problems, because a microphone array is always stationary,

and the microphones are distributed over the room. Since this type

of microphone array can compensate for the defects, it is effec-

tive to improve robot audition indirectly. We can select large size

microphone arrays reported in [3] for this purpose, although they

focus on only sound source localization and separation.

We used MUSIC [1] for a robot-MA, and proposed weighted
delay-and-sum beamforming (WDS-BF)[8] for a room-MA. How-

ever, because of a large number of microphones for the room-MA,

the computational cost of the WDS-BF became large. In this pa-

per, we extended the WDS-BF to be faster by using a sub-array

method. The sub-array method selects a microphone subset which

highly contributes to localize sound sources. Therefore, it makes

the beamforming process faster while keeping high performance.

The localization results by robot-MA and room-MA are integrated

to track sound sources. For integration, we propose a particle filter

(PF) for multiple array integration. The PF is a popular method

for object tracking and Simultaneous Localization And Mapping
(SLAM)[4], because it can deal with non-linear motion of an ob-

ject and the processing speed can be controlled by the number of

particles. The PF is basically easy to apply to track a sound source,

because the PF needs only probabilistic models on a transition and

an observation of the internal states [5, 6, 2, 7]. We constructed an

8 ch robot-MA and a 64 ch room-MA, and show the effectiveness

through sound source localization, and sound source tracking by

the PF based integration of these microphone arrays.

2. SIGNAL PROCESSING FOR MICROPHONE ARRAYS

2.1. Algorithm for Room Microphone Array

Generally, output spectrum Yp(ω) for a typical microphone array

system is defined by

Yp(ω) =

NX

n=1

Gn,p(ω)Xn(ω) (1)

Xn(ω) = Hp,n(ω)X(ω) (2)

where X(ω) denotes the spectrum of a sound source S located at

p. Hp,n(ω) denotes a transfer function from S to the n-th mi-

crophone. Xn(ω) is the signal spectrum captured by the n-th mi-

crophone. Gn,p(ω) denotes a filter function to estimate the sound

spectrum at p from the spectrum of the input signal to the n-th

microphone.

The WDS-BF, that we reported in [8], is generalized to be able

use various kinds of transfer functions such as measured impulse

responses and simulated transfer functions which take reverbera-

tion and diffraction into account. Also, the norm of Gn,p(ω) is

minimized, so the WDS-BF is robust against the dynamic changes

of Hp,n and distorted Xn(ω).
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In this paper, we introduce the sub-array method. It has two

advantages. One is faster processing speed because a subset of

microphones is used for localization. The other is improvement

in localization accuracy because only channels with high contri-

bution to localization is used. The criteria for channel selection is

decided by the distance between the sound source and each micro-

phone, rn. When rn is less than rth, n-th microphone is selected.

Otherwise, n-th microphone is excluded in beamforming and ev-

ery transfer function for n-th microphone is set to 0.

2.2. Robot Microphone Array

MUSIC for robot-MA is developed for a humanoid robot operating

in a daily environment by National Institute of Advanced Indus-

trial Science and Technology (AIST) [1]. In their implementation,

pre-measured impulse responses are used as transfer functions to

overcome the diffraction of the robot’s head and body. This ap-

proach is more accurate than model based ones such as [9].

3. INTEGRATION BY PARTICLE FILTER

In the PF, the transition model p(x(t)|x(t − 1)) and the obser-

vation model p(y(t)|x(t)) of internal state x(t) are defined as

probabilistic representation. y(t) denotes an observation vector.

Since the PF allows non-linear transition, it is more flexible than

other linear filtering methods such as the Kalman filter. A particle

plays a role of an agent to track a target source. The i-th particle

includes the internal states xi(t) and the importance weight wi(t),

which is an index to show how the particle contributes to tracking

and is usually defined as likelihood. The density of a set of the

particles approximates posterior probability p(x(t)|y(t)). In our

case, two types of observations, Yrob and Yroom, are obtained

from the microphone arrays.

Y rob(t) = {ya1
(t), · · · , yal

(t), · · · , yaL
(t)}, (3)

Y room(t) = {yb1
(t), · · · , ybm

(t), · · · , ybM
(t)} (4)

where L and M are the number of observations by room-MA and

robot-MA at time t. yal
includes the localized azimuth in the

world polar coordinates, the estimated power. In the world co-

ordinates, the origin is P0, and 0◦ is specified as a vector (1,0)

and the direction of positive rotation is counterclockwise. ybm
in-

cludes the sound location in the world Cartesian coordinates, its

orientation and the estimated power.

Our PF consists of the following five steps – “Initialization”,

“Source Check”, “Importance Sampling”, “Selection” and “Out-
put”.

