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In this article, we investigate the vehicle routing problem with deadlines, whose goal is to satisfy the
requirements of a given number of customers with minimum travel distances while respecting both of
the deadlines of the customers and vehicle capacity. It is assumed that the travel time between any two
customers and the demands of the customer are uncertain. Two types of uncertainty sets with adjustable
parameters are considered for the possible realizations of travel time and demand. The robustness of a
solution against the uncertain data can be achieved by making the solution feasible for any travel time
and demand defined in the uncertainty sets. We propose a Dantzig-Wolfe decomposition approach,
which enables the uncertainty of the data to be encapsulated in the column generation subproblem.
A dynamic programming algorithm is proposed to solve the subproblem with data uncertainty. The
results of computational experiments involving two well-known test problems show that the robustness
of the solution can be greatly improved.
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Introduction

The vehicle routing problem (VRP) calls for the determi-

nation of the optimal set of routes to be performed by

a fleet of vehicles to serve a given set of customers (Toth

and Vigo, 2002). It can be considered to be one of the

more important problems—both in theory and practice—

in the fields of transportation, distribution, and logistics.

Generally speaking, the goal of VRP is to find the

minimum cost routes visiting (or serving) a given number

of customers while respecting various resource constraints,

including deadlines, vehicle capacities, and number of

available vehicles. Several variations of the VRP exist.

In the VRP with deadlines (VRPD), a deadline is imposed

on each customer, with the requirement that the service

to the customers must be provided before the deadline.

Each customer has a given amount of demand and is

visited by a vehicle exactly once. Each vehicle should have

sufficient capacity to serve the demands of all of the

customers it visits/serves.

Since the VRPD is a generalization of the VRP, which

is a generalization of the TSP (travelling salesman

problem), VRPD is NP-hard. The VRPD is a special

case of the VRP with time windows (VRPTW). Therefore,

any solution algorithm for the VRPTW can be used to

solve the VRPD. Kolen et al (1987) presented an

optimization method for the VRPTW using a dynamic

programming approach. The problem size was, however,

limited to 15 customers. Fisher et al (1997) and Kohl

and Madsen (1997) proposed Lagrangian relaxation

approaches which were efficient for solving problems

involving up to 100 customers. Ioachim et al (1998)

developed a dynamic programming algorithm for the

shortest path problem with time windows and linear

node costs. At the present time, the most dominant and

widely studied optimization approach for the VRPTW

is the column generation-based approach. This approach

was first presented by Desrochers (1986), who applied it

to problems with as many as 100 customers. Fukasawa

et al (2006) developed a branch-and-price-cut algorithm

for the capacitated VRP (CVRP) by incorporating the

cutting plain method into the branch-and-price algorithm.

Many heuristic methods have also been developed in the

context of the VRP, including the local search method

(Lin and Kernighan, 1973; Dethloff, 2002), the tabu-search

algorithm (Gendreau et al, 1994, 1996; Rego, 1998;

Cordeau et al, 2002), the genetic algorithm (Berger and

Barkaoui, 2003), and the ant colony algorithm (Dorigo

et al, 1996; Yu et al, 2010).
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Although there have been many advances in the

optimization method for the VRP, most studies have

not considered the uncertainty of the data. In practice,

however, uncertainty in customer demand and/or travel

time is inevitable. The feasibility of the solution obtained

may not be guaranteed unless the uncertainty is incorpo-

rated directly in the optimization methodology. The robust

optimizationmethodology deals directly with the robustness

of the solution by finding a solution which is immune to

variations in the data. The robust optimization approach

differs from that of the stochastic optimization in that

with the former it is not required to know the probability

distribution of uncertain data a priori. In many cases, it

may be very difficult—or even impossible—to estimate

fairly accurate probability distributions of the data. In

the robust optimization, instead of estimating the prob-

ability distributions, an uncertainty set is introduced to

control the robustness of the solution; see Bertsimas and

Sim (2004) for details.

Here, we propose an optimization method for the VRPD

under travel time and customer demand uncertainty. In

terms of the VRP with data uncertainty, the most studied

problem may be the VRP with stochastic demands

(VRPSD) (Gendreau et al, 1995, 1996a, b; Christiansen

and Lysgaard, 2007; Tan et al, 2007). Bertsimas and

Simchi-Levi (1996) developed a set of analytical results

for the VRP with random demands and proposed several

heuristic algorithms. In the VRPSD, the customer

demands are assumed to be uncertain and to have

stochastic properties, characterized by certain probability

distributions. A number of studies on the travel time

uncertainty in the VRP have used the stochastic program-

ming approach to handle the uncertainty of travel time

(Jula et al, 2006; Chang et al, 2009). The basic assumption

of such studies is that the stochastic properties of travel

time are known in advance; the goal is to obtain a solution

with the best expected cost (distance or travel time), while

the solution guarantees certain service levels. The functions

of the expected arrival times (and/or penalties) at the

customers’ locations are defined and a number of methods

for efficiently calculating the expected arrival time pro-

posed. Since the exact calculation of the expected arrival

times is often quite complicated, in many cases the

calculation is done approximately (Jula et al, 2006; Chang

et al, 2009) or heuristically (Cheung and Hang, 2003).

Russell and Urban (2008) derived closed-form expressions

of a penalty function for the Erlang travel times and

developed a tabu-search-based algorithm. A number of

papers have appeared on handling the recent changes

in data in which the problem was iteratively solved to

reflect these recent changes. To hedge for possible future

changes, certain expected costs were calculated at each

stage, so that the routes would be iteratively updated based

on the best expected costs. Hvattum et al (2006) assumed

that the presence of each customer is uncertain—a

customer might place orders, or not, at any time during

the planning horizon. They developed a multi-stage

heuristic method to construct the routes gradually

by considering future customer demands defined by

pre-estimated probability distributions. Campbell and

Thomas (2008, 2009) considered a similar problem but

with customer deadlines. They proposed several different

models to measure the penalty function with violations

of the deadlines. In their settings, however, the uncertain-

ties originate from the stochastic presence of the customers,

not from the travel times. The stochastic approach is

limited to cases in which the stochastic properties of

uncertainty can be measured precisely, which may be

exceedingly problematic, especially when data are scarce.

Moreover, in many cases, the service level is expressed

by the nonlinear (and nonconvex) chance constrained

model, which can make the problem hard to solve.

Defining the uncertainty set in the robust optimization

approach has a number of practical advantages over

estimating probability distributions in the stochastic

optimization approach. Firstly, in many cases, it is easier

to define the uncertainty set than to estimate the

probability distributions. For example, we simply can take

all past realizations of data as the uncertainty set.

