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A robust vision-based traffic monitoring system for vehicle and traffic information extraction is developed in this research. It
is challenging to maintain detection robustness at all time for a highway surveillance system. There are three major problems
in detecting and tracking a vehicle: (1) the moving cast shadow effect, (2) the occlusion effect, and (3) nighttime detection.
For moving cast shadow elimination, a 2D joint vehicle-shadow model is employed. For occlusion detection, a multiple-camera
system is used to detect occlusion so as to extract the exact location of each vehicle. For vehicle nighttime detection, a rear-view
monitoring technique is proposed to maintain tracking and detection accuracy. Furthermore, we propose a method to improve
the accuracy of background extraction, which usually serves as the first step in any vehicle detection processing. Experimental
results are given to demonstrate that the proposed techniques are effective and efficient for vision-based highway surveillance.

Keywords and phrases: traffic monitoring, object tracking, moving cast shadow, occlusion, nighttime detection, background
subtraction.

1. INTRODUCTION

Vision-based traffic monitoring systems are widely used in
intelligent transportation systems (ITS). The goal of a traffic
monitoring system is to extract traffic information, such as
the vehicle count, traffic events, and traffic flow, which plays
an important role for traffic analysis and traffic management.
Several different types of devices, including loop detectors,
sensors, and cameras, have been employed in traffic moni-
toring systems. Recently, vision-based analysis systems have
become popular in transportation management due to their
capability to extract a wide variety of information in com-
parison with the sensor-based system.

Vision-based systems have a good potential for high-
way surveillance applications [1, 2], and useful traffic in-
formation such as vehicle dimensions, lane changes, and
other traffic-related information can be effectively extracted.
However, it is challenging to maintain detection accuracy
at all time since vision-based processing is sensitive to en-
vironmental factors such as lighting, shadow, and weather

conditions. The following factors tend to result in the degra-
dation of detection performance.

(i) Shadow

Moving region extraction is one of the fundamental steps in
object detection and tracking from images. The moving cast
shadow is often extracted with the vehicle of interest. The
existence of the cast shadow in the moving object degrades
extraction accuracy. For example, one solution to identify
the vehicle region is based on model matching. The match-
ing result can be severely affected by the existence of the
cast shadow. There have been methods proposed to eliminate
the cast shadow, say, to find different characteristics between
shadow regions and nonshadow regions. This is however a
difficult task by itself, and it may not always work properly.

(ii) Occlusion

Occlusion occurs when there is an overlapping of objects
from the viewpoint of a camera. In this case, multiple vehicles
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in the occlusion region are regarded as one object (vehicle).
Generally speaking, occlusion prevents us from proper iden-
tification of each vehicle. The occlusion phenomena in a traf-
fic scene can be divided into two classes: explicit occlusion
and implicit occlusion. In the explicit occlusion case, multi-
ple vehicles that enter a scene separately merge into a mov-
ing object region in the scene. In the implicit occlusion case,
multiple vehicles enter the scene of being overlapped with
each other from the beginning. Detection of explicit occlu-
sion is easier than that of implicit occlusion since we can use
the information of individual vehicles before occlusion oc-
curs. In the case of implicit occlusion, we cannot obtain in-
formation of individual vehicles in the occluded region be-
forehand. It is possible to analyze the behavior of vehicles
with the temporally reverse direction using the offline pro-
cessing. This is however not suitable for real-time applica-
tions.

(iii) Lighting

The lighting condition changes by the weather, light sources,
and other factors such as daytime or nighttime. It is difficult
to cope with all kinds of situations with a single approach.
Vehicle detection at nighttime is a complicated issue due to
the lack of valuable visual information. Besides, there are dis-
turbances caused by headlights, their corresponding reflec-
tions, and other light sources. In the real world, nighttime
vehicle detection is usually assisted with some other tech-
niques such as streetlights or infrared cameras. Conventional
nighttime vehicle detection methods focus on finding pairs
of headlights to estimate vehicle locations. However, they
cannot extract other information such as the vehicle length.
Moreover, results could be affected by the reflection of lights
on the pavement.

In this work, we propose several new methods to cope
with these three problems for a more robust highway surveil-
lance system. First, we develop an algorithm to eliminate
the moving cast shadow based on a simplified 2D vehicle-
shadow model of six types projected to the 2D image plane.
Second, images from multiple cameras for each scene are
employed for occlusion detection. Third, for nighttime de-
tection, we introduce the rear-view monitoring concept and
develop a vehicle detection method to extract the vehicle in-
formation such as the vehicle width and length. In addition,
we propose an enhanced method to quickly adjust the back-
ground according to the environmental change.

There are several advantages of our proposed techniques.
They demand no prior information about the video captur-
ing conditions such as the camera angle, the camera calibra-
tion, or the traffic scene description. Especially, a light source
is not needed in the proposed shadow elimination algo-
rithm. Edge detection and region segmentation are also not
needed in the proposed occlusion detection algorithm. No
additional equipment is required for nighttime vehicle detec-
tion and tracking. Moreover, the proposed enhanced back-
ground maintenance technique can provide high-accuracy
background subtraction results. Finally, we show detection
and tracking accuracy under various scene conditions to

demonstrate the robustness of the proposed system with cap-
tured real-world data.

The rest of this paper is organized as follows. Related
previous work is reviewed in Section 2. The basic vehicle
model and the proposed vehicle detection algorithms are
presented in Section 3. Simulation results are provided to
demonstrate the robust performance of the proposed algo-
rithms in Section 4. Finally, concluding remarks and future
research directions are given in Section 5.

2. REVIEW OF PREVIOUS WORK

In this section, we review various video processing algo-
rithms proposed for vision-based traffic monitoring systems.
Background subtraction techniques are commonly used as
the first step in separating foreground objects from the back-
ground region. Various issues related to background mainte-
nance were discussed by Toyama et al. [3]. One major prob-
lem is the blending of foreground and background. Another
one is delay of background update when there are changes
in the background region. Processing tasks in [3] can be per-
formed in the pixel, region, and frame levels. As to the back-
ground model, Wren et al. [4] applied the single Gaussian
model to each pixel. The single Gaussian model is appropri-
ate for scenes with almost static background. Haritaoglu et al.
[5] employed the kernel density estimation method to cope
with a varying background such as waving trees. Stauffer and
Grimson [6] took a mixture Gaussian model to develop an
alternative criterion for fast processing using temporal dif-
ferences. Gutchess et al. [7] compared various background
initialization algorithms for seven typical scenes.