Initialization makes the initial states of a particle. As the in-

ternal states of i-th particle, we defined xi(t) consisting of the

position of a sound source, the velocity and the orientation of the

sound source. At the initial state, the particles were distributed uni-

formly/randomly. To deal with multiple sound sources, we used

the initialization of the importance weight,

X

i∈Pk

wi = 1,

SX

k=1

Nk = N, (5)

where Nk is the number of particles for k-th particle group Pk,

and S is the number of sound sources. N is the fixed value which

shows the total number of particles.

omni-directional
vehicle

rotational table

robot-embedded
microphone array

ASIMO head

Fig. 1. Wheel-based Robot

Source Check is newly added to support multiple sound sources.

The internal state of the particle group Pk is defined by

x̂k(t) =
X

i∈Pk

xi(t) · wi(t). (6)

When ym(t) satisfies ||x̂k(t) − ym(t)|| < Dth, ym(t) is associ-

ated with Pk. When no particle group is found for ym(t), a new

particle group is generated. When no observation is found for the

particle group Pk for more than time Tth, Pk is terminated. In both

cases, the particles are re-distributed so that Eq. (5) is maintained.

Importance Sampling, first, estimates xi(t) from xi(t − 1)
by using p(x(t)|x(t − 1)). Secondly, wi(t) is updated. Finally,

wi(t) is normalized to keep the conditions shown in Eq. (5). For

the transition model, we switched two models based on random

walk and Newton’s equation of motion according to the velocity

of the sound source. When the velocity is less than vth, the system

uses the transition model based on random walk. Otherwise, the

system uses the transition model based on Newton’s equation of

motion. The likelihood for the observation model is defined as

lroom(t) = exp
`−||xi(t) − ybm

(t)||/2Rroom

´
(7)

lrob(t) = exp
`
(−� (xi(t)) − � (yal

(t)))2/2Rrob

´
(8)

where Rroom and Rrob are variances of room and robot localiza-

tion. � is a function to calculate sound direction in the world polar

coordinates. They are integrated into lI(t).

lI(t) = αllrob(t) + (1 − αl)lroom(t) (9)

where αl is an integration weight value. Finally wi is updated by

wi(t) = lI(t)wi(t − 1). (10)

Selection propagates and removes particles per particle group

based on Sampling Importance Resampling (SIR) algorithm [10]

according to the importance weight wi.

Output estimates the posterior probability p(x(t)|ym(t)) from

the density of the updated particles. The internal states of a set of

particles for sound source k is estimated as Eq. (6). These steps

are repeated until the tracking process finishes.

4. SYSTEM IMPLEMENTATION

Our spatial integration system consists of three systems – a robot

with the robot-MA, the room-MA and an ultra sonic 3D tag sys-

tem for quantitative evaluation. For the robot-MA system, we de-

veloped a wheel-based robot shown in Fig. 1. The robot consists

of the head of Honda ASIMO with an 8 ch robot-MA, a rotational
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Fig. 2. Room Microphone Array
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table with an encoder on an omni-directional vehicle. Each mi-

crophone in robot-MA is embedded in a rubber head-band for the

head of ASIMO at the same interval. The angle resolution of the

rotational table is 0.015 ◦. For the room-MA system, we con-

structed a 64 ch microphone array which captures 64 ch signals

synchronously at a sampling rate of 16 kHz. Fig. 2 shows a 4.0 m

× 7.0 m room with a kitchen sink which room-MA is installed.

The three walls are covered with sound absorbing material, and

the other wall is made of glass with high sound reflection. Fig. 3

illustrates the layout of microphones in the room. The asterisks are

microphone positions in plan view. The height of microphones is

1.2 m. This layout maximizes the number of digitized orientation

angles which are able to be estimated. The room is also equipped

with an Ultrasonic Three Dimensional Tag System (U3D-TS) [11],

which provides in-door GPS function. In our implementation,

when the distance between two tags which are located around the

center of the room is less than 1 m and from 1 m to 3 m, the errors

are around 1 cm and 8 cm, respectively. These errors become 6 cm

and 13 cm near the walls.

4.1. Design of beamformer for room microphone array

To design beamformers, the sound position is digitized at the inter-

val of 25 cm. The digitizing area is 1.0 m – 5.0 m for X axis, and

0.5 m – 3.5 m for Y axis. The hight (Z axis) is fixed to 1.2 m. So,

the total number of digitized points is 221. At each point, the sound

orientation is digitized at the interval of 45◦. We, then, designed

four types of WDS-BF. We designed a beamformer from measured

transfer functions (hereafter, “M-BF”). The transfer functions are

obtained by measurements of impulse responses at every digitized

point. We then designed the sub-array version of the M-BF (“MS-

BF”) of which rth is set to 3.5 m. MS-BF is expected to reduce

30% of the computational cost. The other two beamformers are

based on simulation. “Sim-BF” is a beamformer which is designed

by simply assuming a free space, while “RSim-BF” is a beam-

former which takes room reverberations into account based on a

kind of adaptation technique described in [12].

