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One of themost commonmodalities to examine the human eye is the eye-fundus photograph.
e evaluation of fundus photographs
is carried out by medical experts during time-consuming visual inspection. Our aim is to accelerate this process using computer
aided diagnosis. As a �rst step, it is necessary to segment structures in the images for tissue di�erentiation. As the eye is the only
organ, where the vasculature can be imaged in an in vivo and noninterventional way without using expensive scanners, the vessel
tree is one of the most interesting and important structures to analyze. 
e quality and resolution of fundus images are rapidly
increasing. 
us, segmentation methods need to be adapted to the new challenges of high resolutions. In this paper, we present a
method to reduce calculation time, achieve high accuracy, and increase sensitivity compared to the original Frangi method. 
is
method contains approaches to avoid potential problems like specular reexes of thick vessels. 
e proposed method is evaluated
using the STARE and DRIVE databases and we propose a new high resolution fundus database to compare it to the state-of-the-
art algorithms. 
e results show an average accuracy above 94% and low computational needs. 
is outperforms state-of-the-art
methods.

1. Introduction

In ophthalmology the most common way to examine the
human eye is to take an eye-fundus photograph and to anal-
yse it. During this kind of eye examinations a medical expert
acquires a photo of the eye-background through the pupil
with a fundus camera. 
e analysis of these images is comm-
only done by visual inspection.
is process can require hours
in front of a computer screen, in particular in case of medical
screening. An example fundus image is shown in Figure 1.

Our goal is to speed up the diagnosis by processing the
images using computer algorithms to �nd and highlight the
most important details. In addition we aim to automatically
identify abnormalities and diseases with minimal human
interaction. Due to the rapidly increasing spatial resolution
of fundus images, the common image processing methods
which were developed and tested using low resolution images
have shown drawbacks in clinical use. For this purpose, a new
generation ofmethods needs to be developed.
esemethods

need to be able to operate on high resolution images with
low computational complexity. In this paper, we would like
to introduce a novel vessel segmentation method with low
computational needs and a public available high resolution
fundus database with manually generated gold standards for
evaluation of retinal structure segmentation methods. 
e
proposed algorithms include modi�cations to the method
proposed by Frangi et al. [1] to decrease the running time
and to segment specular reexes of thick vessels, which are
not visible in lower resolution fundus images.


e structure of the paper is as follows. We describe the
proposed methods in detail in Section 3. In Section 4, we
present the evaluation methods and databases, including our
proposed high resolution fundus database, while Section 5
presents the quantitative results. In Sections 6 and 7, the
computational complexity and robustness of the proposed
algorithm are analyzed. 
is is followed by a Discussion in
Section 8 and the Conclusions in Section 9.
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Figure 1: An example of eye-fundus image: the macula is shown in
the middle, the optic disk is to the right, and the blood vessels are
entering and leaving the eye through the optic disk.

2. Related Work

Retinal vessel segmentation is a challenging task and has
been in the focus of researches all over the world for years.
During this time many di�erent algorithms were published
[2]. 
e segmentation algorithms can be classi�ed into two
main groups: in unsupervised and supervised methods.
Unsupervisedmethods classify vessels using heuristics, while
supervised methods learn a criteria system automatically
using prelabeled data as gold standard. We focus on heuristic
methods, as supervised methods need a large training set for
each camera setup. Heuristic methods instead require a set of
parameters, which need to be adapted to the camera setup.

us, they are much more independent from the test dataset
during their development. A more detailed review of the
segmentation and other retinal image processing algorithms
can be found in the articles published by Kirbas and Quek [2]
and Patton et al. [3].

Early, but one of themost common approaches for fundus
images are the matched-�lter approaches. One of the �rst
methods was presented by Chaudhuri et al. [4]. It �ts pre-
de�ned vessel pro�les with di�erent sizes and orientations to
the image to enhance vessels. Similar methods and improve-
ments were published later on by di�erent authors [5–8].
Early implementations of these methods were using a simple
thresholding step to obtain a vessel segmentation. Sometimes
these methods were combined with other approaches [9–12].
For example, Zhang et al. [12] combined matched �lters with
amethod based on theHessianmatrix [1].
ematched �lters
provide high quality results, but the main disadvantage of
these methods is their requirement for vessel pro�les and
comparisons of large regions for each pixel in the image,
resulting in long computational time. 
e quality of the
segmentation results heavily depends on the quality and
size of the used vessel pro�le database. 
is can be speci�c
towards ethnicity, camera setup, or even eye or vascular
diseases, which reduces its applicability.