There are several techniques proposed to differentiate
moving cast shadows from background and vehicles. Back-
ground subtraction methods provide a simple, yet useful so-
lution to moving region extraction since background is al-
most static for a short period of time. Moreover, solutions
using a frequent update of the background image have been
proposed to cope with gradual environmental change and
noise [3]. However, extracted regions from the background
subtraction method often include the cast shadow. It needs
a further processing step to eliminate cast shadows from
extracted moving regions. Cucchiara et al. [8] proposed a
shadow suppression technique based on the characteristics
of the Hue-saturation-value (HSV) color space. Another way
to detect moving cast shadows was proposed by Fung et al.
[9], where an indicator called the shadow confidence score
was calculated in the luminance, chrominance, and gradi-
ent density. They also employed the Canny edge detector
for edge detection and image segmentation, and extended
their work to the visual-based dimension estimation by the
3D simple model in [10]. Prati et al. [11] presented the
taxonomy of shadow detection methods according to gray
level/color, local and static parameters, region and dynamic
features, and performed a comparative study. It is obvious
that moving shadow detection and elimination is one of the
key research topics in vision-based highway surveillance sys-
tems. However, most methods have their shortcomings and
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Figure 1: (a) The simplified vehicle model in the 3D space, and (b) the simplified vehicle model in the 2D image plane.

limitations. For algorithms that perform region segmenta-
tion and boundary detection in the pixel domain, it is some-
times difficult to discriminate the cast shadow from the self-
shadow since the characteristics for the self-shadow region
and the cast shadow region are very similar.

Cucchiara et al. [2] provided a traffic monitoring method
by combining a low-level (pixel-based) processing technique
and a high-level (knowledge-based) reasoning method,
where occlusion reasoning helps estimate each vehicle in the
occlusion region effectively. The reasoning rules explored ve-
hicle features and expert rules such as “no change in the size,”
“inertia,” and “traffic laws and rules.” Another occlusion rea-
soning method was proposed by Jung and Ho [12]. The use
of multiple cameras may be helpful to occlusion detection,
for example, the stereo-vision method. With stereo vision,
one can understand the 3D space using parallax. However,
approaches using multiple cameras demand a way to es-
tablish the correspondence between images. Even though it
is sometimes possible to find feature points among images
taken from different cameras, to find the correspondence be-
tween images is generally a difficult task.

More recently, Gupte et al. [13] employed a monocu-
lar vision-based detection technique in three levels: the raw
image level, the region level, and the vehicle level. Vehicles
were modeled as rectangular patches. They described the in-
teractive camera calibration tool, which demands only cam-
era calibration parameters and the traffic direction to achieve
the goal. Kato et al. [14] presented a thorough method to
segment traffic-monitoring images into three types, namely,
“foreground,” “background,” and “cast shadow.” Since the in-
tensity distributions of these three types have a large amount
of overlap, it is difficult to learn these distributions sepa-
rately. They applied the 1D HMM (where the 1D means the
temporal direction) to each subblock in the image, which is
a constrained HMM that may prohibit specific transitions.
Wavelet coefficients in high-frequency bands are used to de-
termine “foreground,” “background,” or “shadow region.”
They also took context-dependence among nearby regions
into account.

Traffic monitoring systems have to function properly any
time and under any weather conditions. Nighttime traffic
monitoring is however very different from that of daytime.

For instance, the background subtraction technique cannot
be used to extract moving vehicle regions due to the effects
of headlights and their reflections on the pavements. A pos-
sible solution is to detect headlight positions and estimate
vehicle locations [15, 16, 17]. Generally speaking, detection
accuracy at nighttime is lower than that at daytime due to
various illumination disturbances and the lack of useful vi-
sual information.

3. PROPOSED VISION-BASED SURVEILLANCE
TECHNIQUES AND SYSTEMS

In this work, we investigate techniques to enhance the per-
formance robustness of highway surveillance systems in the
areas of cast shadow elimination, occlusion detection, and
nighttime detection. The first topic is the 2D joint vehicle-
shadow model establishment for moving cast shadow elimi-
nation, which is explained in Section 3.1. The second topic
is to use the multiple-camera system to deal with occlu-
sion problems, which is described in Section 3.2. The third
topic is to overcome the nighttime detection via the rear-view
monitoring technique, which is presented in Section 3.3.
Section 3.4 describes an enhanced background maintenance
technique to improve detection accuracy. Finally, the overall
system is summarized in Section 3.5.

3.1. Moving cast shadow elimination

We first consider the simplified cuboid model M in the 3D
space that is composed of the width, height, and length of
a vehicle as shown in Figure 1a. Figure 1b illustrates how
model M is transformed into M′ in the 2D image plane. The
model has six vertices M′ = {pk | k = 0, . . . , 5}. In some set-
ting of the camera axis, the model in the 2D image plane can
be approximated using the following features:

S0‖S3, S1‖S4, S2‖S5. (1)

It is desirable to capture the long range of the road so that
we can extract the behavior of vehicles such as lane changes.
Consequently, the vertical angle of the camera axis needs to
be set to near the horizontal direction. Figure 2 shows the
vertical angle of the camera axis and the horizontal axis of
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Figure 2: (a) The vertical angle of the camera axis, and (b) the horizontal axis of the camera.

the camera. Under this consideration, we can set our vehicle
model to have a single vanishing point as shown in Figure 1b.
The position of the vanishing point pv is defined as the inter-
section of S2 and S5 in the 2D image plane. Other sides in the
model have the following feature:

S0‖S3‖ y-axis, S1‖S4‖ x-axis. (2)

This feature can be obtained by setting the horizontal axis of
the camera perpendicular to the traffic flow. Thus, the traffic
flow direction is along the z-direction as shown in Figure 1a.
This approximation simplifies the system while maintaining
detection accuracy. Shadow elimination must be done in ad-
vance to vehicle detection in most existing methods.