Table 1. Error of Localization
Beamformer Error

Avg. S.D.

M-BF (Room) 0.016 m 0.039 m

MS-BF (Room) 0.019 m 0.041 m

Sim-BF (Room) 0.95 m 1.19 m

RSim-BF (Room) 0.50 m 0.52 m

MUSIC (Robot) 4.56 deg 1.41 deg

Table 2. The Error of Localization and Tracking

Avg. S.D.

Robot-MA 7.46 deg 7.83 deg

Room-MA 0.234 m 0.200 m

PF(Room-MA) 0.180 m 0.133 m

PF(Integrated) 0.170 m 0.123 m

5. EVALUATION

We performed two types of evaluations for the spatial integration

system, that is, the performance of sound source localization, and

sound source tracking.

In the first evaluation, a single sound source is localized by the

room-MA and robot-MA. As a sound source, we used the recorded

voices played by a loudspeaker GENELEC 1029A located at at P1

shown in Fig. 3. The sound source is localized with M-BF, MS-

BF, Sim-BF and RSim-BF. Tab. 1 shows the average error and the

standard deviation in localization.

In the second evaluation, the performance of tracking of speak-

ing two persons (Mr. A and Mr. B) along the circle with center P0

and radius 1.5 m. They are asked to speak Japanese sentences con-

tinuously and to face with the robot. Mr. A starts at (2.93, 0.63),

i.e., 90◦ in the world polar coordinates, and walks clockwise to 0◦.

Just before arriving at 0◦, he turns back and walks counterclock-

wise to 270◦. Mr. B starts at (2.93, 3.63) and walks in a mirrored

way. They approach and recede at 0◦, and cross at 180◦. The head-

ing of the robot located at P0 is always kept to face with Mr. A.

MS-BF is used as a beamformer for the room-MA. The parame-

ters for the PF is decided experimentally. The number of particles

is 2,000. Rroom and Rrob are 0.35 and 0.1. αl is 0.5. To obtain

accurate location of the moving sound sources as reference data,

we attached a U3D tag to each sound source. Fig. 4 shows the

results of localization and tracking. Tab. 2 shows localization and

tracking errors for the robot-MA and the room-MA, and the PF.

5.1. Observations

From the first evaluation, the best beamformer is MS-BF. It has the

small localization errors of 15 cm - 20 cm. It is almost the same

as M-BF. So, we can say that the sub-array method reduced the

computational cost while keeping localization accuracy. MUSIC

has the error of about 4.5 deg. This is equivalent to 12 cm at a

point 1.5 m away from the robot. It is almost the same accuracy

of the room-MA. That is why we use 0.5 for integration weight

parameter αl in the second evaluation.

Fig. 4a) and b) show that, compared with tracking by U3D-

TS, both microphone arrays can localize at least two simultaneous

speech signals properly even the sources are in motion. In the

case of the robot-MA, accurate time synchronization is achieved

because the coordinate-converted localization results fit those ob-

tained from U3D-TS. However, some outliers can be seen, and
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Fig. 4. Tracking Results

data association between each localization result and the corre-

sponding sound source is not done yet. In tracking of multiple

sound sources, this association is essential because miss associa-

tion causes a fatal tracking error. Fig. 4c) shows that the PF solves

this problem. In addition, Tab. 2 shows that the PF improves lo-

calization accuracy and robustness because the average errors are

reduced 2 cm – 9 cm and the standard deviations are reduced about

10 cm on average. The effect of the microphone array integration

looks small, but the integration contributes to improvement in the

robustness of the tracking. For example, the tracking result us-

ing only room-MA localization results (red lines) have large errors

from 5 sec to 10 sec in Fig. 4c), while the integrated ones (blue

lines) do not include the large errors.

6. CONCLUSION

We proposed the integration of the robot-MA and the room-MA

to enhance robot audition. For the room-MA, we propose sub-

array based weighted delay-and-sum beamforming. For the in-

tegration of microphone arrays, we proposed the PF for multiple

sound sources, which can integrate multiple localization results

utilizing a probabilistic integration method. The evaluations us-

ing a 64 ch room-MA and an 8 ch robot-MA show that the micro-

phone arrays localize multiple sound sources accurately, and sound

source tracking with the PF solves the data association problem in

case of multiple sound sources, and improves the accuracy and the

robustness of sound source localization. In this paper, we selected

the best values for each parameter manually. These values should

be optimized automatically. Also, we assumed that the number of

sound sources is at most two. To relax or remove these restrictions

is remaind as future work.
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