Some of the algorithms are specialized to segment only
one or more objects, which are marked by a user or in a pre-
processing step. 
ese methods are usually not analyzing
the whole image but the neighborhood of the already
segmented regions. Region growing [13, 14] and tracking
algorithms [15–18] are good examples for such kind of

segmentation methods. 
e region-growing approaches are
trying to increase the segmented area with nearby pixels
based on similarities and other criteria. 
ese methods are
one of the fastest approaches, while they may have problems
at speci�c regions of the image, where the vessels have lower
contrast compared to the nearby tissues, for example, vessel
endings or thin vessels. In this case the region growing can
segment large unwanted areas. Vessel tracking algorithms are
more robust in those situations. 
ey try to �nd a vessel-like
structure in the already segmented region and track the given
vessels. 
ese algorithms can recognize vessel endings much
easier, but theymay have di�culties at bifurcations and vessel
crossings, where the local structures do not look like usual
vessels anymore. Hunter et al. [17] published a postprocessing
step to solve some of these situations.

Other common segmentation approaches are model-
based methods. 
e most known and commonly used ones
are active contour-based methods, level-sets, and the so-
called snakes [19]. 
e early snake-based algorithms start
with an initial rough contour of the object, which is iteratively
re�ned driven by multiple forces. In an optimal case, the
forces reach their equilibrium exactly on the object bound-
aries. 
ese methods are sensitive to their parameterization,
while they may have problems if they have to segment thick
and thin vessels in the same time. 
us, the parameters have
to be set and re�ned manually by the user. 
e snakes in
this form are mostly used in MR [20] or X-ray angiographic
images [21] to segment pathologies and organs. 
e snake-
based retinal vessel segmentation methods usually apply a
vessel tracking framework to �nd the edges or the centerline
of the vessels and track them using snakes [17, 22, 23]. 
is
way the snakes are used to track only a vessel edge and the
algorithm has less problems with vessel endings and di�er-
ent vessel thicknesses. 
us, their parameters are easier to
optimize, but they inherit the problems of tracking algo-
rithms with bifurcations and crossings.

Level-set methods provide a more robust solution than
snakes. 
ey are usually used in combination with other
vessel enhancement techniques incorporating a smoothness
constraint in their level set functions [24, 25].

For an automated segmentation method used in screen-
ing, the most important properties are robustness, e�ciency,
and the calculation time, because hundreds or thousands of
images have to be processed each day. 
e state-of-the-art
vessel segmentation methods [12, 22] usually have high com-
putational needs and achieve an accuracy of 90% to 94%
on eye-fundus images, with sensitivity of 60% to 70% and
speci�city above 99% on average [26]. 
is is due to the
fact that approximately 85% of an image shows background
structures.
e high computational needs are due to multiple
analysis of large regions to detect thick vessels.
us, the com-
putational needs of an algorithm is increasing exponentially
with the diameter of the expected thickest vessel and the
image resolution.

We present an algorithm based on the vessel enhance-
ment method published by Frangi et al. [1] in combination
with a multiresolution framework to decrease the computa-
tional needs and to increase the sensitivity by using a hystere-
sis thresholding.
emethod published by Frangi et al. [1] is a
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mathematical model-based approach and extracts vesselness
features based on measurements of the eigenvalues of the
Hessian matrix. 
e Hessian matrix contains the second-
order derivatives in a local neighborhood. 
e method
assumes that the vessels are tubular objects; thus, the ratio of
the highest and lowest eigenvalue should be high, while this
ratio is close to one in regions of constant values.
emethod
was developed for CT angiography images, but it is applied in
a wide variety of vessel segmentation algorithms and detec-
tion of tubular objects in di�erent modalities [1, 27]. One
of the disadvantages is the computational requirement. As
Frangi et al. [1] proposed, the method calculates the Hessian
matrix and the given measures for increasing neighborhood
sizes, until the neighborhood is bigger than the expected
thickest vessel. Given high resolution images, this can easily
increase to 20 to 30 iterations per pixel.

