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Abstract: This paper presents the robust velocity estimation of an omnidirectional mobile robot 

using a polygonal array of optical mice that are installed at the bottom of the mobile robot. First, 

the velocity kinematics from a mobile robot to an array of optical mice is derived as an 

overdetermined linear system. The least squares velocity estimate of a mobile robot is then 

obtained, which becomes the same as the simple average for a regular polygonal arrangement of 

optical mice. Next, several practical issues that need be addressed for the use of the least squares 

mobile robot velocity estimation using optical mice are investigated, which include measurement 

noises, partial malfunctions, and imperfect installation. Finally, experimental results with 

different number of optical mice and under different floor surface conditions are given to 

demonstrate the validity and performance of the proposed least squares mobile robot velocity 

estimation method. 
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1. INTRODUCTION 
 

In the near future, personal service robots are 

expected to come into human daily life as supporters 

in education, leisure, house care, health care, and so 

on. Most of them built on mobile platforms require 

the capability of autonomous navigation in unknown 

and/or dynamic environments. The key ingredients for 

autonomous navigation are viable techniques for the 

map building, the obstacle detection/avoidance, and 

the localization in terms of velocity/position [1,2]. 

The concern of this paper is the robust velocity 

estimation for an omnidirectional mobile robot as a 

platform of personal service robots. 

Typical sensors used for the localization of mobile 

robots include encoders, ultrasonic sensors, and 

cameras [3]. However, encoders are vulnerable to 

wheel slip, ultrasonic sensors require the line of sight, 

and cameras usually mandate heavy computation. 

There have been several attempts to employ optical 

mice for the velocity estimation of a mobile robot [4-

10]. In fact, an optical mouse is an inexpensive but 

high performance device with sophisticated image 

processing engine inside [11,12]. The velocity 

estimation of a mobile robot using a set of optical 

mice can overcome to some extent the aforementioned 

limitations of typical sensors. 

An optical mouse can continue providing two 

orthogonal relative displacements in both lateral and 

longitudinal directions at a prespecified sampling rate, 

from which two linear velocity components of an 

optical mouse can be readily computed. For the velo-

city estimation of an omnidirectional mobile robot on 

the plane, two linear velocity components and one 

angular velocity component need to be deter-mined. 

Theoretically, the minimum number of optical mice 

required for the mobile robot velocity estimation should 

be one and half. Most of previous researches [5-9] use 

two optical mice, while only a single optical mouse is 

used in [4]. However, few attempts have been made to 

use more than two optical mice except [10]. 

In this paper, we present the robust velocity 

estimation of a mobile robot using the redundant 

number of optical mice arranged in a polygonal array. 

This paper is organized as follows. Sections 2 and 3 

derive the velocity kinematics as an overdetermined 

system, and obtain the least squares velocity estimate, 

which can reduce to the simple average. Sections 4, 5, 

and 6 investigate several practical issues raised for the 

practical use of the proposed method, including 

measurement noises, partial malfunctions, and 

imperfect installation. Section 7 gives experimental 

results. Finally, the conclusion is made in Section 8. 

  

2. VELOCITY KINEMATICS 
 

Assume that N optical mice are installed at the 

__________  
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vertices, ,,,1, NiPi L= of a polygon that is centered 

at the center, bO , of a mobile robot traveling on the 

xy  plane. Fig. 1 shows an example of a triangular 

array of optical mice with .3=N  Let t
x ]01[=u  

and t
y ]10[=u be the unit vectors along the x axis 

and the y axis of the world coordinate system, 

respectively. The position vector, ,][ t
iyixi pp=p  

,,,1 Ni L=  from bO to iP , can be expressed as 

cos( )
,

sin ( )
ix i

i
iy i

p r
p r

θ φ
θ φ

⎡ ⎤ +⎡ ⎤= =⎢ ⎥ ⎢ ⎥+⎣ ⎦⎣ ⎦
p   (1) 

where θ  represents the heading angle of a mobile 

robot with 1p  being the forwarding direction, iφ , 

,,,2 Ni L=  represents the angle formed between the 

th)1( −i  and the thi  optical mice with respect to 

,bO with ,01 °=φ  and r represents the distance 

from bO to each optical mouse. For notational 

convenience, let ,3,2,1, =iiq be the vector obtained 

by rotating ip by 90° counterclockwise. 

