
1. INTRODUCTION

Recently, many research studies have been devoted to
the realm of fault detection due to the problems arising from
the occurrence of faults in control systems. Three approaches
have been developed in the literature to detect the occurrence
of faults: model-based, signal-based, and knowledge-based
approaches. Although the second and third approaches show
appropriate performance in real world applications, the
model-based techniques are more popular among the control
scientific community than other approaches.

The model-based fault detection (FD) approaches are
developed based on the mathematical model of the plant.
Since the real model of a system is hardly realizable in prac-
tice, robust schemes of model based FD have been exploited
in the last decade [1–4]. Among these various techniques, the
applications of observers have been widely reported in the
literature [5,6].

The existence of model uncertainty and exogenous
signals such as noise and disturbance necessitates an observer
design procedure which needs to be robust against the uncer-

tainty and exogenous signal as well as to be sensitive enough
to detect faults. In other words, the residual signal produced
by the observer should be independent from the uncertainty
and the exogenous signal. Therefore, an optimization
approach should be employed in the design procedure. In this
regard, the performance index has been defined in H−/H∞ or
H2/H∞ which provides both robust and optimal solutions. In
[7–9], a design procedure which uses an optimal residual
generator as a reference model has been developed. Then a
residual generator is designed for a system with model uncer-
tainty such that the error between the optimal residual signal
and residual signal is minimized. The solution of this optimi-
zation problem has been handled by a linear matrix inequality
(LMI) tool. To solve the problem of H−/H∞ and H2/H∞, much
other research has been conducted [10–15].

Time delay exists in many industrial systems; hence,
enormous research activities have been carried out to inves-
tigate problems arising from delay in systems. For example,
in [16], the authors present a fuzzy H∞ controller for system
with state delay. The problem of robust stability for uncertain
delay fuzzy systems and application of fuzzy controller in
active suspension system with actuator delay and fault have
been studied in [17] and [18], respectively. Another interest-
ing research field is the design of an optimal observer for fault
detection purposes [19–21]. The main idea of designing an
optimal observer for systems consisting of both model uncer-
tainty and exogenous signals is similar to those used in delay-
free approaches. However, the definition of the performance
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index is different. In [22,23], the authors designed a fault
detection scheme for uncertain delay systems. The optimal
residual generator system has been designed based on a
model-matching approach. The same approach has been used
in [24], however, an iterative algorithm has been employed to
solve the optimization procedure. The problem of fault detec-
tion for linear systems with time delay and nonlinear pertur-
bation has been investigated in [25] and for Master-Slave
systems in [26]. In [27] the authors presented an H∞ filter for
faulty input signal estimation and controlled the system. The
problem of fault isolation was investigated in [28] using a
bank of residual generator filters in which each filter had been
designed by H∞ optimization. Recently, enormous research
efforts have been devoted to the problem of fault detection in
network control systems [29,30].

In the previous works, the Luenberger observer or filter
has been utilized as an observer in the residual generator
systems. Unknown input observer (UIO) is another class of
observer which has been widely studied in the literature [31–
34]. The problem of fault diagnosis for time delay systems
using UIO is investigated in [35] for the first time, however,
the model uncertainty and optimal design are not considered.
In [36], UIO has been designed for state estimation in the
presence of noise and uncertainty, without considering time
delay. Although the UIO has been used in many fault detec-
tion problems in real world applications [37,38], UIO-based
fault detection for uncertain time delay systems has not been
comprehensively studied to date. Motivated by these consid-
erations, in the current work, an optimal fault detection filter
for linear uncertain time delay systems using unknown input
observer is developed. A reference residual generator system
is designed to have maximum sensitivity to the fault and
minimum sensitivity to the noise. Then, the residual generator
system is designed by model-matching techniques. The FD
system is designed without resorting to any model transfor-
mations and bounding techniques for some cross terms.