Being different from other approaches, the shadow
model is included in the 2D image plane as shown in
Figure 3a in our framework. The shadow of an object (e.g.,
the vertical pole) is decomposed into the direction of its
width and length. In the shadow model, we use three vec-
tors sh, sl, and sw to represent “the height of an object,”
“the length component of the shadow,” and “the width
component of the shadow,” respectively. According to the lo-
cation of the cast shadow on the 2D image plane, we can di-
vide the shadow model into six types as shown in Figure 3b.
The orientation of three lines in Figure 3b is the same as the
orientation of sh, sl, and sw in the shadow model as given in
Figure 3a.

Figure 4a shows the image of the joint vehicle-shadow
model on the 2D image plane. The outer bounding box in
each type represents the fitted six-vertex model for a vehi-
cle that includes the cast shadow. The inner bounding box in
each type represents the fitted six-vertex model for a vehicle
without the cast shadow. It is clear that there is at least one
side whose location and length are not changed by the exis-
tence of the cast shadow. We can distinguish the model type
using the location of the nonchanging side. We denote this
side by S f , where S f is shown by a thick line for each type
in Figure 4a. Since both the vehicle model and the shadow
model are on the 2D image plane, the joint vehicle-shadow

model is also on the 2D image plane. Figure 4b shows the re-
lationship between the lengths of sides of the joint model and
those of the cast shadow model in Figure 1a.

As illustrated in Figure 4b, the relationship between sides
of M′ for the 2D vehicle model only and M′

J for the 2D joint
vehicle-shadow model can be expressed as

∣∣S f +(M′)
∣∣ =

∣∣S f +(M′
J)
∣∣− r+

∣∣S f (M′)
∣∣,

∣∣S f−(M′)
∣∣ =

∣∣S f−(M′
J)
∣∣− r−

∣∣S f (M′)
∣∣,

(3)

where

(i) S f +(M′) is the side that is adjacent to S f of 2D model
M′ in the ascending order,

(ii) S f−(M′) is the side that is adjacent to S f of 2D model
M′ in the descending order,

(iii) r+ is the ratio of shadow model parameters between
|S f +| and |S f |,

(iv) r− is the ratio of shadow model parameters between
|S f−| and |S f |.

We take Type-0 in Figure 4b as an example, the vehicle
height can be found as S f . If we know r+ and r− on the 2D
image plane, the vehicle width and length can be obtained
via S f +(M′) and S f−(M′), respectively. Equation (3) implies
that we can determine the vehicle model M′, if (1) the model
type is determined, (2) the ratios r+ and r− of shadow model
parameters are known, and (3) the parameters of the joint
vehicle-shadow model can be successfully measured using
the background subtraction method. We examine conditions
(1) and (2) in the following.

The six model types depend on the relative locations of
the light source, the vehicle, and the camera as shown in
Figure 4a. The location of S f in the model indicates the light
source direction on the 2D image plane. By utilizing the fea-
ture that the side has neither self-shadow nor cast shadow, we
can determine S f by examining the luminance in each side of
the six-vertex model and finding the side that has the highest



Robust Vehicle and Traffic Information Extraction 2309

x

y

sh

sl

sw

(a)

x
y

Type-2

Type-3

Type-4

Type-5

Type-0

Type-1

(b)

Figure 3: (a) The shadow model, and (b) six cast shadow types according to different lighting directions.

Type-2

Type-3 Type-4 Type-5

Type-0 Type-1

(a)

Type-0

sl

sh

sw

Type-1

sl

sh

sw

Type-2

sl

sh

sw

Type-3

sl

sh

sw

Type-4

sl

sh

sw

Type-5

sl

sh

sw

(b)

Figure 4: (a) Six joint vehicle-shadow types, and (b) their simplified configurations.

luminance in average. This process can be expressed mathe-
matically as

Ln =
1

N

N−1∑

k=0

lumk,
{
k | (x, y) ∈ S j,n

}
,

Lmax = max
(
Ln : S j,n ∈ M′

J

)
,

(4)

where N denotes the number of pixels in S j,n and lumk rep-
resents the luminance value of position (x, y) in the captured
image. Shadow model parameters sl, sh, and sw can be deter-
mined by the length of the cast shadow. Although it is diffi-
cult to obtain the accurate cast shadow area from all passing
vehicles due to various environmental factors, it is possible
to roughly differentiate the cast shadow region and the vehi-
cle with luminance differences. One such process is shown in
Figure 5a. Then, ratios r+ and r− among the three lengths sl,
sh, and sw can be obtained.

There are several key issues to be addressed in the pro-
posed algorithm such as “determination of the vanishing
point,” “determination of the moving object contour,” and
“determination of the shadow model parameters.” They are
discussed in detail below.

Determination of the vanishing point

A simple approach to obtain the vanishing point pv is to ex-
tract the lane orientation in the background image and edge
detection provides a solution to this problem. Another way

to achieve this is through camera calibration. However, the
approach may not be applicable if there is no obvious lane
painting detectable from the image. To cope with such sit-
uations, we use the feature that most vehicles pass the scene
parallel to the lanes to determine the vanishing point since we
do not assume the availability of any prior information about
the camera and the light source. Even though, we cannot de-
termine the cast shadow region because the shadow model
in the 2D image plane is not fixed yet, we can still obtain the
centroid of the six-vertex joint vehicle-shadow model. Then,
we can track vehicles by connecting the centroid in sequen-
tial images. It should be noted that the existence of the cast
shadow region does not affect the calculation of the vanish-
ing point. At first, we obtain the tracking information in the
2D image plane using multiple detected vehicles, then the po-
sition of the vanishing point pv can be set to the intersection
of these tracking lines.