3. Methods

All methods that were used to analyze the images are des-
cribed in this section. First, we introduce the method pro-
posed by Frangi et al. [1], which provides the basis of this
work. 
is is followed by the description of the proposed
method: the preprocessing steps in Section 3.2.1 and the used
resolution hierarchy in Section 3.2.2. A�er that the vessel
enhancement method is described to highlight the main
di�erences to the Frangimethod.Wehave chosen themethod
published by Frangi et al. [1] as a base for our own work,
because it features some attractive properties.

(i) High accuracy is expected based on preliminary
research [1, 27]. For further information please see
Section 5.1. In comparison, our implementation of
this method achieved a high accuracy.

(ii) No user interaction is required, except for setting a
few parameters.

(iii) It is able to segment nonconnected objects without
complex initialization steps. 
is is necessary in case
of some abnormalities and in case of young patients,
where reections may disconnect vessels.

3.1. Frangi’s Algorithm. To understand the proposed method,
the reader should know the method by Frangi et al. [1].

us, in this section, we will introduce the method as it was
published by Frangi et al. [1] in 1998.


e Hessian matrix of an � dimensional continuous
function � contains the second-order derivatives. As we are
working on a 2-dimensional image, our Hessian matrix is
given as

�(�) = ( �2��	2 �2��	�
�2��
�	 �2��
2 ). (1)


e Hessian matrix �0,� is calculated at each pixel
position	0 and scale �. Frangi used � as the standard deviation
() ofGaussians to approximate the second-order derivatives.
A vesselness feature �0(�) is calculated at pixel position 	0

from the eigenvalues �1 < �2 of theHessianmatrix�0,� using
equations of “dissimilarity measure” �� and “second order
structuredness” �

�� = �1�2 ,� = √�21 + �22,
�0 (�) = {{{{{

0, if �2 > 0,
exp(− �2�2�2)(1 − exp(− �22�2)) ,

(2)

where � and � are constants which control the sensitivity
of the �lter. �� accounts for the deviation from blob-like
structures, but can not di�erentiate background noise from
real vessels. Since the background pixels have a small mag-
nitude of derivatives and, thus; small eigenvalues, � helps to
distinguish between noise and background.


e authors suggest to repeat the same calculations for
varying sigma values from one to the thickest expected vessel
thickness with an increment of 1.0 to enhance vessels with
di�erent thicknesses. 
e results are combined by a weighted
maximum projection. In our implementation we added a
thresholding step a�er the combination and optimized the
parameters to reach the highest accuracy.

3.2. ProposedMethod. A�er the preprocessing steps, we apply
the same equations as described by Frangi et al. [1] for each
resolution level with the same prede�ned sigma value.

Hence, we do not increase the sigma value linearly and
apply the �ltermultiple times on the image as it was proposed
by Frangi et al. [1]. In our case the sigma is always set to a small
constant, while we apply the same method on copies of the
input image with reduced resolutions. 
us, the parameter �
of the original method corresponds to the resolution of the
image, instead of the standard deviation of a Gaussian.


e proposed algorithm of our method is illustrated in
Figure 2. Each of the steps will be discussed in detail in the
next sections.

3.2.1. Preprocessing. 
e input images are digital color fundus
photographs like the one in Figure 1. During the analysis
we restrict ourselves to the green channel. It has the highest
contrast between the vessels and the background, while it
is not underilluminated or oversaturated like the other two
channels, see Figure 3 for an example. Histogram stretching
[28] and bilateral �ltering [29] are applied to the green chan-
nel. 
e histogram stretching increases the contrast to make
it easier for the algorithm to detect small changes and distin-
guish di�erent tissues. 
e bilateral �ltering [30] is a special
denoising algorithm, which smooths intensity changes, while
preserving the boundaries of di�erent regions or tissues.
is
step reduces false positive detections caused by the texture
of the background. A�er these modi�cations of the data, we
can apply our resolution hierarchy described in the next sec-
tion.
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Figure 2: Pipeline of the proposed segmentation algorithm.