The organization of this paper is as follows: In Section
2, system descriptions and problem formulation are pre-
sented. The main result is presented in Section 3. Efficacy of
the proposed methods is shown by a simulation results in
Section 4. Finally, concluding remarks are given in Section 5.

II. PROBLEM FORMULATION

In many industrial applications such as mechanical,
electrical, meteorological, chemical, economic, and biologi-
cal systems, nonlinearity and sources of time delay exist in
the mode [39,40]. Therefore, a linearized model of these
systems around an expected operation point is considered.
However, there are always some discrepancies between the
real dynamics of the system and the linearized model. These
differences arise from system uncertainties, as a consequence

of neglecting dynamics, and changes in system parameters.
Therefore, the following linear uncertain system with addi-
tive disturbances and time delay is considered to represent the
model described:
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where x(t) ∈ Rn is the state vector, y(t) ∈ Rp is the output
vector, u(t) ∈ Rq is the input vector, d(t) ∈ Rm is an unknown
scalar function representing the disturbance that belongs to
L2 0m( , )∞ , f(t) ∈ Rf denotes the faults and n(t) ∈ Rr represents
the noise.

Note that ΔA(t), ΔB(t), and ΔAd(t) are the norm bounded
time-varying uncertainties of the matrices A, B, and Ad,
respectively. τ ≥ 0 is a constant time delay. The characteristics
of uncertainty matrices are assumed to belong to:
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It is generally acknowledged [39] that a full order UIO
for a class of time delay systems can be represented as follows:
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where x̂ t( ) is the estimated state vector. Therefore, the
dynamic of x̂ t( ) is governed by:
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where F, G, H and L1 are the observer matrices with
L2 = K1z − FL1 and L3 = K2z − GL1. The observer matrices will
be computed such that the disturbance and input are
decoupled from the estimation error which is defined by
e t x t x t( ) ( ) ( )= − ˆ . The observer described by (4) is illustrated
in Fig. 1. The state estimation error (5) is obtained from (1),
(3), and (4) as:
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In the absence of uncertainties and faults, it has been
shown that the observer defined in (3) and (4) is an UIO for
the system described by (1) if the following conditions are
satisfied [36]:

C1. �e t Fe t Ge t( ) ( ) ( )= + − τ is asymptotically stable.
C2. F = (I − L1C)A − L2C.
C3. G = (I − L1C)Ad − L3C.
C4. H = (I − L1C)B.
C5. (I − L1C)E = 0.

where 0 denotes the null matrix with compatible dimensions.
Using these conditions, and considering the following
definitions,
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the state estimation error dynamic (5) can be repre-
sented as
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In order to use an UIO for fault detection purposes, it is
required to define a residual signal. The definition of the

residual signal is based on the difference between the meas-
ured and estimated outputs by the following equation:
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where K1 = [0 Fy 0] and K2 = [0 D 0]. Now, the
objective of robust fault detection problems is to minimize
the performance index defined in (9) for all classes of model
uncertainty belong to Ωi.

J
G

G
r

A B A

r d n

rfd i

=
∈

∞

∞

max
( , , )

[ ]

Δ Δ Δ Ω

 
(9)

In general, this performance index is minimized using
H∞ model matching approach which minimizes the difference
between the residual signal r(t) and the reference residual
signal rf(t) in the presence of the worst case disturbance
signals. One approach to design the residual reference is to
compute the residual signal in the absence of uncertainties. In
this case, the reference residual signal is designed such that
the fault signals have the maximum effect and disturbance
and unknown inputs have the minimum influence on the
reference residual signal. The reference residual system is
defined as:
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Considering these issues, the problem of robust fault
detection is to compute observer matrices such that the
overall system is asymptotically stable and the following
performance index is minimized.
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f
T T T= , we obtain an aug-

mented system as follows:
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Fig. 1. Structure of a full-order UIO with delay.
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Furthermore, from (2) the uncertain terms Δ �A, Δ �Ad ,
and Δ �Bw can be expressed by:
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Before proceeding further, we introduce the following
lemmas, which will be used in subsequent developments.