Determination of the moving object contour

In Section 3.1, the joint-model-type can be obtained by
checking the average luminance of six sides of model M′

J .
However, most pixel values on the six-vertex model are in
the background region. They may not lie along the contour
of the extracted moving object region as shown in Figure 5b.
Thus, it is desirable to find the appropriate pixel on the con-
tour of the extracted moving object region to replace the
value of pixels of the sides of the six-vertex model to calculate
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Figure 5: (a) Determination of shadow model parameters, and (b) obtaining the pixel on the object contour.

the average luminance. For each pixel on a side Sn of joint
vehicle-shadow model M′

J , we search an appropriate pixel
(x, y), which is located nearest to the boundary and along
the direction perpendicular to Sn as shown in Figure 5b.

Determination of the shadow model parameters

In the process of shadow parameter determination, the first
step is to find appropriate moving objects from the scene.
It is difficult to perform shadow region segmentation from
the image with low contrast. To obtain a vehicle from im-
ages of higher contrast, we pick up vehicles whose average
luminance of S f is higher than a predetermined threshold ep.
The next step is to find the length of the shadow along each
direction of the image. The basic idea is given in Figure 5a,
where we need a mechanism to determine two threshold val-
ues to separate the cast shadow region from the vehicle region
along two dimensions. In this work, the threshold value et is
set to the average value of the side. We find point pb whose
luminance crosses threshold et, and then calculate the dis-
tance between pb and the end of the side, which is equal to
sw or sl. In comparison to conventional approaches [11] that
compare pixel values in the current image with those in the
background image, our proposed scheme employs only the
current image. By picking up vehicles with bright colors and
using the characteristics of the vehicle-shadow model shown
in Figure 5a, we can easily obtain lengths sl, sw, sh and the
ratio sl : sw : sh. Thus, with our method, it is unnecessary to
compare the pixel values in the current frame with the refer-
ence background.

3.2. Occlusion detection

In this section, we focus on the detection of implicit occlu-
sion. A temporal reversed processing could be a solution to
the implicit occlusion problem. However, not every implicit
occlusion can be solved by this approach, for example, the
occluded situation may continue throughout the scene. Here,
we propose a solution to implicit occlusion detection using
multiple cameras. The proposed method is based on a per-
spective projection of multiple images in the 2D road surface
plane. For simplicity, we only project the centers, which are

obtained from both images Ip and Is, to the projected plane Ir
as shown in Figure 6a. We can detect implicit occlusion from
the mismatch between the representative centers. With this
approach, the projected road regions in both images Ip and
Is must be identical so that we can determine occlusion from
the mismatch in the projected plane Ir .

The perspective projection P from points pp = (xp, yp)
in the 2D image plane Ip to their corresponding points pr =
(xr , yr) in the road surface image plane Ir can be represented
by Ir = P(Ip) and realized by

xr =
c00xp + c01yp + c02

c20xp + c21yp + 1
, yr =

c10xp + c11yp + c12

c20xp + c21yp + 1
. (5)

In the perspective projection, at least four pair coordinates of
the corresponding points between the 2D image plane and
the projected road surface plane are needed to determine all
parameters {C : c00, c01, . . . , c21} as shown in (5). From now
on, the projection from Ip to Ir is denoted by Ppr , and the
projection from Is to Ir is denoted by Psr . The coefficients for
projections Ppr and Psr are denoted by Cpr and Csr , respec-
tively.

For each image plane given in Figure 6a, the four feature
points and a vanishing point are represented by pk1, pk2, pk3,
pk4, and pkv in Figure 6b. The first subscript k represents the
image plane (Ik : k = p, r, s) and the second subscript, with
values equal to 1, 2, 3, 4, and v, stands for the feature point
ID. These feature points are often specified with road lane
paintings. However, the approach may not be suitable if the
camera cannot detect any clear lane painting. Since our goal
is to detect occlusion by matching from images Ip and Is, it
is enough to find three corresponding feature points for con-
sistence check between projected image regions. The three
pairs are chosen to be pp1, ps1 (the near left point), pp2, ps2

(the near right point), and ppv, psv (the vanishing point). The
other coordinates for the setting of camera positions can be
obtained as

Pk3=(1−a)·pk1 +a·pkv , Pk4=(1−a)·pk2 +a·pkv .
(6)
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Õ(n, t)

δ

Vanishing point Pv

(b)
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Equation (6) indicates that positions of pk3 and pk4 can be
derived from positions of pk1, pk2, pkv, and parameter “a.′′

Once these three corresponding points pk1, pk2, and pkv in
images Ip and Is are determined, we can match these two im-
ages in the same Ir , which has predefined positions of four
feature points pr1, pr2, pr3, and pk4. Parameter “a′′ can be
set arbitrarily between 0 and 1. When this value is set near
to 1, the projected road range becomes longer in the direc-
tion of traffic. It is desirable for long-range object tracking.
However, the region near the vanishing point is susceptible
to noise. The value of 0.75 is adopted in our experiments.

The vanishing points ppv and psv in the captured images
Ip and Is are determined by vehicle tracking. We can track
vehicles by connecting the center of the detected moving ob-
ject in the image sequence. Please note that the cast shadow
region does not affect the calculation of the vanishing point.
At first, we obtain the tracking information on the 2D image
plane using multiple detected vehicles. Then, the location of
vanishing point pkv can be obtained by the intersection of

these tracking lines. The next step is the determination of
feature points pk1 and pk2 in images Ip and Is. Figure 7a rep-
resents the relationship between the traffic lane angle and the
image plane. A quadrilateral in the image represents the re-
gion to be projected. The line lc represents a perpendicular
line to the traffic flow on the road surface plane. The line lh
represents a horizontal line in the original image. Parameter
θ is the angle difference between lc and lh.

It is difficult for pp1 and pp2 to have the same coordinates
with respect to the traffic axis (i.e., the y-axis) in Figure 7a
from the image since the relationship between the left side
and the right side of the road in the image is unspecified.
Thus, the approximation yp1 ≈ yp2 ≈ ypb is assumed for the
determination of pp1 and pp2. The above assumption means
that the angle difference θ is regarded as zero. The effect of
this assumption can be ignored when the vanishing point lo-
cates within the 2D image plane. Yet, we still cannot deter-
mine feature points p1 and p2 from the image directly. We
assume that ppl, ppr , and ppb are the leftmost, the rightmost,
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Table 1: The occlusion detection algorithm.