3.2.2. Resolution Hierarchy. In a resolution hierarchy copies
of the input imagewith reduced resolutions are generated; see
Figure 4. By doing so, we calculate the Hessian matrix always
for a small neighborhood which decreases the computational
needs. 
e reduction is done by a subsampling followed by
a low pass �ltering to lower high jumps in intensities. 
e
highest resolution level of the resolution hierarchy contains
the original image, and all additional levels contain the image
with a halved width and height compared to the previous
level. For low resolution images, where the vessel thickness is
not more than 5 to 10 pixels, 2 to 3 levels are su�cient, while
images with higher resolutions may require additional levels.
Compared to more than 20 iterations for the Frangi method,
thismeans a speedupof a factor of 10.
evessel enhancement
of the Frangi algorithm is applied on each resolution level
with a standard deviation  = 1.0.

Sometimes the ash of the camera causes a shining cen-
terline on thick vessels. An additional correctionmethod was
developed to remove these specular reection artifacts in the
reduced resolution levels. 
e resulting images of the vessel
enhancement are resized again using bilinear interpolation
to the same resolution as the input image. Figure 5 shows the
result of this resizing on two di�erent resolution copies of the
same region. Figure 5(a) had a high resolution and the result

shows �ner details, but the thickest vessels are not enhanced
correctly. Figure 5(b) had a much lower resolution. 
us, the
�ne details disappeared, but the extraction of thick vessels
were more accurate.

3.2.3. Specular Re
ex Correction. As mentioned before, the
ash of the camera may cause a bright specular reex in
the middle of thick vessels. Because of these reections, the
Hessian-based �lter will have a much lower response. In our
algorithm we developed a �lter to be used on the highest
level of our resolution pyramid to reduce the e�ect of these
reections. In this level only thick vessels are detected. We
consider a 3×3neighborhood for each pixel. If the center pixel
has a lower value than two neighboring pixels in opposite
directions in the vessel enhanced image, but higher value
than the same two pixels in the fundus image of the same
resolution level, then the center pixels are a�ected by specular
reex. In this case the two neighboring pixel’s value will be
interpolated to update the center pixel’s value.

3.2.4. Hysteresis �reshold. A�er the vessel enhancement is
completed in each resolution level and the results are resized
to original resolution, all of themare binarized by a threshold-
ing algorithm proposed by Canny [31].
emethod performs
better than a single thresholding in cases where the intensity
of the objects is at some places high, but in certain positions
the contrast between object and background falls under noise
level. In our case this object is the vessel tree, where thin
vessels and boundary pixel intensities can have extreme low
intensity values. 
is method uses two thresholding values
instead of one to binarize a gray-scale image. Both threshold
values have di�erent roles in the thresholding process.

(1) 
e �rst threshold is used to determine pixels with
high intensities. It is required that this threshold is
chosen in such a way that no background pixel can
reach that value.
us, we can label all the pixels above
the threshold as “vessel pixels.”

(2) We label all pixels below the second threshold value as
“background pixel” and all pixels in between the two
thresholds are considered “potential vessel pixels.”

ese potential vessel pixels are labeled as vessels only
if they are connected to a pixel labeled “vessel pixel”
through other potential vessel pixels.


e thresholding values are computed for each image that
a given percent of the pixels is segmented as “vessel pixels.”

us, the binarization is more robust to noise and intensity
changes between images. 
ey have to be optimized for each
di�erent protocol and �eld of view, where the ratio of vessel
and background pixels is di�erent in the resulting image.
e
binarization is used on each image separately.

3.2.5. Postprocessing. 
e �nal segmented image is generated
by applying a pixel-wise OR operator on the binarized images
originated from the di�erent resolution levels. 
is way if a
vessel was detected in one of the images, then it will be visible
in the combined binary image.
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(a) (b)

(c) (d)

Figure 3: A fundus image (a) and its RGB decomposition showing the oversaturated red (b), the well-illuminated green (c), and the under-
illuminated blue (d) channels.