Lemma 1 [39]. C.4 is solvable iff the following relation
holds:

rank CE m m p( ) ,= ≤ (16)

and the general solution of C4 can be calculated by:
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where Y is an arbitrary matrix with appropriate dimensions.

Lemma 2. Suppose that M, N, and Σ(t) are compatible and
ΣT(t)Σ(t) ≤ I, then there exists a scalar ε > 0 such that (18)
holds.
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III. MAIN RESULTS

3.1 The reference model section

The choice of reference model is an important key in
designing robust fault detection filters for linear uncertain
time-delay systems. In this paper, a reference model for a
class of observer with unknown inputs is developed. The
reference residual signal can be written as the sum of two
signals, r tf n ( ) and r tf f ( ). The former represents the effect of
exogenous signal (noise) on the reference residual signal and
the latter represents the effect of state faults on the reference
residual signal. Hence, the reference model should be chosen
such that the effect of exogenous signals on the reference
residual signal is minimized, while the effect of fault signal is
maximized. These two tasks are described mathematically by:
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where T(.,.) is the transfer function between two signals. The
following two theorems provide conditions which ensure
the asymptotic stability of (10) and increase the sensitivity
of reference residual signal on faults while decrease the
sensitivity of reference residual signal to the noise.

Theorem 1. For given α > 0, if there exist symmetric
positive definite matrices P, Q, Z*, matrices Φ1*, Φ2* and Φ3*
such that following LMI holds:
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then the system (22) is asymptotically stable and
T r nf n( , ) ∞ ≤ α
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Furthermore, the UIO matrices are obtained by con-
sidering C.2 to C.5, and, Y P* = −1
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Assuming rf n = 0 for t ∈ [−τ, 0]. Since V(∞) > 0, we have:
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Taking derivation from V(t) and considering (22) yields
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Hence, Ξ ≤ 0 implies Jrf n ≤ 0. By assuming Z V VT* = * *, the
LMI (20) is concluded from (25). The inequality (20)
(without considering (21)) includes nonlinearity terms which
leads the LMI to be infeasible. To overcome this problem,
define Φ1* = PY *, Φ2 2* *= PL , Φ3 3* *= PL . Using C2, C3 and
(17) it can be seen that (21) makes the LMI feasible.

Theorem 2. For given β > 0, if there exist symmetric
positive definite matrices P, Q, Z*, matrices Φ1*, Φ2*, and
Φ3* such that following LMI holds:
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Hence, Ξ ≥ 0 implies Jrf f
≥ 0. Ξ ≥ 0 is equivalent to (32) by

considering Z V VT* * *= .
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(32)

The inequality (32) is conservative and cannot be solved
using the LMI toolbox, beacause the term β 2

1 1I K Z KT+ *
cannot be less than zero for all β > 0 due to the structure of
K1. To tackle this point, the S-procedure [41] is utilized. To
this end, the constraints (33) have been considered with (32)
which results in (26).

e t e t

e t e t f t

f f f f

f f f f

( ) ( )

( ) ( ) ( )

2 2

2 2 2 2

0+ − ≥

+ − ≥

τ

τ ε
(33)

To overcome the infeasibility of (26) the same variables
definition, (27), as Theorem 1 are used.

Remark 1. To solve the LMI (26), the fixed small value of ε
is chosen and the LMI is solved. If the feasible solution is not
found, ε is increased until a feasible solution is achieved. It is
noted that the value of ε should be selected as small as
possible. The upper bound of ε is a design parameter and it is
selected by trial and error procedure. Our observations verify
this point that increasing the value of ε leads to achieve the
bigger value of β, but results in increasing the matrix Z*. As
a consequence, the constraint should be considered along
with (26) to restrict Z* from being large. This aim can be
achieved by following LMI condition

Z IZ* − ≤λ *
2 0 (34)

where λZ* is a design parameter.

