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Abstract— Video stabilization is an important technique in
digital cameras. Its impact increases rapidly with the rising
popularity of handheld cameras and cameras mounted on moving
platforms (e.g., cars). Stabilization of two images can be viewed
as an image registration problem. However, to ensure the visual
quality of the whole video, video stabilization has a particular
emphasis on the accuracy and robustness over long image
sequences. In this paper, we propose a novel technique for video
stabilization based on the particle filtering framework. We extend
the traditional use of particle filters in object tracking to tracking
of the projected affine model of the camera motions. We rely on
the inverse of the resulting image transform to obtain a stable
video sequence. The correspondence between scale-invariant
feature transform points is used to obtain a crude estimate of the
projected camera motion. We subsequently postprocess the crude
estimate with particle filters to obtain a smooth estimate. It is
shown both theoretically and experimentally that particle filtering
can reduce the error variance compared to estimation without
particle filtering. The superior performance of our algorithm over
other methods for video stabilization is demonstrated through
computer simulated experiments.

Index Terms— Bootstrap filtering, Monte Carlo methods,
motion analysis, particle filtering, video stabilization.

I. INTRODUCTION

V
IDEO CAMERAS mounted on handheld devices and

mobile platforms have become increasingly popular in

the consumer market over the past few years due to a dramatic

decrease in the cost of such devices. Rattled camera motion

and platform vibrations can be difficult to avoid when using

handheld cameras, which will generate unstable video images.

Video stabilization is, therefore, becoming an indispensable

technique in advanced digital cameras and camcorders.

Camera motion estimation is an essential step toward video

stabilization. Stabilization methods exploit the fact that camera

motion causes the affine transform of the frames, which

can be inverted to obtain stable frames. The first step of

video stabilization is, therefore, to identify the global affine

transformation. However, in video stabilization, unlike most
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motion estimation techniques, the robustness of the estimation

is critical due to the fact that an incorrect estimate will yield a

sudden jitter in the video sequence. In particular, the estimation

should be performed consistently in the presence of outliers,

blurring, or illumination variance. We will demonstrate that

the use of corresponding feature points in a particle filtering

framework can be used to obtain robust tracking of the camera

motion, which is superior to existing approaches.

In most cases, videos captured by mobile cameras observe

users’ desired motion. It is therefore necessary to preserve

the intentional camera motion while removing the undesired

motion due to an unsteady and vibrating platform. This is

generally accomplished with adaptive or nonadaptive recursive

filters. We will employ a motion separation scheme based

on the Kalman filter. Combination of camera motion estima-

tion with motion separation determines the undesired motion,

which is compensated and thus stable video sequences are

produced.

In this paper, we propose the use of particle filters [1] to

estimate the global camera motion between successive frames.

Particle filters have been widely introduced as a powerful and

flexible tool to accurately model nonlinear physical systems.

We will adapt particle filters for video stabilization by using

them to estimate the affine transformation model of the global

camera motion from corresponding feature points. We will

demonstrate, theoretically and experimentally, that particle

filters can be used to provide a smooth estimate with low

error variance, which is critical in video stabilization. The

resulting motion estimation algorithm yields accurate and

robust estimate of the affine transform model.

The rest of the paper is organized as follows. In Section II,

we provide a summary of the related work in the areas of video

stabilization and particle filtering. In Section III, we discuss

the theoretical issues used to motivate and model the proposed

approach to video stabilization. We present several valuable

properties of particle filters in the motion estimation frame-

work. The complete video stabilization system is proposed in

Section IV and the performance of our approach compared

to existing methods is demonstrated through computer simu-

lations in Section V. Finally, we provide a brief summary in

Section VI.

II. RELATED WORK

Most of video stabilization algorithms rely on specific

image motion models. In earlier efforts, 2-D models [2],
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[3], 2-D affine models [4]–[6], 2.5-D model [7], and 3-D

models [8]–[10] have been employed to represent the video

stabilization problem. The 2-D model parameters are uniform

for each point in the scene, while, on the contrary, a 3-D model

has spatial variant parameters relating to depth information.