Figure 4: Example of a Gaussian resolution hierarchy using only the
green channel of the input image and its three reduced resolution
versions.

A�erwards a thinning function erodes the segmented
region until it reaches the highest local gradient in the input
image. 
is method avoids the slight oversegmentation in
case that a thin vessel is detected in a higher level of the
hierarchy.

As a last step a small kernel (3× 3) morphological closing
operator is used to smooth the boundaries and object size
analysis algorithms are applied to �ll small holes in the vessel
tree and remove small undesired objects. Some example of
input images and the calculated segmentations are presented
in Figures 6 and 7.

4. Evaluation

We applied the original Frangi vesselness extraction and our
proposed framework on the commonly used DRIVE [26]
and STARE [32] databases and on our high resolution public

database [33] to compare our framework to the state-of-the-
art methods and to evaluate their e�ectivity. 
ese databases
contain manual segmentations of experts as gold standard.
Based on these gold standards we calculated the sensitivity
(Se), speci�city (Sp), and accuracy (Acc) of each method.
Both already existing databases contain an additional manual
segmentation and the DRIVE database contains some mea-
surements of multiple algorithms.

We compare the computation time of the proposed
algorithm and an implemented Frangi vesselness algorithm
as proposed by Frangi et al. [1]. 
e two public databases
were used to evaluate the e�ciency and for comparison
to other state-of-the-art algorithms. 
ese two databases
su�er from containing only low resolution images, while the
proposed method was developed for high resolution images.

us, the bene�t of the resolution hierarchy is only slightly
noticeable. Since high resolution images are becoming more
common in clinical use, we evaluated our methods on the
high resolution (3504 × 2336 pixels) images available [33],
which were already used to evaluate other methods [6, 7].

e database contains 15 images of each healthy, diabetic
retinopathy (DR), and glaucomatous eyes. 
e results of this
evaluation are discussed in Section 5.2.


e technical details of the used image data are shown
in Table 1. For each method, we applied the same parameter
optimization process using a small subset of each database to
assure that di�erences are not due to parameter settings.
is
algorithm sets the parameters to reach the highest possible
accuracy without aiming at high sensitivity. Since the param-
eter is done using a small subset of the images, the results can
be improved using a larger training set. Optimization based
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(a) (b)

Figure 5: 
e resized vesselness images of two di�erent resolution levels. In the highest resolution level (a) the enhanced image shows more
details, while the result of a lower resolution level (b) shows a more accurate segmentation of thick vessels.

Table 1: Details of used databases.

Database Images used Resolution

DRIVE [26] 20 565 × 584
STARE [32] 20 700 × 605
High resolution fundus [33] 45 3504 × 2336
on a small subset may result in suboptimal settings for the
whole dataset, but it shows the generalization capabilities of
the method.

For the evaluation of computation times we always
used the same common notebook equipped with a 2.3 GHz
processor and 4GB RAM and a single core implementation
of the algorithms.

5. Results

5.1. Accuracy. 
e metrics calculated on the two public
databases to analyze the e�ectivity of the algorithms are
shown in Tables 2 and 3. During our development and in
our comparisons we aimed at the highest possible accuracy.

erefore, we optimized the parameters of both—the pro-
posed and the Frangi—methods. 
us, the parameters of the
Frangi method and the proposed method are set to deliver
the highest possible accuracy. 
is can result in a decreased
sensitivity to gain speci�city in order to increase the overall
accuracy.
isway the proposedmethodwas able to reach the
best accuracy using the DRIVE and high resolution fundus
databases.

Both public databases contain a second manual segmen-
tation made by a human observer, which was included in
the comparison. We collected further results from published
papers. For both databases the original method and the
proposed method reached a high accuracy over 95% and
93%, respectively. As shown in Table 2, in case of the DRIVE
database, this was enough to reach the highest accuracy.
In case of the STARE database, as shown in Table 3, the
sensitivity improved by 5% along with a slight increase in
accuracy. Some examples of the segmentation results are
shown in Figure 6.


e proposed algorithm and the original Frangi method
were further tested on the three datasets of our own public

Table 2: Comparison of the results using the DRIVE [26] public
database. 
e proposed methods achieved the best accuracy (Acc)
compared to the state-of-the-art solutions.

