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Abstract: Automatic vehicle detection and counting are considered vital in improving traffic control

and management. This work presents an effective algorithm for vehicle detection and counting in

complex traffic scenes by combining both convolution neural network (CNN) and the optical flow

feature tracking-based methods. In this algorithm, both the detection and tracking procedures have

been linked together to get robust feature points that are updated regularly every fixed number

of frames. The proposed algorithm detects moving vehicles based on a background subtraction

method using CNN. Then, the vehicle’s robust features are refined and clustered by motion feature

points analysis using a combined technique between KLT tracker and K-means clustering. Finally,

an efficient strategy is presented using the detected and tracked points information to assign each

vehicle label with its corresponding one in the vehicle’s trajectories and truly counted it. The proposed

method is evaluated on videos representing challenging environments, and the experimental results

showed an average detection and counting precision of 96.3% and 96.8%, respectively, which

outperforms other existing approaches.

Keywords: vehicle dtection; intelligent transportation system; vehicle counting; background

subtraction; deep convolutional neural network

1. Introduction

Detecting and counting vehicles on the road are very important tasks for the traffic information

analysis that can be used in traffic control and management to ensure a safe transportation system.

Recently [1], vision-based vehicle detection and counting using image processing techniques provide

more advantages than traditional intelligent transportation techniques [2], like microwave or magnetic

detectors. Vision methods are providing high accuracy with low expenses and are better in terms of

maintenance and installation. An important stage in vehicle detection and counting is the elimination

of the static background from the moving objects in a challenging environment.

The most recent studies in intelligent transportation systems focus on vehicle detection [3–12].

Vehicle detection can be categorized into two groups [1]: detection methods based on vehicle

appearance, and detection methods based on vehicle motion. The appearance-based strategies depend
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mainly on visual features, including vehicle symmetry, texture, edges, and color [5–8]. The concept

of motion-based techniques is to extract the moving vehicles based on their motion characteristic

that separate them from the background, such as optical flow, frame differences, and background

subtraction [9–11]. Detection and tracking of vehicles simultaneously is considered a robust strategy for

achieving accurate detection and counting results [1]. However, there are many challenges in vehicle

detection and counting processes, such as illumination variation, shadows, and partial occlusion.

Yang and Qu proposed a new detection and counting technique that combined the detection and

tracking processes [13]. In [13], the vehicles are detected by background subtraction with sparse and

low-rank decomposition, which works with illumination or weather changes. Then, an online Kalman

filter algorithm is used to track each vehicle in several frames to obtain a reliable vehicle counting

result. However, this algorithm miscounts some vehicles because low-rank decomposition causes

some false negative results.

In [14], a background modeling based on Principal Component Pursuit (PCP) was proposed.

The training stage contains feature extraction, motion segmentation, and parameter estimation, while

the counting process is based on an initial guess of vehicles number using the spatial information of a

given frame, followed by a refinement process using the temporal information from previous frames.

This strategy miscounts some vehicles because the counting decision depends only on the foreground

detection results from the PCP that include some false positive results.

In [15], a fast strategy was presented for vehicles counting using the Gaussian Mixture Modeling

(GMM) for a small area of the frame to model the background and extract the foreground vehicles.

Then, a new counting strategy is applied when vehicles are passing this area. However, this method

depends on a traditional background modeling method that cannot efficiently work with the different

weather condition and in night scenes.

Most vehicle counting strategies depend mainly on background modeling with good accuracy,

yet some false positive and false negative results have occurred when the background has large

changes. Recently, the convolution neural networks have been used in object detection with better

foreground and background discrimination because of their powerful capabilities in extracting low,

mid, and high-level image features. Better foreground detection by CNN can improve tracking

and counting accuracy. CNN can demonstrate excellent performance, but the performance is

not perfect. The tracking and counting accuracy can be enhanced by reducing false-positive and

false-negative results using a refining process to improve the foreground detection by CNN. Thus,

a new framework for vehicle counting is suggested in this paper based on the collaboration process

between collected detection information using convolutional neural networks and tracking information

using optical flow. The work depends on the feature point’s information analysis between the fixed

number of frames, and using the temporal information of the detection and tracking feature points

between the framesets to achieve better counting decision. Table 1 summarizes the motivation of our

work compared with existing state-of-the-art methods.