In this paper, we assume that a mobile robot under 

consideration has omnidirectional mobility on the xy 

plane. Let ,][ t
bybxb υυ=v and bω  be the linear 

velocity and the angular velocity at the center bO of a 

mobile robot, respectively. And, let ,][ t
iyixi υυ=v  

,,,1 Ni L=  be the linear velocity experienced by the 

thi optical mouse placed at the vertex iP . Then, there 

holds the following velocity relationship: 

.b b i iω+ =v q v     (2) 

Premultiplying (2) by t
xu  and ,

t
yu we have 

,t t t
x b b x i x iω+ =u v u q u v   (3) 

,t t t
y b b y i y iω+ =u v u q u v    (4) 

respectively. Referring to Fig. 1, (3) and (4) can be 

rewritten as 

,bx b iy ixpυ ω υ− × =     (5) 

.by b ix iypυ ω υ− × =     (6) 

Using (5) and (6), the velocity mapping from a 

mobile robot to an array of Noptical mice can be 

represented as 

,m s=Av v      (7) 

where 

,

bx

m by

b

υ
υ

ω
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and 

1

2 2 3 ,N

N

×

⎡ ⎤
⎢ ⎥
⎢ ⎥= ∈
⎢ ⎥
⎢ ⎥
⎣ ⎦

A

A
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    (10) 

with 

1 0
.

0 1

iy
i

ix

p

p

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

A     (11) 

Note that the expression of A is quite simple as a 

function of the position vectors of N optical mice, 

,][ t
iyixi pp=p .,,1 Ni L=  

In the case of ,1=N (7) represents two equations 

of three unknowns, including two linear velocity 

components, bxυ and ,byυ and one angular velocity 

component, .bω Thus, (7) becomes an underdeter-

mined system, which implies that the mobile robot 

velocity cannot be uniquely determined from the 

optical mouse velocity measurements. However, for 

2≥N , (7) becomes an overdetermined system 

consisting of 2N equations, for which the least squares 

solution can be sought. From now on, it is assumed 

 

Fig. 1. A triangular array of optical mice with N = 3. 
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that the number of optical mice in use is greater than 

or equal to two, that is, 2≥N . 

 

3. VELOCITY ESTIMATION 
 

Three different types of errors may be involved in 

the mobile robot velocity estimation using an array of 

optical mice. The first type includes the deterministic 

errors, caused by kinematic imperfections, for 

example, imprecise installation of optical mice. The 

second type includes the stochastic errors which are 

random in magnitude and persistent throughout all 

measurements, for example, white Gaussian noise. 

The third type includes the stochastic errors which 

occur unexpectedly and last for some period of time, 

mainly caused by floor surface conditions. Assuming 

that all the deterministic errors have been corrected 

through proper calibration procedure, we are 

interested only in the two types of stochastic errors in 

this paper. 

Suppose that the measurement model of a array of 

N optical mice can be expressed as 

,s m= +v Av n      (12) 

where 

,][ 12
2)12(4321

×
− ∈= Nt

NN nnnnnn Rn L  (13) 

with )12( −in  and ,2in ,,,1 Ni L= being a pair of 

measurement errors of the thi optical mouse. From 

(12), the least squares velocity estimation of a mobile 

robot can be obtained by 

ˆ

ˆˆ ,

ˆ

bx

m s by

b

υ
υ

ω

⎡ ⎤
⎢ ⎥

= = ⎢ ⎥
⎢ ⎥
⎣ ⎦

v J v     (14) 

where 

1 3 2( ) ,t t N− ×= ∈J A A A R    (15) 

which is the generalized inverse of A . (14) represents 

the estimated velocity of a mobile robot from the 

noisy optical mouse velocity measurements, which 

minimizes the quadratic error, given by 
2

sm vvA −  

[14].  

The least squares velocity estimation, given by (14), 

of a mobile robot makes no assumptions on the 

measurement errors of optical mice. If the 

measurement errors are independent and identically 

distributed zero-mean Gaussian variables, the least 

squares estimation becomes equivalent to the 

maximum likelihood estimation [13]. As will be 

shown later, the distribution of the optical mouse 

measurement errors tends to be near zero-mean 

Gaussian in most floor conditions except a few, for 

example, glass surfaces, glossy surfaces, and plastics 

[15]. This fact supports that the proposed least squares 

velocity estimation can be of physical meaning as well 

as mathematical meaning. 