A pure 2-D model, with a 2-D translation vector and one

rotation angle, is not capable of describing the 3-D camera

motion, which includes rotation out of the image plane and

translation along the optical axis. A 3-D model is valuable in

determining depth changes; however, it introduces tremendous

complexity and challenges due to the loss of scenes’ depth

information in the projected images. Though the 2.5-D model

has a tempting feature of introducing partial depth information

into the 2-D model, the algorithm is practically difficult to

realize. The 2-D affine model with six parameters provides

an attractive representation of the camera motion. It achieves

a good balance between accuracy and computational cost for

video stabilization purposes [4]. We will adopt a variation of

the 2-D affine model for the camera motion representation. In

particular, we introduce a constraint due to the orthogonality of

the rotation matrix projected onto the plane, which is critical

to the camera model. This constraint, however, has not been

recognized previously in video stabilization.

Critical to the success of video stabilization is global camera

motion estimation. Methods used for global motion estimation

can be classified mainly into two categories: 1) intensity-based

motion estimation and 2) feature-based motion estimation. For

example, in [4], the six-parameter affine motion is estimated

by minimizing a p-norm cost function based on the grayscale

values of the image pixels. More examples of intensity-based

approaches include optical flow technique [11], gray-code bit-

plane matching [12], and sub-image phase correlation [2].

The image intensity-based motion estimation methods have

an advantage of being inherently robust to outliers and illumi-

nation changes. Some effort has also been devoted to global

motion estimation based on image features. Popular features

include edge patterns [13] and corners [9]. For algorithms

proposed for special scenarios, for example in on-road video

stabilization [10], the author uses the lane lines and road

vanishing point as global features. It is proposed in [5] to use

features on the horizon for off-road situations. Feature-based

motion estimation algorithms are, in general, more accurate

but less robust, compared with intensity-based motion estima-

tion methods. Therefore, some have sought to gain advantage

from both approaches by utilizing both the image intensity and

features of the image. Examples include techniques using color

information to match characteristic curves [14] and combined

texture and correlation measurements for matching of small

blocks [7]. In this paper, the global motion estimation is based

on image features by tracking scale-invariant feature transform

(SIFT) points. However, we further integrate the intensity

information of the images by filtering the SIFT points estimate

with particle filters.

Particle filtering and sequential Monte Carlo (SMC) meth-

ods in general have emerged in recent years as powerful

approaches to visual tracking and pose estimation [15]. It has

been proposed to overcome the limitation of Kalman filters

posed by its foundation on linear and Gaussian models [16].

Pioneering works in particle filters include bootstrap filters

[17], CONDENSATION filters [18], and sequential impor-

tance sampling (SIS) particle filters [19], [20]. Moreover, the

smoothing Monte Carlo methods discussed in [21]–[23]show

that particle smoothing can be used as a nonlinear, non-

Gaussian counterpart of a Kalman smoother.

Classical particle filtering theory allows particles to be

sampled from any density function. Traditional implemen-

tations of particle filters generally rely only on the state

transition information for sampling. However, it has recently

been shown that much more effective sampling schemes can be

attained by sampling from a proposal density which takes into

account the observation data; e.g., ICONDENSATION [24],

the unscented particle filter [25], motion-based particle filters

[26], and models with embedded-motion [27]. This evolution

in particle filters has had a profound impact on the develop-

ment and popularity of various methods for object tracking

in video sequences. The state representation used in most

object tracking implementations has been restricted to model

a parametric representation of the object’s contours, e.g., an

ellipsoidal model. In this paper, we extend the application of

particle filters to tracking the 2-D affine transform parameters

of the global camera motion. Moreover, we borrow from the

recent developments of efficient particle filtering by proposing

a novel feature-based importance density function such that the

sampling scheme utilizes current observations. The proposed

scheme can ensure that the algorithm works effectively and

efficiently with a low computational cost.

Tracking of the camera motion can be used to stabilize

the video sequence by inversion of the 2-D affine model.