Table 1. Evaluation summary with the state of art.

Compared Algorithm Advantages Disadvantages

Corola [12]
Low computational complexity.
Good detection result.

Only detection method.
Low detection result in severe illumination changes.

Yang et al. [13]
Low computational complexity.
Good detection and counting accuracy.
Detection and Counting algorithm.

Declined counting precision accuracy.
Dropping in the recall detection accuracy.

Quesada et al. [14]
Low computational complexity.
simple counting strategy with good accuracy.

Miscounts some vehicles because of some false-positive results.
Counting is based on an initial guess that leads to insufficient counting accuracy.
Only counting method.

Mohamed [15] Faster counting strategy.
Cannot efficiently work with different environment and weather condition.
Dropping in the overall precision accuracy by using a traditional background subtraction method.
Only counting method.

Proposed Method

Low computational complexity.
Better detection and counting accuracy.
Detection and counting algorithm.
Working with different and complex traffic scenes.

Vehicle occlusion in specific videos influence the vehicle detection and counting.
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In this work, a new detection and counting method is proposed by developing a three-step

approach in each frameset, as explained in Figure 1. First, the power of convolution neural network

is exploited in the vehicle detection process before the vehicle refining and clustering process in the

second step using the optical flow and k-means clustering. The CNN is used in the first frame, with the

refining analysis considering the remaining frames in the frameset. Thus, a robust discrimination

process between the foreground vehicles and noisy background regions is utilized. Thirdly, an effective

counting strategy is offered to assign each vehicle with its corresponding trajectory based on the

collected detection and tracking information. The detection and counting accuracy is increased,

and the algorithm works efficiently with different and challenging environments. We conducted

experiments on challenging datasets, and the proposed method showed the best performance in terms

of precision and recall.

Input frameset S  
(N frames) 

Vehicle detection 

Connecting vehicle 
cluster trajectories

Vehicle features 
detector

KLT Tracker

Vehicles refinement &  
clustering

Last frame in framset S Second frame in framset S Last frame in framset S-1First frame in framset S

Figure 1. Block diagram of the proposed approach for a specific frameset S.

2. Methodology

The proposed framework contains three functional steps in each frameset, as shown in

Figure 1. The main steps of proposed vehicle detection and counting scheme are described in the

following subsections.

2.1. Vehicle Detection

Recently [3,4,16,17], convolutional neural networks (ConvNets) have presented excellent results in

different vision challenges where it has shown an attractive characteristic to learn deep and hierarchical

features, which make it more powerful than classical methods. In this work, two convolution layers,

two max-pooling layers, and two fully connected feed-forward layers are adopted with the same

network architecture in [16], which obtained better detection results by discriminating the foreground

and background regions. The kernel size of the two convolutional layers is 5 × 5, and the stride of the

two convolutional layers is 1. The number of channels in the first convolutional layer is 6, while that
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in the second convolutional layer is equal to 16, as mentioned in Table 2. The first fully connected

layer has 120 hidden units, while the second fully connected layer measures the belonging foreground

probability of each pixel in the frame and the output layer consists of a single sigmoid unit.

Table 2. The structure of the adopted convolutional neural network, where K is the size of the kernel,

S is the stride [16].