From (10) and (11), it can be shown that 

1

1

2

1 1 1

0
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N
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N
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Since 

,||||||||1

1

22

1

∑∑ <×
N

i

N

i
N

pp    (17) 

the inverse of AA
t always exists independently of 

the heading angle θ of a mobile robot, which 

guarantees the observability of the measurement 

model, given by (12). 

It is interesting to consider a special arrangement of 

optical mice in a regular polygonal array, that is, 

,2)1(
N

ii
πφ ×−=     (18) 

for which 

.
}2)1({sin

}2)1({cos

⎥
⎥
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⎦
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N
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N
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p

p
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Under the constraint of (18), we have 

1 1

0 ,
N N

ix iy
i i

p p
= =

= =∑ ∑     (20) 

so that (16) becomes 

2

0 0

0 0 .
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t

N

N
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⎢ ⎥
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Plugging (10), (11), and (21) into (15), we obtain 

[ ] 3 2
1 2 ,N

N
×= ∈J J J J RL    (22) 
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.

}
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01
1

⎥
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⎥
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Finally, for a given set of the velocity measure-
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ments from N optical mice, 1 1 2 2[s x y x yυ υ υ υ=v  

] ,t
Nx Nyυ υL the estimate of the linear and the 

angular velocities of a mobile robot, ˆ ˆˆ [m bx byυ υ=v  

ˆ ] t
bω , can be obtained, from (9), (14), (22), and (23), 

as follows: 

1

1

1

1
ˆ ,

1
ˆ ,

1
ˆ ,

N

bx ix
i
N

by iy
i
N

b i
i

N

N

N

υ υ

υ υ

ω ω

=

=

=

= ∑

= ∑

= ∑

    (24) 

where 
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⎬
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⎨
⎧ −+−

=

iyix

i
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i

N

i

r
υπθυπθ

ω

(25) 

which represents the angular velocity experienced by 

the thi optical mouse. Regarding the velocity 

estimation based on (24), the following remarks can 

be made. First, the angular velocity estimate, bω̂ , is 

dependent on the heading angle θ , while the linear 

velocity estimates, bxυ̂ and ,ˆbyυ  are not. Second, 

each of three velocity estimates is determined as the 

simple average of the corresponding velocity 

components experienced by all the optical mice. It 

should be mentioned that such computational 

simplicity is attributed to the arrangement of optical 

mice in a regular polygonal array centered at the 

center of a mobile robot. 

 

4. MEASUREMENT NOISES 
 

The redundant number of optical mice helps to 

reduce the effect of the measurement noises 

accompanying the velocity measurements from 

optical mice. Suppose that a mobile robot is 

commanded to travel at a constant linear velocity 

along the x axis, that is, with m / secbxυ μ=  

with 0.0m / secbyυ =  and 0.0rad / sec .bω = Then, the 

statistics of the optical mouse velocity measurements 

can be characterized by 

,0][][][

,][][][

21

21

====
====

Nyyy

Nxxx

EEE

EEE

υυυ
μυυυ

L

L
  (26) 

and 

,]var[]var[]var[

,]var[]var[]var[

2
21

2
21

συυυ

συυυ

====

====

Nyyy

Nxxx

L

L
 (27) 

where μ  and 2σ  represent, respectively, the mean 

and the variance of the velocity measurements from N 

optical mice. 

For the mobile robot velocity estimation based on 

(24), it can be shown that 

[ ] , [ ] 0 ,bx byE Eυ μ υ= =   (28) 

2

var [ ] var [ ] ,bx by
N

συ υ= =    (29) 

assuming that N optical mouse velocity measurements 

are independent each other. (29) tells that the greater 

the number of optical mice, the smaller the velocity 

estimation error, under the same level of measurement 

noises. As the number of optical mice is increased 

from N(≥ 2) to (N + 1), the percent improvement in 

terms of standard deviation, denoted by PI, is given 

by 

1 100% .
1

N
PI

N

⎛ ⎞
= − ×⎜ ⎟⎜ ⎟+⎝ ⎠

   (30) 

Note that the percent improvement is more significant 

for the smaller number of optical mice. Similar 

analysis to the above can be made as well for the pure 

angular velocity and the combined linear and angular 

velocity of a mobile robot. 