Secondly, under certain conditions, the robust approach

does not significantly escalate the complexity of the

problem. For example, Bertsimas and Sim (2004) demon-

strate that the robust counterpart problem of a linear

programming problem is also a linear programming

problem with a polynomially bounded problem size.

Lastly, even though we already have some knowledge

of the probability distributions, the uncertainty set can

be easily constructed from these. For example, the

confidence intervals of random data can be used as the

intervals of uncertain data in the uncertainty set. Never-

theless, there have been only a few studies on the robust

approach to the VRP. This scarcity of research on this

topic may be due to (1) the VRP on its own being a hard

problem and (2) the existing solution approaches for

the deterministic problem being no longer valid for the

robust version of the problem.

The contributions of this paper to research on the VRP

are as follows: (1) proposal of a robust optimization

approach to the VRPD that produces robust solutions

under the uncertainty of travel time and demand;

(2) demonstration that the robust version of the problem

can be solved by the well-known branch-and-price algo-

rithm, while consideration of the uncertainty is solely

encapsulated in the column generation subproblem;

(3) proposal of a new uncertainty-aware dominance rule

for the labelling algorithm that enables the column

generation subproblem to be solved efficiently; (4) report-

ing of an extensive computational study, which shows

that in many cases the gains in robustness are rather large

with small penalties in the objective values.
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Problem description and formulation

In this section, a mathematical formulation for the

case with no uncertainty (deterministic case) is presented.

We then extend the formulation to the case of uncertain

data. The problem is defined with the following para-

meters:

N {1, . . . , n}, set of customers

N0 N, {0, nþ l}, where 0 and nþ 1 are depots

M {1, . . . ,m}, set of vehicles

Q capacity of a vehicle

rj demand of customer iAN

A {(i, j)|i, jAN0 and iaj}, set of arcs.

cij travel distance from i to j, where (i, j)AA

tij travel time from i to j, where (i, j)AA

bi deadline for delivery at customer i, where iAN

xij
k decision variable. 1 if vehicle k travels from i to j,

and 0 otherwise

si
k decision variable. Arrival time of vehicle k at

customer i

Without any loss of generality, it can be assumed that

the service time for customer i is included in the travel time

tij. Any vehicle should depart from depot 0 and arrive at

depot nþ 1 after visiting a subset of customers. The

deadline of customer i can also be represented as time

window [0, bi]. We may assume that the deadlines for

the depots 0 and nþ 1 are 0 and N, which are equivalent

to time windows [0, 0] and [0,N], respectively, and

implying that a vehicle departs depot 0 at time 0 and can

arrive at depot nþ 1 at any time. The arrival time at

customer i cannot be greater than deadline bi. The travel

cost ci0 for any customer i is very large in order to prevent

the vehicle from returning to depot 0. Similarly, cnþ 1, i

for any customer i is very large, to prevent the vehicle

from leaving from depot nþ 1. The mathematical model

has two types of decision variables. The first type of

variable determines the routes of the vehicles, that is,

visiting sequences of the customers. Let xij
k be 1 if vehicle

k travels from i to j, and 0 otherwise. The route of vehicle

k is determined by the variables xij
k, 8(i, j)AA. The second

type of variable determines when a vehicle arrives at each

customer. Let si
k be the arrival time of vehicle k at customer

i. Obviously, si
k must be less than or equal to bi if vehicle k

visits i; it is meaningless otherwise. Since all vehicles depart

from depot 0 at time 0, s0
k is 0 for all kAM. In addition,

snþ 1
k is the arrival time of vehicle k at the depot nþ 1.

The (deterministic) VRPD can be stated as follows:

ðVRPDÞ min
X
k2M

X
i2N0

X
j2N0

cijx
k
ij ð1Þ

subject to
X
k2M

X
j2N

xkij ¼ 1 8i 2 N; ð2Þ

X
j2N0

xk0j ¼ 1 8k 2M; ð3Þ

X
j2N0

xkij �
X
j2N0

xkji ¼ 0 8i 2 N; k 2M; ð4Þ

X
i2N0

xki;nþ1 ¼ 1 8k 2M; ð5Þ

X
i2N

ri
X
j2N0

xkijpQ 8k 2M; ð6Þ

ski þ tij � Kð1� xkijÞpskj 8i; j 2 N0; k 2M; ð7Þ

0pski pbi 8i 2 N0; k 2M; ð8Þ

xkij 2 f0; 1g 8i; j 2 N0; k 2M; ð9Þ

where K is a large number. The objective function is the

sum of all routing distances of every vehicle. Constraints

(2) ensure that each customer is served by exactly one

vehicle. Constraints (6) are the capacity constraints for the

vehicles; constraints (3), (4), and (5) are the flow

conservation constraints, which ensure that each vehicle0s
route should start from depot 0 and end at depot nþ 1;

constraints (7) and (8) together guarantee that each

customer is served before the deadline.

Robust VRPD

When a real-world logistics company uses the VRPD for

designing its operational planning system, it must compile

VRPD data, such as customer demands, vehicle capacities,

deadlines, and vehicle travel times and distances. It is

common practice that data for deadlines and vehicle

capacities are specified or given, while those for travel times

and customer demands are estimated or forecasted. In

general, requested or specified data can be considered to be

more accurate than estimated data. Moreover, in terms of

the graph of all customers and depots, one should estimate

the travel times for all pairs of nodes, since the graph is

complete. Even when the estimations are derived via

statistical methods, the estimated nominal values may be

poor representations of true values when the variances in

the data are considerably large.

There are a number of published studies on the VRP

with travel time uncertainty. Jula et al (2006) considered

a nonstationary stochastic travelling salesman problem.

They call a route acceptable if the probability of visiting

every node on a route before its deadline time is greater

than a given constant, which is called the service level at the

node. Given the probability distribution of travel times,

they propose a simplified way to calculate the expected

arrival time at each node of a route by approximating the

expected arrival times. Although their approach does not

C Lee et al—Robust vehicle routing problem with deadlines and travel time/demand uncertainty 3
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exploit the probability distribution directly, the approx-

imating procedure depends on the probability distribution

assumption, requiring that the probability distributions

be precisely determined, which may be a hard task to

accomplish.