Layer Type Parameters

Input 27 × 27 × 2 pixels ( gray scale image patches )
Convolution 6 filters, K:5 × 5, S:1

Activate function ReLU
Maxpooling K:3 × 3, S:3
Convolution 16 filters, K:5 × 5, S:1

Activate function ReLU
Maxpooling K:3 × 3, S:3

Fully connected 120 hidden units
Sigmoid 2 classes ( Foreground/Background )

The network has 20,243 trainable weights that learned by back-propagation with a cross entropy

error function:

E = −∑(tn ln(yn) + (1 − tn) ln(1 − yn)), (1)

where tn = t(xn) is a supervised signal of xn and yn is the network output of xn.

In general, the training process of CNN in the vehicle detection task requires a large annotated

training set under different environments; it is highly difficult to obtain such large manually annotated

dataset. In this work, we combine the segmentation result with connected component labeling and

modify the training step to tackle this problem. As we focused on vehicle detection, primitive training

is implemented using the foreground and background of the baseline scene in ChangeDetection.net

dataset (CDnet 2014). For a different video, we need only to efficiently train the background that can be

extracted automatically using the temporary median of each pixel for 150 frames of the video without

changing the primitive foreground patches. The point here is to train the background efficiently, so the

network can easily extract the foreground vehicles on different scenes. The detection process has been

calculated in the first frame every fixed number of frames, N frames, as shown in Figure 2.

Figure 2. Regions of detection.
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2.2. Feature Points Detector

Selecting good features of the bounding boxes that resulted from the detection step is necessary

for robustly tracking feature points across frames. While the Harris detector is the most famous corner

detector, Shi and Tomasi’s detector perform better than the Harris corner detector [18]. Here, a Tomasi

detector has been implemented in each detection region based on the detection algorithm described in

the previous section to extract the robust corner point inside each region as illustrated in Figure 3.

Figure 3. Feature points in the detected region of interest.

The periodically updated vehicle feature points are very important to guarantee tracking them for

a long time because these features may disappear as a result of illumination change and out-of-plane

rotation. So, the detection process is repeated regularly every fixed number of frames, N frames.

The new extracted feature points from the detection step and the old tracked features in the latter

frame of the former N frames are combined. Hence, the system is updated every N frames by

integrating both the tracking and detection feature points.

2.3. Vehicles Refinement and Clustering

The extracted rectangular boxes from the obtained detection result are refined and clustered to

achieve better counting results by discarding the noisy part and clustering the detected vehicles. First,

the feature points are extracted within the detected bounding boxes, and the optical flow-based feature

point tracking is implemented for tracking the vehicle features point. The detected corner point is

tracked from frame t to frame t + 1 using the Kanade–Lucas optical flow approach [19].

The optical flow results in the first frame pairs are a set of vectors C e.g Ci = (Di, θi). Each element

in C matches a feature point Pi that tracked from frame t to frame t + 1, where Di and θi are two vectors

comprising the displacement magnitudes and angles respectively for each feature point, given by

Di =
√

(X2 − X1)2 + (Y2 − Y1)2 (2)

θi = arctan

(

Y2 − Y1

X2 − X1

)

(3)
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The noisy detections tend to result in short-lived trackers [13]. In this work, the foreground

detection in the first frame is considered a vehicle object only if it is tracked in the remaining N − 1

frames in the frameset.

After refining the detection result, the number of detected regions will only contain the foreground

vehicle features as shown in Figure 4a, which can be grouped based on k-means clustering as shown in

Figure 4b. In this case, the elements of the vector CF will contain DF, θF, and points coordinates where

F relates to the foreground. K value is the number of detected regions. Each feature point is a vertex

Pi = (Xi,Yi,Di,θi), where Xi and Yi represent the X and Y coordinates in the current frame, Di and θi

represent the displacement and angle of Pi from two consecutively frames, respectively. The vehicles

corner points are extracted and clustered in the first frame of each frameset. Then KLT tracker is used

to track them through the remaining frames starting from the second frame to the Nth frame.

(a) Foreground vehicles features (b) Foreground vehicles clusters

Figure 4. Clustering the foreground vehicles.