 

5. PARTIAL MALFUNCTIONS 
 

The success of the least squares mobile robot 

velocity estimation based on (24) is heavily dependent 

on whether all the optical mice function normally. It is 

important to detect and isolate the malfunctioning 

optical mice from the velocity estimation. Here, we 

propose a simple but effective means to cope with 

partial malfunctions occurring among the redundant 

number of optical mice. The basic rationale is that the 

proposed least squares mobile robot velocity 

estimation can be regarded as a process of building 

consensus among all the optical mice of equal 

privilege. 

For a given mobile robot velocity estimate, ,ˆmv  

the residual of the thi optical mouse, denoted by 

,sivΔ  is [14] 

ˆ ,
ix

si si si
iy

υ

υ

Δ⎡ ⎤
Δ = − = ⎢ ⎥

Δ⎢ ⎥⎣ ⎦
v v v    (31) 

where 

ˆ
ˆ ˆ .

ˆ

ix

si i m
iy

υ

υ

⎡ ⎤
= = ⎢ ⎥

⎢ ⎥⎣ ⎦
v A v     (32) 

Here, let us consider the magnitude of the residual 
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,sivΔ  given by 

ˆ .i si si siρ = Δ = −v v v     (33) 

Using (9) and (32), (33) can be expressed as 

2 2 2ˆ ˆ( ) ( ) ,i ix ix iy iyρ υ υ υ υ= − + −   (34) 

which can be easily computed.  

The residual magnitude ρi can be interpreted as a 

measure of inconformity of the thi optical mouse to 

the consensus reached by all the optical mice. If the 

degree of inconformity exceeds a prespecified 

threshold, then it would be reasonable to isolate the 

problematic optical mice and then to search for a new 

consensus among the remaining ones. Supposing that 

the thk optical mouse is malfunctioning, the new 

velocity estimation can be made under 

1

1 2( 1) 3
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,
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− − ×
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⎡ ⎤
⎢ ⎥
⎢ ⎥
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    (37) 

Notice that both lateral and longitudinal velocity 

measurements from the malfunctioning optical mouse 

are ignored simultaneously. 

Here, we assume that the malfunctions of optical 

mice occur unexpectedly and last for some period of 

time. The errors caused by the malfunctioning optical 

mice are different from other sporadic measurement 

errors, for example, random spike noises. Simple 

averaging or median filtering may help reducing 

stochastic and sporadic measurement errors, however, 

they seem not to be effective for stochastic but 

prolonged measurement errors. 

 

6. IMPERFECT INSTALLATION 
 

In practice, it may be rather difficult to install 

optical mice in an exact regular polygonal array 

whose center is coincident with the center of a mobile 

robot. The sensitivity of the least squares mobile robot 

velocity estimation based on (24) to imprecise 

installation of optical mice can be analyzed as follows. 

In the presence of installation error, the optical mouse 

position vector, denoted by ,~
ip ,,,1 Ni L= can be 

described as 

,ix
i i i

iy

p
pδ ⎡ ⎤= + = ⎢ ⎥⎣ ⎦

p p p
%

% %    (38) 

where t
iyixi pp ][=p represents the nominal 

optical mouse position, and t
iyixi pp ][ δδδ =p  

represents the position deviation from the nominal 

value ip . In what follows, we will use ‘
-
’ and ‘

~
’ to 

denote the nominal value and the perturbed value of 

the quantity of interest, respectively. 

In the presence of optical mouse installation error, 

the velocity kinematics, given by (7), can be 

expressed as 

,m s=Av v% % %      (39) 

with 

,m m mδ= +v v v%    (40) 

,s s sδ= +v v v%     (41) 

and 

.δ= +A A A%      (42) 

It should be noted that 

,m s=Av v      (43) 

which is valid for perfect optical mouse installation. 

Premultiplying (39) by t
A
~

 and plugging (42) 

into the resulting equation, we have 

.~)(~))(( s
tt

m
tt

vAAvAAAA δδδ +=++  (44) 

Assuming that the optical mouse installation error is 

sufficiently small, we have 

3 30 ,tδ δ ×≅A A     (45) 

so that (44) becomes 

m s( ) ( ) ,t tδ δ+ ≅ +P P v A A v% %   (46) 

where 

3 3 ,t ×= ∈P A A R    (47) 

3 3 .t tδ δ δ ×= + ∈P A A A A R   (48) 

Plugging (40) and (41) into (46), and applying (43) to 

the resulting equation, we obtain 

s s ,t t
m mδ δ δ δ+ ≅ +P v P v A v A v  (49) 
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under the additional assumptions given by 

3 10 ,mδ δ ×≅P v     (50) 

3 10 .t
sδ δ ×≅A v    (51) 

Finally, from (49), the mobile robot velocity 

estimate error owing to imperfect optical mouse 

installation can be approximated by 

,1 ,2 ,3 ,m m m mδ δ δ δ≅ + +v v v v   (52) 

where 

.