Corollary 1. The system (10) is asymptotically stable and
satisfies (19) if there exist symmetric positive matrices P, Q,
Z* matrices Φ1*, Φ2*, and Φ3* such that the LMIs (20), (26)
and (34) are simultaneously held.

Remark 2. It is desirable to obtain a reference residual
system having maximum sensitivity to the fault and minimum

sensitivity to the exogenous signal. This objective can be
formulated by the performance index defined in the form of

inf
α
β

. To this end, the following iterative optimization

method is used. The procedures of this method are as follows:

1. Choose appropriate values of α, β and λZ*.
2. Set small value of ε.
3. Solve LMIs (20), (26), and (34) by increasing ε until its

maximum value to find a feasible solution of P, Q, Z*,
Φ1* , Φ2*, and Φ3*.

4. Increase β, decrease α, and go to Step 3. Continue this
procedure until the feasible solution cannot be found for
LMIs (20), (26), and (34).

3.2 The UIO design

As mentioned before, the aim of robust fault detection
is to design an observer which detects the occurred fault in
the presence of exogenous signals and system uncertainty. To
this end, Theorem 4 is presented to guarantee the overall
system (13) asymptotically stable and to hold performance
index (9) for a given γ > 0.

Theorem 3. For a given γ > 0, the following system is
asymptotically stable and ||ν(t)||2 ≤ ||u(t)||2:
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if there exist symmetric positive matrices P, Q, and constants
ε1, ε2, ε3 such that the LM [Sij]77 < 0 holds, where
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Proof. Define the following Lyapunov–Krasovskii function:

V t t P t s Q s dsT T

t

t
( ) ( ) ( ) ( ) ( )= +

−∫χ χ χ χ
τ

(37)

The performance index ||ν(t)||2 ≤ ||u(t)||2 can be written as
follows:
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T T
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2
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Assuming χ(t) = 0 for t ∈ [−τ, 0]. Since V(∞) > 0, we have:

J t t u t u t V t dtT T
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Taking derivation from (37), considering (35) and (39) yields:
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then, Ξ < 0 implies Jν < 0 Moreover, the inequality Ξ < 0 can
be written as:
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Using Lemma 2, one can write the following inequality
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Considering (42) and using Schur compliment, (41) leads to
(36). This completes the proof.

Theorem 4. For a given γ > 0, if there exist symmetric
positive definite matrices P1, P2, P3, Q1, Q2, Q3, matrices Φ1,

Φ2, Φ3, V, and constants ε1, ε2, ε3, such that the following LMI
[sij]14×14 holds, then the overall system (13) is asymptotically
stable and Jre < γ . The observer matrices are calculated by
considering (3), (4), C2 to C5 and Y = P−1Φ1, L2 = P−1Φ2,
L3 = P−1Φ3. The LMI coefficients are defined as:
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Proof. In Theorem 3 assumes that P = diag(P1, P2, P3) and
Q = diag(Q1, Q2, Q3). Then, using system dynamic (13), it can
be seen that sij are the same as (43). Without considering (44),
the inequality (43) includes nonlinear terms which lead the
LMI to be infeasible. To overcome this problem, define
Φ1 = PY, Φ2 = PL2, Φ3 = PL3 Using C2, C3 and (17) it can be
seen that (44) makes the obtained LMI feasible.

Remark 3. It is noted that our approach is different from that
in the references [14] and [36] in the following perspectives:

(a) The system structure in [14] and [36] do not consider
the time-delays, i.e., the results in [14] and [36] cannot
be directly applied to the system under consideration
in this paper.



(b) The class of observer considering in the current work
is different from the one in [14].

(c) The proposed conditions in Theorems 1–4 are obtained
without resorting to any model transformations and
bounding techniques for some cross terms, thus reduc-
ing the conservatism in the derivation of the stability
conditions.

Remark 4. The designed steps for FD in (1) can be summa-
rized as:

1. Design residual reference system using Remark 2,
2. Apply Theorem 4 to obtain UIO matrices.

In addition, it is worth noting that the number of variables
to be determined in each step are 2n2 + p2 + 3n × p and
6n2 + p2 + 3n × p + 3, respectively.