K-Means Clustering

K-means clustering is an unsupervised learning, computationally efficient algorithm for large

datasets. Initially, k samples, serving as the initial centroids, are chosen randomly to approximate

the centroids of the initial clusters (K is a positive integer number). Simply, K-means clustering is an

algorithm to group the objects based on features into a K number of groups. The grouping process

is done by minimizing the sum of squares of distances (Euclidean squared distance) between data

and the corresponding cluster centroid. The K-means algorithm will be carried out by executing the

following three steps below until convergence (Iterate until stable) is obtained.

• Determine the centroid coordinates.

• Determine the distance between the centroids and each data feature.

• Group the data based on the minimum distance to find the closest centroid.

In this work, K-means clustering is used after vehicle detection based on a convolutional neural

network and vehicle refinement by the optical flow information in the first frame of each frameset.

K-means clustering helps to achieve better counting results by grouping the vehicle features points

based on their displacement, angle, and coordinates. Good detection results using CNN and vehicle

detection refinement using the optical flow information give us the correct value of K that is used

in the K-means algorithm. The selection process of the K value is an important issue to improve the

vehicle clustering process for achieving perfect counting performance. This clustering information in

the current frameset will be used with the last frame information in the previous frameset to check

the connecting trajectory and make the counting decision. K value is evaluated in the first frame of

each frameset and considered the value of the detected vehicles after refining the detection result (the

number of refined bounding boxes).
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2.4. Connecting Vehicle Cluster Trajectories

The detection vehicle regions with their most robust feature points inside each cluster will be

accompanied by a bounding box created according to feature points’ coordinates in each cluster.

Each one of the bounding boxes with their feature points will take a unique ID that tracked within

the frameset as shown in Figure 5c. The intersection area between the vehicle bounding boxes in two

specific consecutive frames is calculated as shown in Figure 5b; the bounding boxes for the first frame

in frameset S and the bounding boxes for the last frame in frameset S − 1 as shown in Figure 5a.

This step to judge the possibility of assigning the same ID for the new detected vehicle or it is a

new vehicle with a different ID. For this purpose, the following two cases are considered.

(a) Detection and 
tracking information

Last frame in frameset S-1

Detection result in the first 

frame in frameset S

(b) Intersection area 

calculation

(c) Same bounding 
boxes ID within frame 

set  

Figure 5. Connecting vehicles trajectories.

1. Maintaining the same vehicle cluster

In this case, the intersection area is greater than a predetermined α percentage, hence the new

detected vehicle has the same label (ID) of the old matched one as shown in Figure 5b, like vehicles

number 26, 28, and 29. Another case of maintaining the same ID, when the detection algorithm

cannot detect the tracked vehicle, then the result of the tracking will be used with the same ID for the

next frameset.

2. Creating a new vehicle cluster

This case established when there is no intersection area or the estimated intersection area is less

than or equal to α, so the new detected vehicle assigns a new label ID, such vehicle number 30 as

shown in Figure 5b.

To solve the problem of fixed bounding box size, we propose an adaptive bounding box using

the output points from the optical flow, every frame after getting the strongest points as shown in

Figure 6a, we can easily form the correct bounding box in relative with these points as shown in

Figure 6b. Hence, for every frame after getting the strongest points, we can easily form the correct
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bounding box in relative with these points. This process is executed based on the minimum and

maximum feature point coordinates Xmin, Ymin, Xmax, and Ymax for each vehicle, as shown in Figure 7

Bounding Box = [Xmin Ymin (Xmax − Xmin) (Ymax − Ymin)].

(a) Vehicles feature points (b) Bounding box creation

Figure 6. Variable bounding box.

Figure 7. Varying bounding box coordinates.