However, in many circumstances, the user of a mobile camera

wishes to capture its intended movements throughout the

video scene. Kalman filters [4], [2] and extended Kalman

filters (EKF) [6] have been used to distinguish and isolate

intended and unintended camera motion. Inertial filters [7]

and discrete Fourier transform (DFT) filters [3] have also

been proposed for eliminating high-frequency vibrations, when

offline processing delay can be tolerated. We will adopt

a “constant-velocity” Kalman filter [4] where the intended

motion parameters change over time with constant speed. This

assumption helps to distinguish and preserve the intended

camera motion.

In practice, the stabilized video images often do not overlap

perfectly with the boundary of the desired image frame and

therefore, missing regions are formed and the resolution is

impaired. It is common to adapt a mosaicking technique in

order to interpolate the missing image regions [4], [6]. A

more comprehensive postprocessing is proposed in [23], where

the combination of motion inpainting and image deblurring

provides effective enhancement on quality of the stabilized

image sequences.

III. THEORETICAL FOUNDATIONS

This section addresses theoretical issues of our algorithm,

including the camera models and the properties of particle

filtering estimation.
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A. Camera Model

In video stabilization, the camera model can be derived

as follows. Assume that there is one point P in the scene

whose coordinates in camera coordinate system at time t0 is

[x0, y0, z0]T . In time t1, camera has been moved by a rotation

and a translation, while the point P remains in the same

position in world coordinates. The new coordinates at time

t1 is [x1, y1, z1]T (also in camera coordinate system). These

two vectors of coordinates can be related by the equation
[

x1 y1 z1

]T = R3×3 ∗
[

x0 y0 z0

]T + T3×1 (1)

where R3×3, T3×1 are the opposite transform of the camera’s

3-D rotation and translation, repectively. By projection, the

image coordinates of P in time t0 and t1 are given by

[

u0 v0 λ
]T = λ

z0
∗

[

x0 y0 z0

]T
(2)

[

u1 v1 λ
]T = λ

z1
∗

[

x1 y1 z1

]T
(3)

where λ is the image plane-to-lens distance of the camera. A

detailed description and illustration of above imaging model

can be found in [29]. With (1), (2), (3) and by rewriting

the rotation matrix R3×3 and translation vector T3×1 to show

their entries, we can get
⎡

⎣

u1

v1

λ

⎤

⎦ = z0

z1

⎡

⎣

R11 R12 R13

R21 R22 R23

R31 R32 R33

⎤

⎦

⎡

⎣

u0

v0

λ

⎤

⎦ + λ

z1
∗

⎡

⎣

Tx

Ty

Tz

⎤

⎦ . (4)

The first two columns of (4) yield the following 2-D form
[

u1

v1

]

= s

[

R11 R12

R21 R22

] [

u0

v0

]

+
[

tx
ty

]

(5)

where we define s � z0/z1, tx � s R13λ + (λ/z1)Tx and

ty � s R23λ + (λ/z1)Ty . In general, the scaling factor s

and translations tx , ty vary for objects with different depths.

However, it is realistic to assume that in most real scenes

the background (at which the stabilization algorithm aim)

has small relative depth variation, compared to the distance

between camera and the scene [4]. Thus, by assuming the

uniformity of the scaling and translation, we can use this 2-D

affine transform to approximate the 3-D camera motion. The

2-D affine model is shown by experiments to be an accurate

enough model for stabilization purposes.

Moreover, the rotation matrix R3×3 is orthonormal, i.e., it

is constrained by the following [30]

R2
11 + R2

12 + R2
13 = 1; R2

21 + R2
22 + R2

23 = 1

R11 R21 + R12 R22 + R13 R23 = 0.

Therefore, we get the relationship between the following four

rotation parameters as

R11 R21 + R12 R22 +
√

1 − R2
11 − R2

12

√

1 − R2
21 − R2

22 = 0.