3.3 Evaluating the residual signal using threshold

To take a decision about the occurrence of a fault, an
appropriate level threshold should be selected. According to
(8), the residual signal for fault-free system satisfies the fol-
lowing equation:

r t r t r t r t r t

J J
f n u n u

th n th u
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The value of r tn ( ) 2 can be computed offline and under
the assumption that n ∈L2 , we have sup ( )( , , )Δ Δ Δ ΩA B A nd i r t∈ =2

nM . Since the signal u is supposed to be known online, the
value of Jth,u can be determined online by

J u tth u u, ( )= γ 2 (47)

with

γ u
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r t

u t
=

∈
sup
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( )
,

( , , )Δ Δ Δ Ω

2

2

where γu can be computed by using Theorem 3. Therefore the
threshold value can be evaluated by:

J u t Mth u n= +γ ( ) .2 (48)

IV. SIMULATION RESULTS

In order to investigate the effectiveness of the proposed
algorithm, two cases including a numerical example, and real

world application are considered. Simulation results for each
case presented in this section.

4.1 Numerical example

As a first example, let us consider a numerical example
to make the design procedure more clear. Consider a system
which is defined by (1) with the following matrices:

A =
− −

−
− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
3 8 1 5 0 5

0 5 3 1

0 3 0 7 2 4

1

. . .

.

. . .

, τ

A Bd =
−

−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
−

⎡

⎣

0 4 0 1 0 2

0 1 0 8 0 2

0 7 0 1 0 5

0 1

0 2

0 4

. . .

. . .

. . .

,

.

.

.

⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

F E Fx y= −
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
−

0 6

0 5

0 4

0 4

0 1

0 3

0 2

0 8

.

.

.

,

.

.

.

,

.

.

11 2.

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

C R D=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

1 0 0

0 1 0

0 0 1

0 1

0 2

0 4

0 9

0 2

0 7

,

.

.

.

,

.

.

.

⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

M M M1 2 3

0 1

0 2

0 1

0 1

0

0 1

0 1

0 2

0 1

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
−.

.

.

,

.

.

,

.

.

.

⎡⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

N N N1 2 30 0 1 0 3 0 1 0 0 0 1= [ ] = [ ] =. . , . , .

The first step to design the fault detection system is to
solve the LMIs (20), (26) and (34) in Theorem 1 and Theorem
2. The Yalmip toolbox is used to solve the LMIs [42]. To start
the iterative optimization method presented in Remark 1,
initial values αint = 3 and βint = 0 are selected and the upper
value of ε is chosen 0.1. Using this procedure, the following
results are obtained:
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Using these values, the LMI (43) is solved and the following
observer dynamic matrices are obtained:
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To show the effectiveness of the designed FD system,
two types of fault are exerted on the system. In both cases, the
step disturbance signals exerted on the system from 2 to 4 s.
The noise signal is assumed to be white Gaussian noise with
power 0.005, and the uncertainty Σi(t) is considered a
sinusoidal signal. In the first case, an abrupt fault, shown in
Fig. 2, occurs from 4 to 6 s. The residual signals are shown in
Fig. 3. It can be seen that the residual signals change when the
fault occurs, however the residual signals show no sensitivity
to the external disturbance. The value of threshold Jth is pre-
sented in Fig. 4. This figure indicates that the fault is detected
rapidly and the difference between the threshold for a faulty
system and a fault-free system is high enough to detect the
occurrence of a fault in the system.

In the second case, an incipient fault, shown in Fig. 5, is
considered. The residual signals, and value of threshold are
depicted in Fig. 6 and Fig. 7, respectively. It can be seen that
the residual signals show enough sensitivity to the occurrence
of the fault.