3. Experimental Results

The proposed method for detection and counting is evaluated and compared with four state of the

art algorithms [12–15]. Two experiments, including seven videos with various challenges [20], are used

to validate the contribution of the proposed method. We test the proposed approach on nighttime,

daytime, intermittent vehicle motion, and crowd scenes, as mentioned in Table 3. In all experiments,

the fixed number of frames in each frameset is equal to ten frames, N = 10 for achieving better tracking

and counting result using KLT [21]. We examined the algorithm with different values of α, where we

found that if α is too high, the same vehicle may be classified into a new vehicle. The value of α = 25%

yields to the best accuracy in our experiment.

Table 3. Challenge environments information of the sequences used in the performance evaluation.

Dataset GRAM Dataset CDnet2014 ATON Testbed

Sequence M-30 M-30-HD Highway Intermittenpan Streetcorneratnight Tramstation Highway II

Challenging
description

Sunny day,
Low resolution

camera.

High resolution
camera.

Sunny day,
Shadows and
waving trees.

Sunny day,
Waving trees.

Light changes,
Night scene.

Night scene,
Light changes.

Crowed scene.

The proposed method offers a robust multi-vehicles detection and counting system.
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Quantitative evaluation of the detection and counting will be discussed and compared with recent

approaches [12–15] to examine the detection and counting performance of the proposed methodology.

The detection accuracy is evaluated using quantitative performance metrics that have been used as

a standard evaluation [22], known as Precision and Recall. The precision is calculated as the percentage

of correctly detection vehicle pixels [true positive (TP)] over the total number of detecting object pixels

including TPs and false positive (FP).

Precision =
|TP|

|TP|+ |FP|
(4)

Recall refers to the ratio of accurately detected vehicle pixels to the number of actual vehicle pixels

that include the number of false negative pixels (FN).

Recall =
|TP|

|TP|+ |FN|
(5)

The counting precision can be defined as

Precision (%) = 100 − Error (%) (6)

where

Error (%) =
|Estimated − TrueNo.|

TrueNo.
× 100 (7)

In the sake of comparison with the recent counting techniques, we assume focusing on data

sets containing vehicle objects only because the counting strategies based on background subtraction

technique cannot discriminate between the vehicles and personal objects. The first experiment focused

on two sequences from GRAM dataset [23], M-30 and M-30 HD and HighwayII video from ATON

Testbed. Comparison with recent techniques has been conducted as illustrated in Table 4 when the

counting precision is used as a performance merits [15]. The proposed method achieved the highest

accuracy without missing any vehicle.

Table 4. Vehicle counting accuracy for first experiment.

Compared Algorithm
GRAM Dataset ATON Testbed

M-30 M-30-HD Highway II
Miss Detection Precision Miss Detection Precision Miss Detection Precision

Yang et al. [13] 6 92.20 5 88.10 3 92.31
Quesada et al. [14] 2 97.41 3 92.86 N/A N/A

Mohamed [15] 1 98.70 0 100 2 95.65
Proposed Method 0 100 0 100 1 97.9

In the second experiment, four video sequences from CDnet2014 dataset [24] are used to evaluate

the detection and counting results of the proposed algorithm. It is asserted that the average precision

rate of 96.3% for CDnet2014 dataset achieved from the proposed approach as shown in Table 5 is

highly encouraging compared to 69.7%, 89.4% from the methods presented in [12,13], respectively.
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Table 5. Vehicle detection results comparison on CDnet2014 sequences.

Method
Corola [12] Yang et al. [13] Proposed Method

Sequence Videos

Highway
Precission % 95.1 91.3 98.2

Recall % 85.4 92.1 99.2

Intermittenpan
Precission % 56.6 90.2 98.7

Recall % 58.5 98.8 97.5

Streetcorneratnight
Precission % 82.4 89.1 95.8

Recall % 86.5 97.2 97.1

Tramstation
Precission % 44.7 87.1 92.3

Recall % 91.0 97.1 97.1

Average accuracy
Precission % 69.7 89.4 96.3

Recall % 80.4 96.3 97.7

The counting precision results for approaches focused on the detection and counting are

reported in Tables 4 and 6. The counting algorithm based on a combined strategy between low-rank

decomposition and Kalman filter [13] showed good overall accuracy. However, this method has a

declined counting precision accuracy as a result of the failure in Kalman filtering. Also, the recall

dramatically drops using the low-rank decomposition detector that tends to fail in more complex

scenes with false-negative results.