,

,

s
1-

3,

1-
2,

s
-1

1,

vAPv

vPPv

vAPv

δδ

δδ

δδ

t
m

mm

t
m

=

−=

=

   (53) 

In (52), it should be noted that the first and the 

second terms of the velocity estimation error are 

attributed to Aδ and ,Pδ and the third term is 

attributed to the additional optical mouse velocity 

measurements, .)~(s ms vAvv −=δ It should be 

noticed that the source for all the three terms is the 

same, that is, the position deviations of optical mice, 

ipδ , .,,1 Ni L=  

 

7. EXPERIMENTAL RESULTS 
 

To demonstrate the validity and performance of the 

proposed least squares mobile robot velocity 

estimation, we conducted several experiments using 

two, three and four commercial optical mice. As 

shown in Fig. 2, optical mice are installed in a regular 

polygonal array on a separate circular plate, with the 

lateral directions of all the optical mice aligned with 

the x axis of the world coordinate system. The circular 

plate equipped with three passive caster wheels is then 

rigidly attached to our laboratory built differential 

drive mobile robot, in place of an omnidirectional 

mobile robot not available. Because of the experi-

mental setup, however, our experiments are limited to 

pure linear motions of a mobile robot excluding self-

rotations. 

 

7.1. Data acquisition 

Commercial USB optical mice used in our 

experiments have the ADNS-3080 [15], a high 

performance optical mouse sensor from the Agilent 

Technologies (now the Avago Technologies). Table 1 

shows the technical specifications and the parameter 

settings of the ADNS-3080. In stream mode, the 

optical mouse continues sending to the host the packet 

containing two relative displacements in both lateral 

and longitudinal directions. Note that the relative 

displacement is internally expressed in the unit of 

counts, which needs to be converted in the unit of 

inches or meters for use. 

To reduce communication overhead from the 

optical mouse to the host, the downsampler is inserted 

as shown in Fig. 3, which is implemented using 

ATmega8, 8-bit AVR microcontroller with 8K bytes 

in-system programmable flash from Atmel Corp. [16]. 

Upon receiving each packet from the host, the 

downsampler keeps on accumulating the relative 

displacement counts within the packet. Once every 

)12(=K  packets from the host, the downsampler 

sends to the host the packet containing the 

accumulated values of relative displacement counts. 

Using these values, the host calculates, for example, 

the linear velocity components by  

Fig. 2. Experimental setup. 

Table 1. Technical specifications and parameter set-

tings of the ADNS-3080. 

 Units Specification 
Parameter 

Setting 

Frame 

Rate 

fps 

(frames- 

per-sec) 

500 6,469∼  6,400 

Resolution

cpi 

(counts- 

per-inch)

400/1,600 1,600 

Maximum

Speed 

ips 

(inches- 

per-sec) 

40 

(@6,400fps) 
40 

 

Fig. 3. Optical mouse data acquisition system. 
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in / sec ,
/ FPS
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j

ix
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x

t K
υ =

∑
Δ

= =
Δ

  (54) 

where ,jCNT ,,,1 Kj L= represents the relative 

displacement count of the j
th

packet, and CPI re-

presents the resolution in counts-per-inch; K 

represents the number of packets whose relative 

displacement is accumulated, and FPS represents the 

sampling rate in frames-per-sec. 

 

7.2. Velocity measurements 

Let us examine the statistical characteristics of the 

optical mouse velocity measurements. With the head-

ing angle of °= 90θ , the mobile robot is commanded 

to travel on normal floor surfaces at a constant linear 

velocity along the y  axis: 0.1m/secbyυ = with 

0.0m/secbxυ =  and 0.0rad / sec,bω = Note that the 

y axis of the world coordinate system coincides with 

the longitudinal directions of all the optical mice. Fig. 