The aim of the robust optimization is to obtain the

solution that is feasible for all realizations of uncertain

data. In this approach, the probability distributions for

uncertain data are assumed to be unknown, and only

the nominal and maximum possible deviation values are

specified. The uncertainty of data is represented by the

uncertainty set, which contains all possible realizations

of random data. To obtain a robust—but not too

conservative—solution, it is necessary to introduce some

parameters to control for the degree of robustness (the

reader is referred to Bertsimas et al (2004) for details).

Sungur et al (2008) considered robust capacitated VRP

(CVRP) with uncertain demand. They modified the

original CVRP formulation to incorporate the demand

uncertainty and solved the problem directly by an off-the-

shelf mixed integer programming (MIP) solver. Their

results demonstrate that the robust optimization approach

is attractive as it produces a much more robust solution

with only a small penalty in the objective value.

In terms of the travel time uncertainty, it is highly

unlikely that every segment on a route is delayed; in fact, it

is much more likely that some segments are delayed while

others are not. This observation indicates that we may

restrict the number of delayed segments on a route so that

we can control how much of the route should be robust. In

other words, we want to protect the routes of vehicles

against the given number of delays in the travel time, which

yields the following definition of the uncertainty set of

travel time.

Definition 1. Model of Travel time Uncertainty set Ut.

For each arc (i, j)AA, the travel time takes values in

[t̂ij, t̂ijþ dij], where dij represents the maximum deviation

from the nominal travel time t̂ij. We introduce a

nonnegative integer G as a parameter for controlling the

degree of robustness for the travel time uncertainties. Then,

the uncertainty set of travel time data is given as

Ut ¼
(

~t 2 RjAjj~tij ¼ t̂ij þ dijvij ;

X
ði;jÞ2A

vijpG; 0pvijp18ði; jÞ 2 A

)
:

Similarly, we define the uncertainty set of demand

as follows.

Definition 2. Model of Demand Uncertainty set Ur. For

each customer iAN, the demand takes values in [r̂i, r̂iþ oi];

where oi represents the maximum deviation from the

nominal demand value r̂i. We introduce a nonnegative

integer L as a parameter for controlling the degree

of robustness for the demand uncertainties. Then, the

uncertainty set of demand data is given as

Ur ¼
(

~r 2 RjNjj~ri ¼ r̂i þ oiwi;

X
i2N

wipL; 0pwip1; 8i 2 N

)
:

The robust version of VRPD can then be formulated

as follows:

ðRCVRPDÞ min
X
k2M

X
i2N0

X
j2N0

cijx
k
ij ð10Þ

subject to (2), (3), (4), (5)X
i2N

ri
X
j2N0

xkij þ Lzk þ
X
i2N

pikpQ 8k 2M; ð11Þ

zk þ pikXoi
X
j2N0

xkij 8k 2M; i 2 N; ð12Þ

ðski Þ
B þ t̂ij þ diju

B
ij � Kð1� xkijÞpðskj Þ

B

8ði; jÞ 2 A; k 2M; 8B � A; jBjpG; ð13Þ

0pðski Þ
Bpbi 8i 2 N0; k 2M; 8B � A; jBjpG; ð14Þ

pikX0 8i 2 N; k 2M; ð15Þ

zkX0 8k 2M; ð16Þ

xkij 2 f0; 1g 8ði; jÞ 2 A; k 2M; ð17Þ

where uij
B is an indicator function which is 1 if (i, j)AB,

0 otherwise. Constraints (11) and (12) and variables (15)

and (16) are obtained from the reformulation ofP
i2N ri

P
j2N0

xkijþmaxS�N;jSjpL
P

i2S oi
P

j2N0
xkijpQ (see

Bertsimas and Sim, 2003). Note that a vehicle might arrive

early or late at a certain customer location on the same

vehicle route due to the uncertainty of the travel time.

Therefore, we introduce additional variables, namely, (si
k)B,

8BDA, |B|oG, for different realizations of travel time.

It should be noted that we assume the absence of

uncertainty in the distance data cij and that we still try to

minimize the sum of travel distances. The underlying

motivation of this formulation is to distribute the risks

of late arrivals over all of the routes as evenly as possible.
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This can be done by distributing the timely tight visits to

several different vehicles and making the vehicles visit those

customers whose deadlines are tight at the early stages of

the routes.

The large number of constraints (13) and (14) makes

the formulation intractable. Therefore, instead of using

the formulation (RCVRPD), which is based on the edge

variables, we consider the path-based formulation using

the Dantzig-Wolfe style decomposition scheme (Barnhart

et al, 1998). We say that a route is robustly feasible if it

remains feasible for all realizations of the uncertainty sets

Ut and Ur. Formally speaking, a robustly feasible route is

a path (0, i1, . . . , il, nþ 1) which meets the deadline and

capacity constraints at each customer location, while most

G (travel times) and L (demands) of uncertain data can

be at their maximum deviations, where i1, . . . , ilAN. Let

R denote the set of all robustly feasible routes. The

path-based formulation for the robust VRPD can then

be given as:

ðPath-RCVRPDÞ min
X
r2R

crxr ð18Þ

subject to
X
r2R

dirxrX1 8i 2 N; ð19Þ

X
r2R

xrpm; ð20Þ

xr 2 f0; 1g 8r 2 R; ð21Þ

where dir is the number of visits to customer i in route r, m

is the number of vehicles, and cr is the travel distance of

route rAR, defined as the sum of the distances of the arcs

of the route. Since the number of robustly feasible routes of

R can be exponentially large, we use a column generation

method. In the column generation method, the linear

relaxation of the above set covering model with a restricte

d set of routes is solved, and the column generation

subproblem is solved to find a column which has a negative

reduced cost. When no column has a negative reduced cost,

the column generation procedure is terminated. One

advantage of (Path-RCVRPD) is that the same determi-

nistic column generation method can be used as long as the

subproblem correctly identifies robustly feasible routes

with negative reduced costs. In the following section, we

present an algorithm for finding those robustly feasible

routes with negative reduced costs.

Solution methodology

Let R0CR be the restricted set of robustly feasible routes,

and (RM), which is the restricted master problem, denote

the linear relaxation of this problem after R has been

replaced with R0.

ðRMÞ min
X
r2R 0

crxr ð22Þ

subject to
X
r2R 0

dirxrX1 8i 2 N; ð23Þ

�
X
r2R 0

xrX�m; ð24Þ

xrX0 8r 2 R0: ð25Þ

Note that we do not need xrp 1 constraints, since

at optimality, xr cannot be greater than one because

we minimize the objective function.