In contrast to the first case, it can be seen that the value
of the threshold in Fig. 4 changes faster than Fig. 7 which
results from this point that f(t), f(t − τ) and �f t( ) affect on the
residual signal. Since the derivation of abrupt faults is larger
than incipient faults, the residual signals are more sensitive to
abrupt faults.
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Fig. 2. Abrupt fault occurs in t = 4 s.
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Fig. 3. The residual signals of the designed FD system for the
case in which abrupt fault is exerted.



4.2 Fault detection of an engineering process

As a second example an engineering system is consid-
ered in this sub-section to investigate application of the pro-
posed method in the real world. To this end, the proposed
approach is adopted to detect faults of the Williams–Otto
process [40]. Since this system has many characteristics of
typical chemical process, it has been frequently studied in
chemical engineering literature. The schematic diagram of
the Williams–Otto process is shown in Fig. 8. In this figure,
FA, FB, FP are feed rate of material A, B and valuable product,
respectively. The Fw1 and Fw2 are undesirable by-products.
The dynamic equation of this chemical process is nonlinear.

However, the linear model is appropriate for determination of
proportion of the feed rate FA and FB at the desired operating
point. To make the linear model similar to (1), we consider
disturbance, fault, and noise signals. In addition, the model
uncertainties are considered to have 5 percentage variation of
nominal matrices. The value of the matrices are:
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Fig. 4. Evaluating residual signals using defined threshold
(Abrupt fault).
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Fig. 5. Incipient fault.
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Fig. 6. The residual signals of the designed FD system for the
case in which incipient fault is exerted.
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Fig. 7. Evaluating residual signals using defined threshold
(Incipient fault).
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The linear model has four states x1, x2, x3, and x4 which
represents variations in the weight composition of the raw
materials A and B, of intermediate product, and of the desired
product respectively. The control inputs u1 and u2 are equal to
δFA/VR and δFB/VR where VR is the volume of reactor and δFi

and are derivation of feed rate which are considered equal to
2.628 and 0.45 respectively [40]. Following the same proce-
dure as Section 4.1, LMIs (20), (26), and (34) have been
solved by ε = 0.01, λZ* = 33 which result in α = 0.1, β = 400.
Then, the observer dynamic matrices are obtained as:
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Fig. 8. Schematic diagram of Williams–Otto process [40].



In both cases, disturbance and uncertainty are consid-
ered as in Section 4.1. The noise signal is assumed to be white
Gaussian noise with power 1e−7. Two types of fault signals are
simulated as in Section 4.1, however the amplitude of them
are chosen equal to amplitude of input signal of process.
Residual signals and value of threshold are shown in Fig. 9
and Fig. 10 for an abrupt fault, and in Fig. 11 and Fig. 12 for
an incipient fault. For both cases, we see that residual signals
are sensitive enough to the fault. The occurrence of the fault
can be determined using threshold.

V. CONCLUSION

In this paper, a novel approach is developed to design
fault detection system for uncertain linear time delay systems.
The main contribution of paper is the design of an optimal
fault detection system using an unknown input observer. To
this end, the effects of noise signals and uncertainty terms are
minimized in the residual signal while the effect of distur-
bance is completely decoupled. Since the influence of both
fault signals and their derivations are maximized in the
residual signal, the fault detection system shows more sensi-
tivity to the occurrence of faults. In order to verify the
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Fig. 9. Residual signals of designed FD system for
Williams–Otto process (abrupt fault).
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Fig. 10. Evaluating residual signals using defined threshold
(abrupt fault).
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Fig. 11. Residual signals of designed FD system for the
Williams–Otto process (incipient fault).
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Fig. 12. Evaluating residual signals using defined threshold
(incipient fault).



performance of the proposed method, a numerical example
and an engineering system are investigated. The simulation
results confirm the robustness and effectiveness of the pro-
posed scheme for fault detection in the presence of model
uncertainty and external disturbances. Based on the result
obtained, the presented work can be extended to other
systems such as descriptor systems, and stochastic systems
with jump. Moreover, developing the same approach for non-
linear systems will be interesting for future work.
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