Although the results of [15] showed good counting precision accuracy in some videos such as

GRAM dataset and ATON Testbed, the precision dramatically drops using the traditional background

modeling method, Gaussian Mixture Modeling (GMM) that cannot efficiently work in different

environments such as CDnet 2014 videos. The proposed algorithm achieves better counting precision

as shown in Table 6, with an average counting precision percentage of 96.8% with a higher precision

percentage. This result is based on the false positive detections elimination process that yields collecting

information from the perfect detection step and feature points motion analysis.

Estimating the number of vehicles is the main target for traffic information analysis. The proposed

approach was tested on different scenes, including night time, day time, intermittent vehicle motion,

and crowded. Although the suggested strategy achieved a sufficient counting accuracy, it depends on

the training process in the detection part, which tends to cause time delay in real applications. Another

concern in our work is the vehicles occlusion that occurs in overlapped vehicles regions cases.

In this work, we focused on achieving accurate vehicle detection and counting. Besides,

the strategy relies on multi-vehicle tracking based on optical flow to track the moving vehicles and

counting them based on the detection and tracking results. The proposed algorithm may cause vehicle

mis-counting in some scenes with heavy occlusions, such as tram station scene when two vehicles

occluded for a long time. The congestion and intensive traffic situations in urban traffic situations

often make more obstacles for the proposed approach in achieving accurate vehicle detection, tracking,

and counting.

Figure 8 shows visual evaluation samples of the detection and counting results in various

challenging scenes such as sunny, night, crowded, and waving trees scenes. The first, second, and

fourth rows illustrate the success in handling detection and counting of vehicles in daytime highway

sequences. The main problem in these videos is that the background regions, including highway and

trees, are occluded by waving trees and moving car shadow. Hence, false-positive results occurred

with low detection and counting accuracy. The challenge of the third row Tram station sequence is

that the vehicle headlights have an intensive effect on foreground vehicle detection that results in

some false-positive results. Moreover, the minimum illumination degree makes foreground vehicle

detection so difficult leading to false-negative results. The main challenge of the fifth-row Street corner

at night sequence is the light reflection that makes the foreground detection easily affected by the noise

with false-positive and false-negative results. The third and last rows demonstrate the behavior of the

proposed algorithm in night videos dealing with various dynamic light changing.
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Table 6. Vehicle counting accuracy for CDnet2014 sequences.

Compared Algorithm
Highway Intermittenpan Streetcorneratnight TramStation
Precision Precision Precision Precision

Yang et al. [13] 93.3 93.3 90.4 84.6
Mohamed [15] 92.3 N/A N/A N/A

Proposed Method 100 93.3 95.2 91.6

Frame 140 Frame 620 Frame 1420

Frame 60 Frame 350 Frame 900

Frame 500 Frame 630 Frame 745

Frame 1240 Frame 1270 Frame 1375 

Frame 325 Frame 1250 Frame 2886

Figure 8. Sample results on GRAM and CDnet2014 dataset. Top row: Cloudy and crowded. Second

and fourth row: Waving trees. Third and Bottom row: Night scene with changed light.
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4. Conclusions

In this work, a new and robust vehicle detection and counting approach was proposed by

developing a three-step approach. The proposed method first detects the vehicles using a CNN-based

classifier with connected component labeling, then vehicle feature motion is analyzed to remove the

noise and cluster the vehicles. Finally, a way to assign the detected vehicles with its corresponding

cluster is introduced, to ensure a non-repeated counting process, by considering the intersection area

between the detected and tracked point information. Experimental results on different datasets showed

that the proposed strategy outperforms other existing methods.
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