Column generation subproblem

Using the restricted set of routes R0CR, we now attempt

to find the new routes—columns—entering (RM) by

pricing their reduced costs. Let pi and p0 denote the dual

variables associated with constraint i of (23) and (24),

respectively. Based on the linear programming theory,

the reduced cost of route r is given as follows:

rcðrÞ ¼ cr �
X
i2N

dirpi þ p0: ð26Þ

Finding routes with negative reduced cost is thereby

reduced to finding the shortest route with the following

arc cost and respecting the deadline and vehicle capacity

constraints.

�c0;i ¼ c0;i � pi 8i 2 N; ð27Þ

�cij ¼ cij � pj 8i 2 N; j 2 N; ð28Þ

�ci;nþ1 ¼ ci;nþ1 þ p0 8i 2 N; ð29Þ

�c0;nþ1 ¼ 0: ð30Þ

The travel time and vehicle capacity can be generalized

as the resources consumed (or accumulated) in the route.

When a vehicle visits customer j, the resource of vehicle

capacity is consumed by the amount of the demand rj.

Similarly, when a vehicle moves to the location of customer

j from that of customer i, the resource of time is

accumulated by the travel time tij. The vehicle can move

to j if the consumed (or accumulated) resources are not

greater than the resource constraints at customer j.

Generally speaking, more resources can be defined, and

C Lee et al—Robust vehicle routing problem with deadlines and travel time/demand uncertainty 5
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the shortest path problem respecting the resource con-

straints is often referred to as the shortest path problem

with resource constraints (SPPRC) (Irnich and Desaulniers,

2004). Here we introduce our robust version of SPPRC

(RSPPRC). In RSPPRC, the amount of resource to be

used is uncertain, and possible resource usages are defined

by the uncertainty sets. A path is robustly feasible if—and

only if—all of the resource constraints at every customer

are satisfied at all realizations of the resource usages

defined by the uncertainty sets.

We consider a graph G whose nodes are customers

(N) and depots (0,nþ 1), and (directed) arcs have costs

of (27), (28), (29), and (30). In the standard algorithm for

the SPPRC, each possible partial path is associated with

a label, which represents the consumption (or accumula-

tion) of the resources of the partial path. At the extending

stage, all new partial paths are extended toward every

possible successor node. At the elimination stage, a label

is eliminated if it is dominated by some other label. A brief

description of Desrochers’ labelling algorithm and our

adaptation to the RSPPRC are given in the following

section.

Desrochers’ labelling algorithm

For a partial path p which ends at node i, we associate

a label Ep¼ [cp,Rp
1,Rp

2, . . . ,Rp
L] with the path, where L is

the number of resources. Let cp be the cost of path p. The

resources can include vehicle capacity, travel time, and

distance, among others. Here Rp
l represents the accumu-

lated value of resource/at the last node of path p. Let v (p)

denote the last node of path p, that is v(p)¼ i. A path q is

a feasible extension of p if the path (p, q)� {0, p1, p2, . . . ,

v(p), q1, q2, . . . , v(q)) satisfies all resource constraints at

every node in the path. Let E(p) be the set of all feasible

extensions of p. The nonnegative value rij
l is defined as the

usage value of needed resource l when we travel from i to j,

that is Rp
l ¼
P

(i, j)AA(p) rij
l , where A(p) is the set of arcs of

path p. Let p and q be two distinct paths from 0 to i with

associated label Ep and Eq, respectively. We say p

dominates q if and only if cppcq, Rp
lpRq

l , for all

l¼ 1, . . . ,L. The domination is strict if cpocq or there

exists l such that Rp
loRq

l . We denote these by EpoEq and

EpoEq, respectively. According to these definitions, the

dominance rule is established as follows:

Definition 3. Dominance Rule for SPPRC. Given two

distinct paths p and q such that v(p)¼ v(q), the path q can

be discarded if p strictly dominates q, that is, EpoEq.

Either p or q can be discarded if they dominate each other,

that is, EppEq and EpXEq.

The validity of the dominance rule can be easily demon-

strated. When path p dominates q, clearly E(p)+E(q) and
for any qþAE(q), there is a pþAE(p) such that (p, pþ )

dominates (q, qþ ). The labelling algorithm is an iterative

process of the path extending procedure (EXTENDING) and

the label elimination procedure (ELIMINATE). Note that the

algorithm is quite general, in the sense that many types of

resource constraints can be modelled within this frame-

work. This algorithm allows multiple visits to a node, so the

resulting path may contain cycles.

Uncertain resources case

The dominance rule of Definition 3 is no longer valid when

the resource usage value rij
l is uncertain. There are two

types of uncertainty sets, namely, Ut and Ur, in our setting.

From now on, we only consider the travel-time uncertainty

set Ut, since the following line of reasoning on Ut can

be readily extended to demand uncertainty set Ur. For

any resource l, we apply the definition of travel-time

uncertainty set Ut (Definition 1). For a path p and given

G, let ~Rl
p ¼

P
ði;jÞ2AðpÞ r̂

l
ij þmaxfS�AðpÞjjSjpGg

P
ði;jÞ2S d

l
ij

where r̂ij
l is the nominal value of the consumption of

resource l when we move from node i to j, and dij
l is the

value of the maximum deviation. A path p¼ (0, p1, p2, . . . ,

po, nþ 1) is robustly feasible if and only if, for all

lA{1, . . . ,L}, ~Rl
pk

satisfies the resource constraints for all

partial paths pk¼ (0, p1, p2, . . . , pk), 8kA{0, 1, . . . , o, nþ l}.

Without any loss of generality, we assume that the

resource 1 is subject to uncertainty and the degree of

robustness G is given. For a partial path p, such that

v(p)¼ i, an associated label is defined as follows:

~Ep ¼ cp; R̂
1
p;D

1
p; . . . ;D2

p; . . . ;DG
p

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{G

;R2
p; . . . ;RL

p

2
64

3
75;

where Dp
k¼max{SCA(p)||S|pk

P
(i, j)ASdij

1, k¼ 1, . . . ,G, that is,

the sum of k largest dij
1s on path p, R̂p

1¼
P

(i, j)AA(p)r̂ij
1 and L

the number of resources.

Proposition 1. For two distinct paths p and q, such that

v(p)¼ v(q), ~Epp ~Eq if and only if p dominates q.