4(a) shows the snapshot of the velocity measurements, 

,iyυ from the i
th

optical mouse, for 1,000 sampling 

periods. Fig. 4(b) shows the plot of the number of 

occurrences or the frequency according to the values 

of the velocity measurements. Through several 

experiments, we found that the distribution of the 

optical mouse measurement noises tends to be near 

zero-mean Gaussian in most floor conditions except a 

few, for example, glass surfaces, glossy surfaces, and 

plastics [15]. 

In our experiments, the mobile robot is commanded 

to move rather slowly to secure stable contact between 

the optical mice and the floor as much as possible. 

However, note that the maximum speed of the ADNS-

3080 itself amounts to 40 inches-per-sec at 6,400 

frames-per-sec, which is about 0.1m/sec, as shown in 

Table 1. In fact, commercial optical mice should be 

restructured in a deliberate way to allow some spacing 

above the floor, which is necessary to avoid the 

damage of optical mice due to possible collisions. 

 

7.3. Measurement noises 

The mobile robot is commanded to travel on 

normal floor surface at the same constant velocity as 

before 0.1m / secbyυ =  with 0.0m / secbxυ =  and 

0.0rad / sec.bω =  Using two (N = 2), three (N = 3), 

and four (N = 4) optical mice arranged in a regular 

polygonal array, the mobile robot velocities are 

estimated from the optical mouse velocity 

measurements based on the least squares estimation, 

given by (22). For, N = 2,3 and 4, Fig. 5 shows the 

plots of the velocity estimates, byυ̂ , of the mobile 

robot for 500 sampling periods. The plot for N = 1 

which shows the velocity measurements from the first 

optical mouse is added for comparison with the 

mobile robot velocity estimates. From Fig. 5, it can be 

observed that the velocity estimation error of a mobile 

robot tends to decrease as the number of optical mice 

increases.  

Table 2 lists the standard deviations of the velocity 

estimates for the cases of N = 2,3 and 4, Seen from 

Table 2, it should be noticed that the increased number 

of optical mice strictly reduces the standard deviation 

of three velocity estimates, and the percent 

(a) Snapshot.         (b) Frequency. 

Fig. 4. The velocity information, from the optical 

mouse. 

 

(a) N = 1.             (b) N = 2.  

 

(c) N = 3.            (d) N = 4. 

Fig. 5. The mobile robot velocity estimates. 

 

Table 2. The standard deviations and the percent 

improvements. 

N σ [m/sec] PI [%] 

1 0.0035 NA 

2 0.0026 26.00 

3 0.0022 16.94 

4 0.0019 12.43 
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improvement is more significant for the smaller 

number of optical mice. 

 

7.4 Partial malfunctions 

The mobile robot is commanded to travel at the 

same velocity as before, but now to traverse glossy 

surfaces. To simulate partial malfunctions, we enforce 

the third optical mouse to cross glossy surface zone 

covered with aluminum foil, unlike the first and the 

second optical mice passing through normal floor 

surfaces. Fig. 6(a) shows the snapshot of the velocity 

measurements, y3υ , from the third optical mouse. Fig. 

6(b) shows the plot of the maximum value among 

three residual magnitudes, that is, ii ρmax . From Fig. 

6, it can be observed that the velocity measurement 

errors of the malfunctioning optical mouse belong to 

the stochastic errors which occur unexpectedly and 

last for some short period of time. 

Fig. 7 shows the plots of the velocity estimate 

,byυ) obtained without and with the remedy for partial 

malfunctions, respectively. From Fig. 7, it can be 

observed that the prolonged random measurement 

errors are almost completely identified and isolated 

from new velocity estimation based on (37). As 

discussed previously, simple averaging or median 

filtering may work well for sporadic measurement 

errors, but cannot be effective for prolonged 

measurement errors as much as our consensus based 

malfunction remedy. 

8. CONCLUSION 
 

In this paper, we dealt with the robust velocity 

estimation of an omnidirectional mobile robot using a 

polygonal array of optical mice. One contribution of 

this paper is to propose the optical mouse arrangement 

in a regular polygonal array, which leads to a simple 

but effective mobile robot velocity estimation in most 

floor conditions. The other contribution is to 

investigate several practical issues to be raised for the 

mobile robot velocity estimation using a set of optical 

mice: measurement noises, partial malfunctions, and 

imperfect installation. We hope that the theoretical 

treatment and experimental validation made in this 

paper can play a role of facilitating the early adoption 

of personal service robots in our daily life. 
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