Conditions Occlusion detection algorithm

Case 1: Determined object location on Ir : opr(n)

If
(
d1 < Thr1

)
Object locations to be deleted on Ir : osr

(
m1

)

Case 2:
Determined object location on Ir : opr(n)

Else if
(
d1 > Thr2

)

Case 3: Else If(
d1/d2 > rt

)
Determined object location on
Ir : osr

(
m1

)
, osr

(
m2

)

Object locations to be deleted on Ir : opr(n)

Case 4: Determined object location on
Ir :

(
opr(n) + osr

(
m1

))
/2, osr

(
m1

)
.Else

and the bottommost of vehicles in a traffic scene in image Ip,
respectively, as shown in Figure 6b. The coordinates of pp1

and pp2 can be obtained via

xp1 = xpv + al
(
xpl + xpv

)
, al =

ypb − ypv

ypl − ypv
,

xp2 = xpv + ar
(
xpr + xpv

)
, ar =

ypb − ypv

ypr − ypv
.

(7)

When the four coordinates pp1, pp2, pp3, and pp4 are deter-
mined, we can obtain all coefficients of Cpr in (6) for image
source Ip. The coefficients of Csr for image source Is can be
obtained with (7) similarly.

Implicit occlusion can be detected by checking the spatial
difference between centers in the projected image. At first,
background subtraction is used to extract the moving re-
gion and an identification number n is assigned to each re-
gion. Then, a bounding box and the center position of the
bounding box are obtained for each detected moving object
region. Let op(n) be the center position of bounding box n in
image plane Ip. Consequently, the projected center location
opr(n) in image plane Ir is represented by Ppr (op(n)). For
each opr(n), we find the first and the second nearest center
positions osr(m1) and osr(m2) to opr(n) from image plane Is,
and calculate the distances d1 and d2, where d1 ≤ d2, via

d1 =
∥∥osr

(
m1

)
− opr(n) + doffset

∥∥
2,

d2 =
∥∥osr

(
m2

)
− opr(n) + doffset

∥∥
2.

(8)

The vector doffset in (8) is used to adjust the deviation be-
tween projected centers from images Ip and Is. The value
of doffset is dependent on the three extracted feature points
p1, p2, and pv as described above. An effective selection of
this value is to take the average difference between images.
The occlusion detection algorithm is summarized in Table 1,
where parameters rt , Thr1, and Thr2 are used for detection,
where rt is used to determine the occlusion decision thresh-
old, Thr1 represents the permissible mismatch for the iden-
tification of the object, and Thr2 represents the maximum
limit for occlusion detection. It is clear that Thr1 ≤ Thr2.

In Table 1, the statement “object locations to be deleted”
in Case 1 means object locations to be removed from the ve-
hicle recognition process. Object positions not mentioned in
each case are finally regarded as the detected object locations.
For Case 1, detected position pairs from images Ip and Is are

identified as a single object. In this case, os(m1, t) is removed
from the detected vehicle position. For Case 2, an object de-
tected in image Ip is not detected correctly in image Is, or the
position is overdetected in image Ip. For Case 3, there exist
occlusion instances in image Ip. In this case, the erroneously
detected position op(n, t) is removed from the detected vehi-
cle position. Finally, for Case 4, there exists some probabil-
ity of occlusion. It occurs mainly when a large object enters
the scene and more than two vehicles are located in the same
occluded region. Since we cannot identify every vehicle from
the scene, we estimate the mean of the two points as the main
object location.

For explicit occlusion detection, it is possible to use the
information already in previous images to estimate object lo-
cations in the current image since the size, dimension, and
motion of each vehicle do not change in a short-time period.
Figure 7b shows the idea of explicit occlusion detection in
the original image sequence. The estimated location of an
occluded vehicle is modified to match the result of back-
ground subtraction in the current image. Then, the infor-
mation about the vehicle is updated. The steps for explicit
occlusion detection are given below.

(1) Prediction of vehicles in the current image from the
previous image.

We use m(k, t), s(k, t), and o(k, t) to denote the motion,
size, and center position information of vehicle k in the 2D
image plane at time t. With the inertia principle, the loca-
tion and the size of the object in the 2D image plane can be
predicted using vanishing point pv, that is, we have

õ(n, t) = o(n, t − 1) + m(n, t − 1),

s̃(n, t) = a · s(n, t − 1),

where a =

∥∥pv − õ(n, t)
∥∥

2∥∥pv − o(n, t − 1)
∥∥

2

.

(9)

(2) Matching between the predicted location and de-
tected results in the current image.

The predicted location of object n is matched with the re-
gion of detected object j whose location and size are denoted
by s( j, t) and o( j, t), respectively.

(3) Modification of the current vehicle location from the
matching result.

Let O(n, t) be the bounding box of object n at time t. If
the predicted region O(n, t) of object n obtained from õ(n, t)
and s(n, t) is located within region O( j, t) of object j, the
center location of object n is set to õ(n, t). If region O(n, t)
deviates from region O(n, t − 1) significantly, we modify the
center location of object n so that it does not deviate from
the predicted center more than δ, that is,

o(n, t) = õ(n, t − 1) + δ,

s(n, t) = s̃(n, t).
(10)

(4) Finally, the vehicle motion information is updated via

m(n, t) = o(n, t)− o(n, t − 1). (11)
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Figure 8: (a) The rear-view vehicle model observed at nighttime, and (b) the relationship between feature points.

3.3. Nighttime detection with rear-view monitoring

Traffic monitoring systems are required to function prop-
erly under any time and weather conditions. Nighttime traf-
fic monitoring imposes a great challenge, since most daytime
detection methods have much poorer performance when be-
ing directly applied to nighttime detection. In previous work
[15, 16, 17], vehicle detection at nighttime has been based
on finding headlight locations and pairing the headlights. To
find headlight locations, one has to distinguish headlights
from other disturbances such as reflected lights on the pave-
ment. The headlights are paired according to their spatial re-
lationship.