Proof For the sufficient condition ( ~Epp ~Eq ) p domi-

nates q), we have to show that REðpÞ � REðqÞ when
~Epp ~Eq, where REðpÞ is the set of all robustly feasible

extensions of p. Consider a robustly feasible path Q¼
(q, qþ ). By definition, qþ 2 REðqÞ. Let Aþ ¼A(Q)\

A(q) and Sk
A¼ {SCA||S|pk}, then it is easily seen that

the following holds:

max
S2SAðQÞ

G

X
ði;jÞ2S

d1
ij ¼ max

k¼0;...;G;
S2SAðqÞ

k
[SAþ

G�k

X
ði;jÞ2S

d1
ij ¼ max

k¼0;...;G
max

S2SAðqÞ
k
[SAþ

G�kX
ði;jÞ2S

d1
ij ¼ max

k¼0;...;G
ðDk

q þDG�k
qþ Þ:
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Now consider a path P constructed as follows:

P ¼ ð0; p1; p2; . . . ; vðpÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{P

; qþ1 ; q
þ
2 ; . . . ; vðqþÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

qþ

:

By assumption, we have maxk¼0;...;G ðDk
p þDG�k

qþ Þp
maxk¼0;...;G ðDk

q þDG�k
qþ Þ and R̂p

1pR̂q
1 which imply that

P is also robustly feasible, that is, qþ 2 REðpÞ. So,

REðpÞ � REðqÞ and p dominates q.

For the necessary condition, assume p dominates q.

Then we have cppcq, R̂p
1pR̂q

1, Dp
GpDq

G, and Rp
lpRq

l ,

8l¼ 2, . . . ,L; otherwise it easily derives a contradic-

tion. Assume, for a contradiction, that there exists g,
such that Dp

g4Dq
g and 1pgpG�1. By definition,

Dp
g¼ dp

(1)þ dp
(2)þ?þ dp

(g), where dp
(i) is the ith largest

deviation of uncertain resource 1 in path p. There then

exists k, such that dp
(k)4dq

(k) and 1pkpg. Consider

robustly feasible paths P¼ (p, r) and Q¼ (q, r), where

G largest deviations are given as follows:

P : dð1Þp ; . . . ; dðkÞp ; dð1Þr ; . . . ; dð1Þr

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{G�g

; . . . dðgÞp :

Q : dð1Þq ; . . . ; dð1Þr ; . . . ; dð1Þr

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{G�g

; . . . ; dðkÞq ; � � � dðgÞq ;

with dp
(k)¼ dr

(1). We then have DP
G4DQ

G, which implies

REðpÞKREðqÞ and derives a contradiction. This com-

pletes the proof. &

Definition 4. Dominance Rule for RSPPRC. Given two

distinct paths p and q such that v(p)¼ v(q), path q can be

discarded if p strictly dominates q, that is, ~Epo ~Eq. Either

p or q can be discarded if they dominate each other, that

is, ~Epp ~Eq and ~EpX
~Eq.

The modified dominance rule above allows the use of

the deterministic SPPRC algorithm with a number of

modifications. For a label of path p, a fixed size priority

queue is used to store G largest deviations of the resource

1 on path p. In the procedure ELIMINATE, the dominance

relation between any two labels ~Ep and ~Eq can be easily

checked by comparing all components of the labels,

including Dp
k and Dq

k for all k¼ 1, . . . ,G, which are the

sums of k top elements in the priority queues. In the

procedure EXTENDING, label ~E
�
ðp;iÞ is a feasible extension of

label ~Ep, if R̂(p, i)
1 þD(p, i)

G pbi
1 and R̂(p, i)

l pbi
l, l¼ 2, . . . ,L,

where bi
l is the upper limit of resource l at customer i.

See Algorithm 1 for details. When we associate VRPD

with travel time and demand uncertainty, the resource

windows for arrival time and vehicle load are [0, bi], 8iAN

and [0,Q], respectively. This allows us to define the label

for the robust VRPD. Under the given parameters G and

L and with a partial path p such that v(p)¼ i, an associated

label is defined as follows:

~Ep ¼ cp; t̂p;D
1
p; . . . ;D2

p; . . . ;DG
p

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{G

; r̂p O
1
p; . . . ;O2

p; . . . ;OL
p

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{L
2
64

3
75;

where cp is the sum of arc costs of path p. The sum of

nominal travel times is t̂p¼
P

(i, j)AA(p)t̂ij, and Dp
k is the

sum of k largest travel time deviations dij on path p.

For demand, r̂p and Op
k are defined in a similar manner.

Algorithm 1 Labeling algorithm for RSPPRC

1: procedure RSPPRC

2: for iAN0 do x Initialization

3: Oi’| x Oi is the set of

labels for node i

4: end for

5: O0’[0, . . . , 0] x node 0 is the

depot

6: U  f0g x All paths start

from node 0

7: repeat

8: Select i 2 U
9: U  U \fig
10: for jA{Successors of i} do

11: for EAOi do

12: E*’EXTENDING(E, j) x Extending

procedure

13: if E*is feasible then x Check the

resource constraints

at node j

14: Oj’Oj,{E*} x Add newly

created label

15: end if

16: end for

17: Oj’ELIMINATE(Oj) x Remove

dominated labels by

using Definition 4.

18: U  U
S
f jg

19: end for

20: until U ¼+;
21: return the path with smallest

cost in Onþ 1

x Return shortest

path

22: end procedure

Note that the algorithm permits negative cycles in the

solution paths. In the deterministic case there is an integer

optimal solution that does not contain cycles when certain

mild conditions are met (Chabrier, 2006). In the robust

case, however, the existence of an integer optimal solution

C Lee et al—Robust vehicle routing problem with deadlines and travel time/demand uncertainty 7
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without cycles cannot be guaranteed, since a shorter route

may not be robustly feasible while a longer route with

cycles is. We simply take branching when the optimal

solution at a branch-and-price node gives integer paths

with cycles, as branching excludes the integer paths with

cycles from the search space.