(6)

Since R22 can be determined from (6) given R11, R12, and

R21, the affine model (5) has six degrees of freedom, which is

equivalent to the usual affine model [4]. However, the proposed

model is valuable in explicitly expressing the actual physical

meanings of the parameters. We can further obtain the depth

change and three rotation angels from these parameters, which

the usual affine model is not capable of doing.

Our task in global motion estimation is to determine the six

parameters s, R11, R12, R21, tx , and ty for every successive

frame. Also, note that these parameters represent six kinds

of motion which can take place independently. Therefore, it

is reasonable to assume that these parameters are statistically

independent of each other. This observation eases the con-

struction of particle filters, as will be shown in the following

sections.

B. Particle Filtering Estimation

The above situation can be considered as a Bayesian track-

ing problem, where a Markov discrete-time state-space model

can be introduced. The state-space model is defined with a

state vector at time k, xk �
[

sk, txk, tyk, R11k, R12k, R21k

]T
,

and observations z. The fundamental idea of particle filter

estimation is to recursively approximate the posterior density

p(xk |z1:k) by a set of particles {xi
k, i = 1, . . . , N } with

associated weights {wi
k, i = 1, . . . , N }, where N is the number

of particles and k is the time step. In our case, each frame

is considered as a step of time. The particles xi
k ∼ q(·) are

random vectors drawn from a proposal q(·), which is referred

to as importance density. Then, a weighted approximation to

the posterior p(xk |z1:k) is given by [1]

p(xk |z1:k) ≈
N

∑

i=1

wi
kδ(xk − xi

k) (7)

where the normalized weights are defined as

wi
k ∝ p(xi

k |z1:k)/q(xi
k |z1:k).

We can then use the expectation of the state density as an

estimate of current state [21], [23]

x̂k � E [xk] =
∫

xk p(xk |z1:k)dxk

≈
∫

xk

N
∑

i=1

wi
kδ(xk − xi

k)dxk =
N

∑

i=1

wi
kxi

k . (8)

It can be proved that as N → ∞, the approximation (7)

converges to the true posterior density p(xk |z1:k) in mean-

square sense and the convergence rate is 1/N [31]. The

complexity of particle filtering increases exponentially with the

increment of state dimension, and so does the required particle

number [32]. The significance of realizing R22 is determined

by R11, R12, R21 in that it eliminates 1-D of the state, so the

complexity of the system is largely reduced.

Traditionally, the importance density is chosen as the prior

density p(xk |xk−1) [18]. However, this choice is, in general,

not efficient enough due to the fact that it does not take into

account the current observation zk . Instead, we propose an

importance density whose mean vector x̄k is itself an estimate

of the state obtained from the current observation zk . We

then draw particles from a rather simple distribution q(·)
determined by the mean x̄k and covariance matrix �1

xi
k ∼ q(x̄k, �1). (9)
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Due to the independence assumption of state variables, �1 is

set to be diagonal. x̄k is obtained in this paper from a particular

feature-based motion estimation technique which is detailed

in the following section. However, the proposed system works

with any other 2-D affine motion estimation techniques. Also,

we consider the applied techniques to give a fine estimate in

the sense that x̄k is an unbiased estimate of the true state xk ,

with diagonal covariance matrix �2. Nonetheless, we reply on

the weighted sum of samples instead of using directly x̄k due

to the desirable property of the former. It can be proved that

for large particle numbers, the estimation x̂k gives lower error

variance than x̄k , as stated in the following.

Let the error vectors associated with two estimations x̂k

and x̄k be given by εk � x̂k − xk and ek � x̄k − xk ,

respectively. And the covariance matrices of errors are defined

as Cov(εk, εk) and Cov(ek, ek). Note that Cov(ek, ek) = �2

given unbiasedness assumption. We have the following lemma.

Lemma 1: Cov(εk, εk) = 1
N

(�1 +�2)ck , where ck is some

constant and N is the number of samples.

The proof of Lemma 1 can be found in the Appendix. It is

then easy to further observe the following:

Proposition 1: For each time step k, there exists an N o
k

such that if N > N o
k , the error covariance matrices have

Cov(εk, εk) � Cov(ek, ek) = �2, for every dimension.