Algorithm Se Sp Acc

Proposed 0.644 0.987 0.9572

Frangi et al. [1] 0.660 0.985 0.9570

Maŕın et al. [34] 0.706 0.980 0.945

Human observer 0.776 0.972 0.947

Dizdaroglu et al. [24] 0.718 0.974 0.941

Soares et al. [35] 0.7283 0.9788 0.9466

Mendonça and Campilho [36] 0.7344 0.9764 0.9452

Staal et al. [37] 0.7194 0.9773 0.9442

Niemeijer et al. [38] — — 0.9416

Zana and Klein [39] — — 0.9377

Martinez-Perez et al. [40] 0.7246 0.9655 0.9344

Odstrčiĺık et al. [7] 0.7060 0.9693 0.9340

Espona et al. (subpixel accuracy) [41] 0.7313 0.9600 0.9325

Chaudhuri et al. [4] 0.6168 0.9741 0.9284

Al-Diri and Hunter [22] — — 0.9258

Espona et al. (pixel accuracy) [41] 0.6615 0.9575 0.9223

Jiang and Mojon [42] — — 0.9212

All background — — 0.8727

“—” indicates that this information was not available.

high resolution fundus database [33]. Figure 7 shows two
examples of input images and segmentation results of this
database. As these images have much higher resolutions, we
use more resolution levels in the hierarchy and higher 
values in the original Frangi algorithm.
is enables detection
of vessels with a higher diameter, but also increases the com-
putation times. Tables 4 and 5 show the sensitivity, speci�city,
and accuracy of these methods using the high resolution
fundus dataset. Each datasets with manually segmented gold
standard images is available online [33] for other researchers
to test and compare their algorithms.

5.2. Performance. Tested on the two public databases, the
proposed method has a reduced calculation time by 18%
in case of the STARE database and 16% in case of the
DRIVE database, as shown in Table 6. 
e computation
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(a) (b) (c)

(d) (e) (f)

Figure 6: Example segmentation results on the DRIVE (upper row) and STARE (bottom row) public databases. From le� to right: input
fundus images, segmentation results, and gold standard images.

(a) (b)

(c) (d)

Figure 7: Example segmentation results on high resolution images with di�erent illumination and background structures.
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Table 3: Sensitivity (Se), speci�city (Sp), and accuracy (Acc) of
the methods measured on the STARE [32] database. 
e proposed
modi�cations improved both the sensitivity and accuracy of the
Frangi method.

Algorithm Se Sp Acc

Proposed 0.58 0.982 0.9386

Frangi et al. [1] 0.529 0.986 0.9370

Maŕın et al. [34] 0.694 0.981 0.952

Staal et al. [37] 0.6970 0.9810 0.9516

Zhang et al. [12] 0.07177 0.9753 0.9484

Soares et al. [35] 0.7165 0.9748 0.9480

Mendonça and Campilho [36] 0.6996 0.9730 0.9440

Martinez-Perez et al. [40] 0.7506 0.9569 0.9410

Chaudhuri et al. [4] 0.6134 0.9755 0.9384

Human observer 0.8949 0.9390 0.9354

Odstr ̌ciĺık et al. [7] 0.7947 0.9512 0.9341

Hoover et al. [9] 0.6751 0.9367 0.9267

Table 4: Overall sensitivity (Se), speci�city (Sp), and accuracy (Acc)
measured using our high resolution fundus database.

Algorithm Se Sp Acc

Proposed 0.669 0.985 0.961

Frangi et al. [1] 0.622 0.982 0.954

Odstr ̌ciĺık et al. [7] 0.774 0.966 0.949

Table 5: Sensitivity (Se), speci�city (Sp), and accuracy (Acc)
measured for the three datasets separately in our high resolution
database.