Branching scheme

The column generation procedure is terminated when there

are no routes with negative reduced cost. If the current

optimal solution to (RM) is integer without a cycle, the

solution is optimal. When the optimal solution to the

current master problem is fractional or when a cycle

is present in any route used in the solution, branching

is required. We used a branching scheme based on the

dichotomy of the arcs incident to the divergence node,

which was originally proposed for the integer multi-

commodity flow problem (Barnhart et al, 2000). We first

find any positive-valued (either fractional or integral) route

with cycles at the current solution. Let us suppose that

route r is chosen; it can then be easily seen that there

exist two arcs, namely, (i�, j�)AA(r) and (i�,k�)AA(r)

sharing the same tail node i�, which is the divergence

node. Let dþ (i�):¼{(i, j)AA|i¼ i�}. We first construct two

disjoint sets d1
þ and d2

þ such that d1
þSd2

þ ¼ dþ (i�),
(i�, j�)Ad1

þ , and (i�,k�)Ad2
þ , and then we create two

nodes in the branch-and-bound tree. In one node, the arcs

in d1
þ are forbidden, while in the other node, the arcs in

d2
þ are forbidden. Note that an arc can be forbidden

readily by imposing a large penalty cost on the arc at the

column generation subproblem. If all positive-valued

routes are cycle-free, we find node i�, which is shared by

any two fractional-valued routes r1 and r2, and two distinct

arcs (j�, i�)AA(r1) and (k�, i�)AA(r2) exist. We consider

d�(i�) :¼{(j, i)AA|i¼ i�} and construct two disjoint sets,

d1
� and d2

�, such that d1
�Sd2

�¼ d�(i�), (j�, i�)Ad1
�, and

(k�, i�)Ad2
�. In a similar manner, we create two nodes in the

branch-and-bound tree. Arcs in d1
� (d2

�) are forbidden in

one node (the other node) of the branch-and-bound tree.

Computational results

In this section, we present our computational results for

our newly proposed algorithm for the robust VRPD. All

of the computational tests presented here were performed

on an AMD X2 2.9GHz PC with 4GB RAM. The

algorithm was implemented with C#, and CPLEX 10.1 was

used as the linear programming solver.

Our computational experiments were performed on two

sets of problems. The first set was taken from the well-

known Solomon problems (Solomon, 1987). In this case,

we used R and RC problems, which have 25 randomly

distributed (R) or randomly clustered (RC) customers,

respectively. Because the given vehicle capacity of Solomon

problems is too large to be meaningful in terms of capacity

constraints, we reset the demands of customers to be

twofold of the original values for the R problems (1.5 fold

those for the RC problems). For all Solomon problems,

we used the close time of the time window as the deadline.

The second set was taken from Augerat et al (1995).

Since Augerat problems were originally designed for the

CVRP (without deadlines), we assigned deadline times of

150 and 200 for every odd node and every even node,

respectively.

Monte-Carlo simulation tests were designed to evaluate

the robustness of the obtained solutions. The simulation

model of random travel times is based on the following

real-life observations. Firstly, a travel time between two

distinct customers might be significantly delayed by

unpredictable accidents. In other words, a probability

distribution of the travel time might have a long tail.

Secondly, a travel time might be shorter by no more than

a certain limit, while it is possible to be delayed without

limit. This assumption implicates the asymmetrical nature

of the probability distribution of the travel time. The model

of the probability distribution for the travel time is

illustrated in Figure 1. This model is based on a normal

distribution with nominal value t̂ as the peak value (ie,

mode value) and a low cut at t̂(1�D), where D is a given

simulation parameter. The parameter D is introduced

to reflect the degree of the unreliability of the nominal

travel time.

The travel times of two distinct arcs may be correlated.

For example, as some customers may be located in highly

congested areas, travel to (or from) these customers will

require more (travel) time than to other customers.

Therefore, we assume that the random value yi follows

the probability distribution defined in Figure 1 with t̂¼ 0

and D D=2
ffiffiffi
2
p

. The travel time on arc (i, j) is defined

as tijþ tij(yiþ yj). For the demand uncertainty, we assume

that the random demand of customer i follows the normal

distribution Nðr̂i; ðr̂iSÞ2Þ, where S is a given simulation

parameter.

Probability

travel time

t̂ (
1–

 3
Δ)

t̂ (
1–

 2
Δ)

t̂(
1–

 Δ)

t̂(
1+

 Δ)

t̂(1
+ 

2Δ)

t̂(
1+

 3
Δ)

t̂

Figure 1 Probability distribution of travel time with t̂ as the
nominal value.
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Comparison between the deterministic and robust
solutions

For the given simulation parameters D and S, we generated
1000 scenarios which have random travel time matrices

and demand vectors. The robustness of a solution is

measured by testing how many of these scenarios remain

feasible among the 1000 generated. The feasibility of a

scenario can be checked easily by examining the deadlines

and vehicle capacities of the solution’s routes using the

current scenario’s travel time matrix and demand vector.

The computational results of the Solomon problems are

summarized in Tables 1 and 2. The headings G and L refer

to the degrees of robustness for the travel time and

demand, which determine the uncertainty sets Ut and Ur,

respectively. The asterisk (�) indicates that the time limit

(one hour) was reached. The solutions with G¼ 0, L¼ 0

are a non-robust (deterministic) version of the problem and

used for comparison with robust aware solutions having

G¼ 2, L¼ 2. The total time spent in the branch-and price

in seconds are shown under the headings time. Headings

opt and inc denote the optimal integer solution (or the

best incumbent solution) and the percentage increments

in the optimal values due to the introduction of robustness

of the solution, respectively. The bold numbers indicate

that the optimal solutions were obtained within the time

limit. Robustness of the (optimal or best) solutions

measured from the Monte-Carlo simulation tests are

reported under the heading Simulation. For each simula-

tion case, 0.2 was used as the value of D and/or S.
Note that the larger D (or S), the more uncertainty in the

travel time data (or demands). For example, D¼ 0.2 and

S¼ 0 indicate that there is no demand uncertainty in

the simulation scenarios. It is possible to investigate which

kind of uncertainty makes the solution more risky in terms

of data variations by comparing two simulation conditions,

namely, D¼ 0.2, S¼ 0 and D¼ 0, S¼ 0.2.

The results clearly show the following. Firstly, the

deterministic solutions are very frail, with the average

robustness of the deterministic solutions being 10.26 and

26.96% for R class and RC class problems, respectively.

Secondly, the robustness of solutions is significantly

improved by the robust approach—up to 48.28 and

81.83% on average. Thirdly, RC class problems are much

harder to solve. Since the customers are clustered in RC

problems, there may be many feasible routes of similar

Table 1 Results for the Solomon R class instances. For all
instances, we set dij=t̂ij 	 0.2, 8(i, j)AA and oi=r̂i 	 0.2, 8iAN.