In this section, we propose a rear-view detection ap-
proach, which has several advantages as compared with the
conventional front-view detection approach. First, the rear-
view approach improves nighttime detection performance
due to the light disturbance reduction and utilization of the
headlight information in another way. Second, the rear-view
approach achieves superior tracking accuracy by exploiting
the opposite traffic direction in video. Owing to the detec-
tion of both sides (front and tail), the rear-view monitoring
can easily extract the vehicle length, which is one of the im-
portant traffic parameters especially for nighttime detection.
Moreover, the rear-view system can reduce the disturbances
caused by reflected headlights on the pavement because the
camera axis does not face the strong headlights of oncoming
vehicles.

Vehicle detection at nighttime using the rear-view moni-
toring technique is detailed below. The vehicle model under
this setting is shown in Figure 8a. The detection process is
to determine not only taillights but also the front end of each
vehicle. With these two features, we can determine the vehicle
length. The most salient feature of each vehicle at nighttime
is its taillights. Since this is similar to that of front-view head-
lights, we can detect the positions of taillights using the same
manner. Furthermore, we should recognize the vehicle front
contour as a boundary of the dark region (i.e., the vehicle
body) and the bright region (i.e., the lighted pavement).

As shown in Figure 8b, we define the following parame-
ters for the vehicle model at nighttime.

(1) ptl and ptr. They are the left- and right-ends of tail-
lights. The distance between them represents the vehicle
width. This model has vertical offset h between taillights and
the road surface plane.

(2) phr, which is the rightmost point of the vehicle con-
tour. It represents the intersection between line l, which con-
nects ptr and the vanishing point pv, and f , which has a large
luminance difference between both sides. The vehicle length
can be extracted from the distance between ptr and phr in the
image plane. We assume that parameter phr has the same ver-
tical offset h from the road surface plane as ptl and ptr.

Vehicle detection is based on finding feature points ptl,
ptr, and phr. We can extract the width parameter W , the
length parameter L, and the centroid point pc in the road
plane from these feature points as follows.

Detection of vehicle tail positions ptl and ptr

Taillight locations are found using the conventional light lo-
cation detection method. That is, vehicle tail locations can
be estimated by pairing detected taillights. This pairing oper-
ation exploits the following characteristics. First, the vertical
position for a pair of taillights is almost the same because of
the camera setting. Second, the distance between each pair of
taillights in the real world has almost the same value. Con-
sequently, we can determine possible distance between tail-
lights according to the light location in the image plane. Fi-
nally, the location of feature points ptl and ptr can be deter-
mined as the leftmost and the rightmost points of each de-
tected vehicle tail.

Detection of vehicle front position phr

The detection of phr is achieved by finding the intersection
between boundary f and line l in the vehicle model given by
Figure 8a. This approach demands the knowledge of vanish-
ing point pv, which can be obtained using vehicles’ trajec-
tory information. When we investigate the luminance value
on line l from ptr to pv, there is a significant change from a
low value to a high value around phr. Thus, we can determine
the location of phr from the luminance value of line l as well.
This detection is based on the assumption that the difference
between spatially neighboring pixels in the vehicle body re-
gion is smaller than that at boarder f as shown in Figure 8.

Vehicle position extraction

The vehicle location can be estimated from results of the
above steps. We can obtain the following parameters: width
W , length L, and centroid position pc for each vehicle as
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shown in Figure 8b. Please note that we do not have the
height value h from the image yet. It is however possible to
use the empirical value to estimate parameter h.

3.4. Enhanced background maintenance

In this section, we examine ways to improve the background
maintenance technique. Since background subtraction is an
essential step to any vehicle detection algorithm, it demands
high accuracy. For the modeling of each pixel on the back-
ground image, the Gaussian model would be sufficient if pix-
els on the background image belong to a particular surface of
an object under the same lighting condition. Here, we treat
each pixel in the background image as a random variable
with an adaptive Gaussian distribution. It is assumed that the
background status does not change much within a short pe-
riod of time. Mathematically, for the background pixel at po-
sition (x, y) and time t, its intensity is modeled by the Gaus-
sian probability function

B(x, y, t) = G
(
Brep(x, y, t), σ2(x, y, t)

)
, (12)

where Brep and σ represent the mean and the standard de-
viation, respectively. Generally speaking, the model should
be updated according to the latest image to maintain the ac-
curacy of background subtraction results. Sometimes, there
could be a global luminance change in the latest input im-
age, which may be caused by automatic color/white balance
control of the camera or a sudden change of weather con-
ditions such as the effect of rains and clouds. In this case, it
is preferred not to segment any region to be foreground and
background since the change is not caused by object motion.

The background update may introduce a blending prob-
lem if the background model is updated using pixels that
do not belong to the background region in the latest im-
age. Consequently, the following two principles should be
followed as much as possible. First, the update should be per-
formed frequently enough to avoid potential overdetection
of vehicles. Second, we should avoid pixels that belong to the
moving region in the latest image in the update. In terms of
mathematics, the background model is updated via

Brep(x, y, t + 1) =
(
1− αMB(x, y, t)

)
Brep(x, y, t)

+ αMB(x, y, t)I(x, y, t),

σ2(x, y, t + 1) =
(
1− αMB(x, y, t)

)
σ2(x, y, t)

+ αMB(x, y, t)
(
I(x, y, t)− Brep(x, y, t)

)2
,

(13)

where 0 ≤ α ≤ 1 is a weighting parameter, MB(x, y, t)
is a binary mask to represent the background region,
(MB(x, y, t) = 1 means that the pixel on the input image at
position (x, y) and time t belongs to the background region),
I(x, y, t) represents the input pixel value at position (x, y) at
time t. To meet the first principle, we can control adapta-
tion delay by selecting a proper value of α. Faster adaptation
is achieved by setting α near 1. As to the second principle,
the setting of MB may help control the blending. With the

conventional approach, mask MB is obtained by

MB(x, y, t)=




1 if
∣∣I(x, y, t)− Brep(x, y, t)

∣∣ < T1σ(x, y, t),

0 otherwise.