Dataset Algorithm Se Sp Acc

Healthy Proposed 0.662 0.992 0.961

Healthy Frangi et al. [1] 0.621 0.989 0.955

Healthy Odstrčiĺık et al. [7] 0.786 0.9750 0.953

Glaucomatous Proposed 0.687 0.986 0.965

Glaucomatous Frangi et al. [1] 0.654 0.984 0.961

Glaucomatous Odstrčiĺık et al. [7] 0.790 0.964 0.949

Diabetic retinopathy Proposed 0.658 0.977 0.955

Diabetic retinopathy Frangi et al. [1] 0.590 0.972 0.946

Diabetic retinopathy Odstrčiĺık et al. [7] 0.746 0.961 0.944

times were not available for most of the algorithms used for
comparison in Section 5.1. 
us, these methods are excluded
from the performance test. 
e resolution hierarchy made
our proposed method faster on the low resolution images
than the Frangi method. 
e speed improvement of the
hierarchy is actually higher, but we used additional time
for postprocessings and improvements, like �lling the holes
caused by central reexes in the vessels and using a hysteresis
thresholding in each resolution.

As the computation times of hysteresis threshold is
rapidly increasing with the resolution, we tested the runtime
using high resolution images to see if the gain using the res-
olution hierarchy is higher than the additional requirements
of the thresholding. Table 7 shows the computation times for
these images.

Table 6: Comparison of average runtime using two public data-
bases. 
e e�ects of the proposed modi�cations on the calculation
time in seconds as shown.

Algorithm
Runtime (in sec) Accuracy

STARE DRIVE STARE DRIVE

Frangi et al. [1] 1.62 1.27 0.9370 0.9570

Proposed 1.31 1.04 0.9386 0.9572

Espona et al. (subpixel
accuracy)∗ [41]

— 31.7 — 0.9325

Mendonça and Campilho∗

[36]
— 150.0 [35] 0.9480 0.9466

Soares et al.∗ [35] 180.0 180.0 0.9480 0.9466

Staal et al.∗ [37] — 900.0 [35] 0.9516 0.9442

Entries marked by “∗” are results reported in the cited articles.

Table 7: Comparison of average runtime using high resolution
(3504 × 2336) images.

Algorithm Average runtime Accuracy

Proposed method 26.693 ± 0.92 sec 0.961 ± 0.006
Original Frangi 39.288 ± 2.00 sec 0.954 ± 0.008
Odstrčiĺık et al. [7, 33] 18 minutes 0.949


e results show a calculation time di�erence of about
33.3%, which was less than 20% in case of low resolution
images. 
is means that our proposed method performs the
segmentation in higher resolution images faster in compari-
son to the original Frangi method.

6. Computational Complexity

To see the di�erence in computational complexity of both
methods, we calculated the mathematical complexity of the
Frangimethod [1] and our proposedmethods. As all segmen-
tation methods need some pre- and postprocessing, we
decided to calculate themathematical complexity of themain
vessel extraction only, plus our proposed direct modi�ca-
tions.

As a �rst step, we have to de�ne the necessary parameters.
Let � be the number of pixels in the input image, and de�ne� as the highest expected vessel thickness which we would
like to detect. With these two parameters, we can describe
the complexity of the important components used in the
algorithms:

(i) rescaling: �(�) for each image;

(ii) calculating Hessian matrix: �(�2) for each pixel;

(iii) eigenvalue analysis: a�er calculating the Hessian
matrix, it is independent of the parameters: �(�) for
each image;

(iv) postprocessing using mathematical morphology, and
other operations: �(�) for each image;

(v) maximum image calculation:�(� ⋅ �) where� is the
number of images;

(vi) binarization by thresholding: �(�) for each image.
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In case of the original method, calculation of the Hessian
matrix is done � times for each pixel, with increasing . A�er
that all the images are summarized and thresholded. 
ese

methods result in a complexity of �(�3 × �): � × � pixels, and�(�2) operations for each pixel, while the complexity of the
other parts is neglectable.