Problems: (Solomon, 1987)

prob G,L time opt inc

(%)

Simulation (%): D,S

0.2, 0 0, 0.2 0.2, 0.2

R101 0, 0 1.32 453.1 56.4 46.8 26.2

2, 2 3.62 464.4 2.49 94.5 84.3 79.5

R102 0, 0 705.53 434.2 17.1 9.5 1.7

2, 2 201.09 444.7 2.42 95.3 76.6 73.1

R103 0, 0 2540.15 407.5 22.7 17.0 3.6

2, 2 1440.65 417.3 2.40 99.8 52.7 52.5

R104 0, 0 2091.56 404.4 100.0 18.0 18.0

2, 2 3517.91 407.9 0.87 99.9 55.2 55.1

R105 0, 0 47.79 436.9 10.3 13.5 1.7

2, 2 41.14 446.6 2.22 98.6 60.2 59.0

R106 0, 0 360.01 405.1 18.4 13.7 2.6

2, 2 465.82 426.3 5.23 97.3 36.2 34.6

R107 0, 0 1857.57 394.3 26.4 13.7 3.4

2, 2 3600* 408.3 3.55 96.4 25.7 24.4

R108 0, 0 1797.56 394.3 26.4 13.7 3.4

2, 2 836.41 399.3 1.27 96.4 25.7 24.4

R109 0, 0 167.78 409.1 79.8 28.9 24.0

2, 2 1095.92 429.4 4.96 89.7 73.5 66.0

R110 0, 0 779.17 401.7 50.2 13.7 7.1

2, 2 471.67 409.0 1.82 99.1 35.2 34.9

R111 0, 0 1024.42 401.3 71.7 17.0 11.0

2, 2 3600* 417.3 3.99 100.0 52.7 52.7

R112 0, 0 3600* 399.9 99.8 20.4 20.4

2, 2 2573.76 399.3 �0.15 92.5 25.7 23.1

Average 0, 0 1247.75 411.82 48.27 18.83 10.26

2, 2 1487.34 422.48 2.59 96.63 50.31 48.28

Table 2 Results for the Solomon RC class instances. For all
instances, we set dij=t̂ij 	 0.2, 8(i, j)AA and oi=r̂i 	 0.2, 8iAN.

Problems: (Solomon, 1987).

prob G,L time opt inc

(%)

Simulation (%): D,S

0.2, 0 0, 0.2 0.2, 0.2

RC101 0, 0 3600* 504.3 82.6 36.5 28.8

2, 2 3600* 531.5 5.39 98.0 99.7 97.7

RC102 0, 0 3600* 493.7 44.5 20.5 7.9

2, 2 3600* 522 5.73 97.7 88.3 86.2

RC103 0, 0 3600* 494.3 100.0 22.9 22.9

2, 2 3600* 513.9 3.97 98.0 67.5 66.4

RC104 0, 0 3600* 489.8 100.0 47.2 47.2

2, 2 3600* 513.1 4.76 94.4 70.7 67.2

RC105 0, 0 3600* 487.7 93.2 45.7 42.9

2, 2 3600* 526.4 7.94 99.7 97.7 97.4

RC106 0, 0 3600* 506.9 63.8 40.2 25.4

2, 2 3600* 525.8 3.73 98.9 87.1 86.0

RC107 0, 0 3600* 495.8 41.6 48.4 20.5

2, 2 3600* 508.1 2.48 97.3 69.9 68.1

RC108 0, 0 3600* 491.9 64.9 31.9 20.0

2, 2 3600* 526.5 7.03 100.0 85.6 85.6

Average 0, 0 3600* 495.55 73.83 36.66 26.95

2, 2 3600* 520.91 5.13 98.00 83.31 81.83
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distances, making the problem hard to solve. It should be

noted that the robustness of our solutions are greatly

improved for RC problems also, even when the optimal

solutions could not be obtained. Fourthly, for the R112

problem in Table 1, the robust version has a better objective

value than the deterministic version, primarily because the

deterministic version has failed to obtain the optimal

solution within the time limit. Finally, the increments of

the objective values of the robust problems are larger in the

RC problems. In the clustered networks, the route of any

vehicle may be restricted within a cluster of customers to

minimize the travel distance. Therefore, identifying a risk-

averse route may require that the route visit another cluster,

which results in a long route that visits multiple clusters.

Table 3 reports the computational results for the

Augerat problems. The results are similar to those for the

Solomon problems in that we see significant increments

in the robustness of the solutions without much loss in

solution quality. For example, for the simulation test in

which the presence of travel time and demand uncertainties

(D¼S¼ 0.2) is assumed, the robustness of the solutions

improved by 63.8% on average.

A deterministic solution may be robust already if the

resource restrictions are relaxed. As briefly stated earlier,

Solomon problems have very relaxed capacity constraints.

Figure 2 illustrates the changes in the robustness of the

solution for problem R101 with increasing demands. It can

be seen that the increased demands do not affect the

robustness of the solution against the travel time uncer-

tainty (Figure 2a). At the large demand multiplier (X2), the

deterministic solution becomes slightly more robust because

the routes are shortened by the vehicle capacity restrictions.

In the case when there is only the uncertainty of demand,

shows that the capacity constraint imposes little restriction

on the vehicle routes at the small demand level (Figure 2b).

At the default demand level (demand multiplier¼ 1), it can

be said that the risk associated with vehicle routes originates

mainly from the travel time uncertainty—not from the

demand uncertainty. This kind of inference may be useful

to practitioners who want to solve the VRP for a practical

purpose. For example, a logistics company can accept more

unexpected customer demands in a delivery plan since the

capacity of a vehicle has a sufficient immunity against the

demand uncertainty.

It is fairly difficult to compare the performance of

the algorithm with that of the direct reformulation

(RCVRPD) because (RCVRPD) has too many constraints

and variables. Based on our computational experience,

even building the mathematical model for CPLEX requires

too much time and memory space. Therefore, based

on problem R101, we designed a small test problem

involving the first 10 customers (107 arcs, and 25 vehicles).

With uncertainty parameters G¼ 1, L¼ 2, d¼ 0.2t̂, and

o¼ 0.2r̂, the branch-and-price algorithm solved the pro-

blem optimally in 0.3 s with a 7.8% linear programming

(LP) relaxation gap. For comparison purposes, we

solved (RCVRPD) using CPLEX and found that for this

small problem the number of constraints (13) in

(RCVRPD) was 107	 25	 107
1

� �
¼ 286 225. After 10h,

CPLEX has failed to prove the optimality, and the remain-

ing gap was 18.3% (the LP relaxation gap was 35%),

mainly because of the large problem size. When G¼ 2,

we received an out-of-memory error from CPLEX. In

this case, the number of constraints (13) in (RCVRPD)

was 107	 25	 107
2

� �
¼ 15 169 925, which was clearly too

large to be solved directly by CPLEX.