(14)

Note that MB is set to zero at all positions when there
is a fast monotonic change in the image such as auto-
matic brightness/white balance control or sudden brightness
change due to the weather. It means that the background
model is not updated at all, since the difference between the
latest pixel value and the corresponding pixel value of the
background model is larger than T1σ . In this case, the whole
image is regarded as one moving object region when the
background subtraction technique is applied. To solve this
problem, we calculate mask MB with a new scheme. Instead
of using (14), we determine MB according to the relation be-
tween the difference in consecutive frames and the deviation
α. At first, we calculate the absolute difference between con-
secutive frames as

D(x, y, t) =
∣∣I(x, y, t)− I(x, y, t − 1)

∣∣. (15)

Then, we calculate mask MB via

MB(x, y, t) =




1 if D(x, y, t) < T2σ(x, y, t),

0 otherwise,
(16)

where T2 is another parameter.
Since the mask update formula in (16) does not depend

on the pixel value of the background model Brep as given in
(14), the current pixel value is included in the background
model update as far as the temporal absolute difference D
is equal to or lower than T2σ . Thus, (16) includes pixels
whose change in consecutive frames is not significant in the
update of the background model. With this modification,
we can update the background model quickly according to
the latest image when there is a change caused by the auto-
matic color/white balance control of the camera or the sud-
den weather change. Finally, the foreground region is deter-
mined by

MF(x, y, t) =




1 if
∣∣I(x, y, t)−Brep(x, y, t)

∣∣ < T3σ(x, y, t),

0 otherwise.

(17)

This new background maintenance technique is called the
fast adaptive background maintenance method.

3.5. Summary

Figure 9 shows the block diagram of a vision-based traffic
monitoring system that consists of the proposed three tech-
niques: shadow elimination, occlusion detection, and night-
time detection. The proposed shadow elimination algorithm
has several unique features. First, parameters of vehicle and
shadow models can be estimated from input video with-
out the light source and camera calibration information.
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Figure 9: The block diagram of the proposed vision-based traffic monitoring system.

Second, this algorithm does not perform 3D image analy-
sis operations so that the complexity is low. Third, we dis-
tinguish the cast shadow region from the vehicle itself via
the proposed joint model rather than two separate models
and this simplifies the algorithm greatly. For occlusion de-
tection, images from multiple cameras for each scene are em-
ployed. Our approach has several advantages in comparison
with conventional approaches. First, this approach does not
need edge detection or region segmentation operations that
are sensitive to environmental factors. Second, our method
does not need camera calibration in advance. Third, previous
work with multiple-camera solutions has difficulties in find-
ing the corresponding feature points among captured im-
ages. No matching is required for the proposed method since
we only focus on the centroid of each vehicle instead of all
pixels. For nighttime detection, we introduce the rear-view
monitoring concept to overcome the problem arising from
the poor lighting condition. Finally, we present a background
maintenance method that can adjust the background model
according to the environmental change quickly.

Vehicle tracking accuracy depends on the direction of
traffic flow and the camera angle. Vehicles that are far from
the camera have a lower resolution as compared to vehicles
that are near to the camera. For vehicles at the far end of the
scene with their low spatial resolutions, it is difficult to iden-
tify them. Furthermore, the associated motion information
along the road may not have a sufficient resolution. In con-
trast, it is easier to detect and track vehicles with a higher
resolution if they are near the camera. There is another fac-
tor worth consideration, that is, when vehicles are far from
the camera, there is a higher probability of occlusion, which
degrades detection accuracy.

4. EXPERIMENTAL RESULTS

We evaluated the performance of a vision-based highway
surveillance system by implementing the proposed shadow

elimination, occlusion detection, vehicle nighttime detec-
tion, and enhanced background maintenance techniques us-
ing various highway traffic scenes captured with a fixed cam-
era position. The size of the image is 320×240 pixels and the
frame rate is 30 fps. Each color component is quantized to 8
bits.

4.1. Cast shadow elimination

Figures 10a and 10b show results of the vehicle-model-type
decision from the scenes. In these two images, the side S f and
other sides of the vehicle model are drawn in thick and thin
lines, respectively. In these two vehicles, the extracted shadow
parameters are normalized with the length of S f . The pa-
rameters r+ and r− can be obtained according to the shadow
model type. Although contours of the extracted moving ob-
ject regions do not include the whole area of each vehicle,
the fitting of the vehicle model and the determination of the
shadow model work very well.

Figure 11a shows the fitted joint models M′
J with cast

shadow regions and the calculated vehicle models M′ with-
out cast shadow regions. The tracking of each vehicle in the
latest 0.5 second is also drawn. From the result, vehicles in
both outbound and inbound lanes are tracked successfully.
Figure 11b shows the result of the proposed method applied
to images from another scene. As we can see from the fig-
ure, the moving cast shadow is longer than that in Figure 11a.
The left image shows the result of the detected joint vehicle-
shadow model (in the dark box) and the six-vertex vehicle
model (in the light box). The right image shows the result
of moving region extraction using background subtraction.
The detected vehicle model information as well as the track
information of each detected vehicle are also displayed in
both images. The scene condition of Figure 11b is different
from that of Figure 11a in terms of the light source condition
and the camera location. We see that the proposed method
can detect vehicles well under both conditions.
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(a) (b)

Figure 10: (a) Vehicle-model-type determination for shadow elimination with two different cases.

(a) (b)

Figure 11: (a) Detection and tracking results for two scenarios.

4.2. Occlusion detection

Figure 12a was captured by a camera above the center lane of
the highway and Figure 12b was captured above the leftmost
lane of the highway. Figures 12c and 12d are masks obtained
using the background subtraction operation. It is clear that
we cannot distinguish either the cast shadow region or the
occurrence of occlusion only from the mask information as
shown in Figure 12c.

Figures 13a and 13b are results of the projected image
on the road surface plane. Figure 14 shows the detected oc-
clusion. The small hollow circle within the large white thick
circle represents the obtained center from the moving object
region in image Ip. Since the region in each white thick circle
is regarded as a single moving object region in image Ip, the
system cannot recognize that there are actually two vehicles
in this image. The solid white circles in the images represent
the obtained center of moving regions in image Is. By the de-
tection algorithm in Table 1, we can determine these regions
to be Case 3. Consequently, the solid white green circles are
obtained as the centers of the vehicles in the occlusion region.