e proposed method uses the rescaling. 
is results
in a maximal pixel number of 1.5 × � to work on instead
of � × �, and � is always set to one. 
us, the Hessian
matrix calculation is done with a prede�ned  = 1.0, which
reduces the complexity to �(�). A�er rescaling to the origi-
nal resolution, postprocessing and binarization are done in
linear complexity. 
is gives a computational complexity of�(log(�) ∗ �): independently of the number of resolution
levels, the maximal number of pixels is 1.5 × �, and  is set
to 1.0 which results in a computational complexity of �(�)
before fusing the binarized images. With log(�) number of
rescaled images, a�er the fusion, the complexity is�(log(�) ∗�) with neglectable linear complexity of the postprocess-
ing.

7. Robustness

To analyze the robustness and sensitivity of the method
regarding changes in the parameters, we analyze it by further
excluding some steps and changing the parameters.

As Table 8 shows, the algorithm is robust against changes
in the parameters of pre- or postprocessing, except that
not all of the processing steps are skipped. 
is increases
the false positive values due to the appearance of small
segmented noisy regions and also increases false negatives by
not segmenting regions of vessels with specular reexes.


e accuracy of the method improved surprisingly by
increasing the  to 2.0 for the vessel enhancement. Our
analysis showed that the optimization using a small subset
of images resulted in a suboptimal parameter set for the
whole dataset. Changing the �!"�# value to 2.0 increased the
sensitivity in multiple images, reaching an overall sensitivity
over 0.7338 and accuracy over 0.9621.
8. Discussion

Our evaluation has shown that the proposedmethod not only
has the highest accuracy using the high resolution images
for which it was developed, but it has decent results using
two lower resolution databases available online.
is decrease
is due to the slightly lower sensitivity caused by the lower
image quality in the online databases. 
e proposed method
has lower computational needs compared to the method
proposed by Frangi et al. [1], as it was shown experimentally
in Section 5.2 and mathematically proven in Section 6.

Furthermore, as shown in Section 7, the method is only
slightly sensitive to the  parameter of the vessel enhance-
ment and the thresholding parameters. Changing  can result
in 5% change in sensitivity, while changing most of the other
parameters resulted in a small variation in both sensitivity
and speci�city with an accuracy change under 0.1%.

Based on the results of Table 8, the pre- and postpro-
cessing steps applied in the proposed method increased the

Table 8: Accuracy comparison of di�erent settings using the high
resolution fundus database.

Algorithm Accuracy Absolute change

Proposed method 0.9618 ± 0.0065 —

Without preprocessing 0.9558 ± 0.0064 0.62%


resholds decreased by 1% 0.9614 ± 0.0061 0.04%


resholds increased by 1% 0.9607 ± 0.0062 0.11%

Without postprocessing 0.9401 ± 0.0085 2.25%

Doubled morphology
kernel size

0.9616 ± 0.0060 0.02% = 2.0 for Hessian 0.9621 ± 0.0062 0.03% = 3.0 for Hessian 0.9621 ± 0.0061 0.03% = 4.0 for Hessian 0.9617 ± 0.0064 0.01%

overall accuracy of the segmentation by 1% to 2%by removing
unwanted objects, �lling some holes caused by specular
reexes, and smoothing the vessel edges.

9. Conclusion

In this paper we presented a multiresolution method for seg-
menting blood vessels in fundus photographs. 
e proposed
method and the Frangimethodwere evaluated usingmultiple
online available databases with diverging image resolution.

e proposed algorithm shows in each case an increase both
in sensitivity and accuracy to segment vessels compared to
the Frangi method with a decreased computational complex-
ity.


is gain in accuracy is mainly due to easier handling of
central reexes of thick vessels in lower resolution images,
while the computational needs are signi�cantly reduced by
using the resolution hierarchy. 
is can be further improved
by parallelization and implementation using a GPU.

With the proposed modi�cations the algorithm is more
applicable in complex automatic systems, and the segmen-
tation results can be used as a basis for other algorithms
to analyze abnormalities of the human eye. Additionally we
introduced a new high resolution fundus image database [33]
to evaluate segmentation and localization methods, where
our algorithm reached an accuracy of over 96% on average.
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