Table 3 Results for the Augerat problems. For all instances,
we set dij=t̂ij 	 0.2, 8(i, j)AA and oi=r̂i 	 0.2, 8iAN. Problems:

(Augerat et al, 1995).

prob G,L time opt inc Simulation (%): D,S

0.2, 0 0, 0.2 0.2, 0.2

A-n32-k5 0, 0 3600* 1039 38.1 60.0 23.2

2, 2 3600* 1019 �1.92 96.6 92.2 89.3

A-n33-k5 0, 0 3600* 766 44.1 70.6 30.7

2, 2 3600* 820 7.05 99.4 84.4 83.9

A-n33-k6 0, 0 3600* 757 40.1 12.8 5.4

2, 2 3600* 854 12.81 99.7 72.9 72.8

A-n34-k5 0, 0 3600* 844 19.2 25.3 4.7

2, 2 3600* 966 14.45 98.4 86.5 84.9

A-n36-k5 0, 0 3600* 953 8.9 57.5 5.1

2, 2 3600* 989 3.78 91.6 88.9 81.5

B-n31-k5 0, 0 3600* 698 63.7 31.3 19.9

2, 2 3600* 810 16.05 98.9 90.1 89.1

B-n34-k5 0, 0 3600* 860 29.0 19.3 5.6

2, 2 3600* 991 15.23 99.6 74.4 74.0

B-n35-k5 0, 0 3600* 1250 15.0 63.2 9.4

2, 2 3600* 1379 10.32 96.6 91.8 88.8

B-n38-k6 0, 0 3600* 1008 20.3 15.4 2.9

2, 2 3600* 1104 9.52 94.8 71.0 67.3

B-n39-k5 0, 0 3600* 643 37.9 67.3 25.2

2, 2 3600* 837 30.17 97.8 93.5 91.5

P-n19-k2 0, 0 3600* 234 53.5 45.1 25.0

2, 2 3600* 252 7.69 99.8 99.6 99.4

P-n20-k2 0, 0 3600* 261 100.0 99.9 99.9

2, 2 3600* 251 �3.83 100.0 99.7 99.7

P-n22-k8 0, 0 1.836 590 100.0 11.4 11.4

2, 2 22.217 666 12.88 100.0 66.0 66.0

P-n23-k8 0, 0 22.083 529 100.0 0.8 0.8

2, 2 22.879 618 16.82 100.0 62.2 62.2

P-n40-k5 0, 0 3600* 528 38.8 49.2 19.7

2, 2 3600* 548 3.79 98.2 98.6 96.8

Average 0, 0 3121.59 730.67 47.2 41.9 19.3

2, 2 3123.01 806.93 10.32 98.1 84.8 83.1

10 Journal of the Operational Research Society



AUTHOR C
OPY

Analysis of robustness for different uncertainty
parameters

The results on the robustness of the solutions for different

uncertainty parameters in terms of the percentages of

feasible scenarios are plotted in Figure 3. The simulation

was conducted in two ways. In the first simulation there is

no uncertainty in terms of demand data (S¼ 0). Changes

in the percentages of feasible scenarios with increasing

travel time uncertainty (increasing D) are plotted in Figure

3a and 3c. In the second scenario, there is no uncertainty in

terms of the travel times (D¼ 0). Changes in the number of

feasible scenarios with increasing demand uncertainty

(increasing S) are plotted in Figure 3b and 3d. It can be

clearly seen that the deterministic solutions become rapidly

unreliable as the data become more uncertain. The
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robustness-aware solutions are, however, far more robust

against the uncertainties. It was interesting to note that

the deterministic solutions deteriorate more rapidly for

the cases presented in Figure 3b and 3c. Closer examina-

tion of these solutions reveals that the deterministic

solution for problem RC101 has one time-risky route

and two capacity-risky routes, while the deterministic

solution for A-n35-k5 has two time-risky routes and one

capacity-risky route. To be feasible, the multiple risky-

routes should meet joint-probability conditions, which

enforces a rapid decrease in feasibility—the solution is

feasible if all of the risky routes are safe against the

uncertainties.

Conclusions

In this article, we have considered the case of the robust

vehicle routing problem with deadlines (RVRPD). We

have assumed that there is uncertainty in the travel time

and demand data, which implies that the feasibility of

ordinary deterministic solutions cannot be guaranteed.

The goal of our approach was to obtain a more robust

solution with only a small penalty in the objective value.

Based on the definition of the uncertainty set of Bertsimas

and Sim (2004), we have shown that the travel time and

demand uncertainty of the problem can be encapsulated

in the column generation subproblem, which is defined as

the problem of finding robustly feasible routes with

negative reduced costs. We have also been successful in

modelling the subproblem as the robust shortest path

problem with resource constraints (RSPPRC) and have

proposed a dynamic programming solution algorithm to

solve RSPPRC. The results of the computational experi-

ments show that the robustness of the solution can be

greatly improved with a moderate penalty in the optimal

value.

To adopt the robust approach, one should determine the

uncertainty sets, as well as the parameters to control the

robustness of the solution. The travel time deviation d

and maximum demand o can be estimated from historical

data and/or a business contract, among other sources. It

is somewhat unclear how to decide upon the parameters

G (or L). Nevertheless, some guidelines can be given based

on our computational experience:

K Use a higher value of G (or L) if each route is long in

terms of the number of the customers to be visited. If

a route has a long travel distance but only a small

number of the customers to visit, the route may be

protected with a small value of G (or L) as G (or L)
restricts the number of delayed segments (or unexpected

demands) in the route.

K The value of G (or L) can be adjusted based on

the actual operation results. If the solution of routes

from the current G (or L) yields many tight visits in

the actual operation, it is natural to increase the value. If

the current solution wastes too much time (or capacity),

one may consider the possibility of reducing the value

of G (or L).

Since the robust feasible routes are generated for each

vehicle independently, it is even possible to apply different

uncertainty sets to different vehicle types. For example, let

us assume that there are two types of vehicles, one with

a large capacity and the other with a small capacity, that

is the heterogenous vehicles case. The large-capacity vehicle

is clearly expected to visit many more customers than the

small-capacity vehicle. We can assign, therefore, a higher

G and/or L value to the former type of vehicle to protect

the long (and important) route.

Unfortunately, the proposed algorithm cannot be

directly applied to RVRPTW, where the customers have

the earliest starting times for service as well as deadlines.

In RVRPTW, the vehicle may be subject to a certain

period of waiting at a customer’s location since the service

should be provided only after the earliest starting time. In

this case, the delayed travel time prior to the waiting period

can be buffered (absorbed) by the waiting time. General-

ization of the RSPPRC to allow the waiting at the

customer’s location represents a valuable future research

topic.
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