The performance of the proposed occlusion detection al-
gorithm is compared with that of single-camera solutions in
Table 2. We compare the result by checking the identified ve-
hicles passing the middle of the projected image. With a sin-
gle image source, the rate of the identified vehicle in the oc-
clusion region is 53.9% and 25.3%, respectively. In particu-
lar, the detection ratio in image Is has a low score. This is
due to the poor camera angle in image capturing. The larger

the horizontal angle difference between the camera axis and
the traffic flow is, the higher the probability of the occluded
scene becomes. On the contrary, the proposed method can
identify vehicles in the occlusion region up to 76.3%. We see
that the vehicle detection rate is improved significantly by the
proposed occlusion detection system.

4.3. Vehicle nighttime detection

Figures 15a and 15b show results of nighttime vehicle loca-
tion detection using the conventional front-view technique
and the proposed rear-view monitoring technique, respec-
tively. From these figures, the proposed method successfully
detects the vehicle length as well as the vehicle location at
nighttime. Detection with the front-view monitoring has two
primary disadvantages. First, there are more cases of head-
light pair misdetection. Second, the vehicle length cannot be
extracted for some vehicles.

Figures 16a and 16b show results using the front-view
monitoring and the rear-view monitoring, respectively. Here,
we picked up three typical vehicles as examples. The x-axis
represents the distance along line l (see Figure 8a) with re-
spect to point ptr , in the direction opposite to the vanish-
ing point, and the y-axis represents the pixel values on line
l in the model given by Figure 8a. In Figure 16a, there are
no significant features around the vehicle tail region in the
front-view image. In contrast, in Figure 16b, the vehicle re-
gion on line l is represented with an arrow line and there are
significant changes in the pixel value around the vehicle head
region for vehicles in the rear-view image. Consequently, it is
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(a) (b)

(c) (d)

Figure 12: Simultaneously captured image for a scene: (a) captured from above the center lane Ip and (b) captured from the left Is; and
detected moving regions from the output of background subtraction: (c) extracted moving region from (a), and (d) the extracted moving
region from (b).

(a) (b)

Figure 13: The projected images to the road surface plane: (a) projected image Ip and (b) projected image Is.

(a) (b)

Figure 14: The results of occlusion detection using the proposed algorithm.
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Table 2: Results of occlusion detection.

Item Ip Is Proposed Ground truth

Identified vehicles 359 (91.1%) 318 (80.7%) 376 (95.4%) 394

Identified vehicles in occlusion 41 (53.9%) 23 (25.3%) 58 (76.3%) 76

Misdetection 35 78 23 —

Overdetection 0 2 5 —

(a) (b)

Figure 15: Nighttime vehicle detection result using (a) the front-view monitoring technique, and (b) the proposed rear-view monitoring
technique.
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Figure 16: Luminance transition from ptr toward pv along line l in the model (see Figure 7a) of (a) the front view and (b) the rear view of
the monitoring system.

easy to determine the third feature point p f r from the rear-
view images as compared to that of the front-view images.

We compare detection accuracy using the front and the
rear views at daytime and nighttime in Table 3. The accuracy
is evaluated by checking the centroid position of vehicles
when they pass the vertically middle of the image plane. For
each condition, the number of passing vehicles was set to be

320. It is clear that detection using the rear-view technique
achieves higher accuracy than the front-view technique in
both daytime and nighttime. There is a remarkable miss rate
with the front-view monitoring at nighttime. The degrada-
tion is due to the difficulty in finding the third feature point
phr in the front-view video. The miss at daytime is mainly
caused by occlusion. The miss at nighttime is relatively high
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Table 3: Comparison of detection performance with different conditions.

Conditions Miss False alarm Ground truth (no. of vehicles)

Daytime, rear view 11 (3.4%) 3 (0.9%) 320

Nighttime, rear view 18 (5.6%) 7 (2.2%) 320

Daytime, front view 18 (5.6%) 7 (2.2%) 320

Nighttime, front view 163 (50.9%) 11 (3.4%) 320

(a) (b)

(c)

Figure 17: Results of background subtraction with two different background maintenance schemes: (a) the original image, (b) the detected
moving object region by the conventional method, and (c) the detected moving object region by the proposed method.

as compared to that at daytime due to the poor lighting con-
dition. Detection with the nighttime image is based on de-
tecting locations of light sources and pairing them accord-
ing to their spatial relation. Thus, misdetection at nighttime
occurs for objects such as motorcycles or vehicles with one
of their taillights off. Moreover, the false alarm is caused
by disturbances such as reflected headlights. Among these
four monitoring conditions, the daytime monitoring with
the rear-view monitoring performs the best.

4.4. Results of enhanced background
maintenance algorithm

Finally, we compare the performance of the conventional
and the proposed fast adaptive background maintenance
techniques. The conventional approach adopts (14) to up-
date mask Mb in the background model while the proposed
method uses (16) for the update and (17) for determining

the moving objects. Figures 17a, 17b, and 17c show the back-
ground subtraction results from a daytime image sequence.
Figure 17a shows one input image, where there is change in
the pixel value caused by automatic white balance control of
the camera. Figures17b and 17c show results of background
subtraction using the conventional background maintenance
and the proposed fast adaptation background maintenance,
respectively. In Figure 17b, detection accuracy degrades be-
cause of overdetection with the conventional background
maintenance. Detection accuracy is improved by the pro-
posed fast adaptation background maintenance.

5. CONCLUSION

In this paper, we proposed some solutions to solve three cru-
cial problems, that is, moving cast shadow elimination, oc-
clusion detection, and nighttime detection, in a vision-based
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monitoring system for highway traffic surveillance. A 2D
joint vehicle-shadow model was proposed to obtain the ve-
hicle and the shadow information from luminance analy-
sis. A multiple-camera system was employed to detect occlu-
sion based on image matching using perspective projection.
A rear-view monitoring technique was used to improve the
vehicle detection at nighttime. Moreover, a new fast adaptive
background maintenance was developed to adapt the envi-
ronmental change quickly. As demonstrated by experimental
results, the proposed system can detect various kinds of vehi-
cle information robustly. In the near future, we would like to
extract various kinds of traffic events based on vehicle detec-
tion results for highway surveillance system as an extension
of this work.
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