Moreover, Cov(εk, εk) → 0 when N → ∞ with rate 1/N .

Proof: Let M denote the dimension of the state vector. In

order that particle estimation error is lowered in every dimen-

sion, we require that Cov(εk, εk) j j < �2 j j ,∀ j = 1, . . . , M .

It is equivalent to requiring 1
N

(σ 2
1 j + σ 2

2 j )ck < σ 2
2 j ,∀ j =

1, . . . , M , where σ 2
1 j and σ 2

2 j are diagonal elements of �1

and �2, respectively. Therefore, it suffices with N satisfying

N > max j=1...M

[

ck(σ
2
1 j + σ 2

2 j )/σ
2
2 j

]

� N o
k . Directly from

Lemma 1, Cov(εk, εk) → 0 when N → ∞ with rate 1/N .

Proposition 1 shows that given an unbiased estimate, the

particle filter can produce another unbiased estimation with

lower error variance, if the number of particles is sufficiently

large. We refer to this property as the smoothing property. We

also show that the variance of estimation error converges to

zero asymptotically with rate 1/N , which is consistent with

the convergence property of the particle filter in [31].

IV. VIDEO STABILIZATION

In this section, we describe our complete system of video

stabilization under the particle filter framework. We first

introduce the importance density function based on SIFT [33]

algorithm. We then describe the particle filter algorithm for

global motion estimation. The Kalman filter is introduced for

obtaining intentional motion through smoothing the global

motion. The undesired motion is then extracted for motion

compensation.

A. Importance Density Using Scale-Invariant Features

The choice of a good importance density is a crucial step in

the design of the particle filter. We would like to draw particles

from an importance density that is close to true posterior to

make the filtering algorithm more effective. A technique is

proposed here to encourage particles to be in the right place.

Fig. 1. SIFT correspondence from frame 200, 201 in outdoor sequence
STREET. The lines across images represent the connections of features in two
images, while the lines in the left frame represent the motion vector between
them. The rectangles denote incorrect correspondences in the background.
The circles denote correspondences from the moving objects.

We use feature tracking to get the mean vector x̄k �
[

s̄k, ¯t xk, ¯t yk, R̄11k, R̄12k, R̄21k

]T
for constructing the proposal

density q(·). The feature points we use are obtained based

on the SIFT algorithm [33]. SIFT extracts and connects

feature points in images which are invariant to image scale,

rotation, and changes in illumination. Moreover, it provides

distinctive descriptors which enable us to find the correspon-

dences between features in different images. An example of

feature correspondence of two images found by SIFT is shown

in Fig. 1. Once we have corresponding pairs, we can use

them to determine the transform matrix between two images.

Equation (5) can be rewritten as

[

uk vk

.. ..

]

=
[

uk−1 vk−1 1

.. .. 1

]

⎡

⎣

s̄k R̄11k s̄k R̄12k

s̄k R̄21k s̄k R̄22k

¯t xk ¯t yk

⎤

⎦ (10)

where
[

uk−1, vk−1

]T
and [uk, vk]T are one pair of correspond-

ing feature points. We need only three pairs to determine

a unique solution. However, more matches can be added as

shown in (10). The over-determined system is in the form of

Y = XA, which can be solved easily under least-square criteria

by A =
[

XT X
]−1

XT Y. Together with (6), we can further form

the mean vector x̄k from matrix A. We then generate particles

according to the importance density q(·) of a six-dimensional

Gaussian distribution

xi
k ∼ qG(x̄k, �1)

= 1
√

(2π)6 | �1 |
exp

[

−1

2

(

xi
k − x̄k

)T

�−1
1

(

xi
k − x̄k

)

]

(11)

where qG(x̄k, �1) refers to the Gaussian function with mean

x̄k and covariance matrix �1. �1 is selected by the system de-

signer for efficient particle sampling in various situations. This

proposal density helps to avoid generating useless particles

and, hence, keep the computation cost low. In experiments,

we successfully reduce the number of particles to only 30

while acquiring the same or even better quality as using 300

particles when the importance density is a prior distribution.

In practice, we observe that SIFT sometimes provides incor-

rect corresponding feature points especially when the pictures

are blurred due to rapid camera movements. Rectangles in

Fig. 1 show examples of incorrect correspondences in the

background scene. In such cases, the resulting x̄k will be an

estimate with large error variance. However, we can see later
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in the experiment that particle filtering is robust in the sense

that it will save us from trapping in the wrong estimate by

relying on weighted sum of samples. This result agrees with

the smoothing property of particle filtering. The fundamental

reason is in the weighting process; particle filtering explores

the underlying density by viewing observations in different

aspects such as image intensity and image features, and hence

is more robust than a single criteria of analyzing images.
Though there is no need to be concerned about outliers in

the background, we have to deal with moving objects. As we

can see in Fig. 1, SIFT connects features from the moving

objects (yellow circles), which correspond to local motion,

and should be separated when calculating the global motion.

We propose to identify these features by the difference in

moving velocities between objects and the background. It can

be assumed that the velocities of local motions within the

images are much larger than that of the global image motion.

As we can see in Fig. 1, the lengths of the motion vectors

from the car’s features are, in general, larger than the ones

belonging to background. When comparing two successive

frames, the features which have moved a large distance should

be isolated before estimating the global motion and intentional

motion. This isolation can be done, since in general, we

consider that the moving objects occupy only a small portion

of the scene so that background features dominate.

B. Particle Filtering for Global Motion Estimation Between

Successive Frames

We employ here the bootstrap filtering proposed in [17] with

slight modifications. At time k, we first generate xi
k from an

importance density qG(x̄k, �1), as in (11). We then need to

assign weights to these particles. The desired weights should

perform as an evaluation on the “quality” of the particles.

“Quality” here represents how close to true state each particle’s

state is. In our case, N particles suggest N proposals of

the transformation matrix, so we can apply the N inverse

transforms to frame k and get N candidate images Ai . (Here

we temporarily drop the frame index k for the simplicity of the

notations.) Then we compare these images with k−1 frame A0

to determine the similarity between them. The particle weights

are hence decided according to the similarities, i.e., the higher

the similarity, the larger the weight. We choose mean square

error (MSE) and feature distance as two measures of similarity.

MSE comparison calculates the difference of the gray-scale

from pixel to pixel between two images and then computes the

square and mean to get an MSE value Mi . The MSE likelihood

is then given by

P i
M SE ∝ 1√

2πσM

exp

{

− Mi
2

2σ 2
M

}

. (12)

The feature distance comparison employs the SIFT feature

points extracted in calculating the importance density. As long

as we have features in image Ai and A0, we can calculate the

distances of all the corresponding feature points. Denote the

average distance to be Di . The feature likelihood is given by

P i
feature ∝ 1√

2πσF

exp

{

− Di
2

2σ 2
F

}

(13)

where σM and σF in (12) and (13) are adjustable standard de-

viations which can be chosen experimentally. The normalized

weight for particle xi
k is then given by

wi
k =

P i
M SE P i

feature
∑N

i=1 P i
M SE P i

feature

. (14)

Once we obtain the weight for each particle, we will ap-

proach the true state by a discrete weighted approximation

as in (8): x̂k =
∑N

i=1 wi
kxi

k , where the estimated state

tells the estimated values of global affine motion parameters

x̂k = [ŝk, ˆt xk, ˆt yk, R̂11k, R̂12k, R̂21k]T . R̂22k can be calculated

from (6).

Now assume that the first frame of the video sequence

is stable, and denote it to be the reference frame. Then the

accumulative scaling factor, accumulative rotation matrix R A
k ,

and translation displacement T A
k with respect to the reference

frame are given by

s A
k = s A

k−1 · ŝk, R A
k = R A

k−1

[

R̂11k R̂12k

R̂21k R̂22k

]

, (15)

T A
k = ŝk

[

R̂11k R̂12k

R̂21k R̂22k

]

T A
k−1 +

[ ˆt xk

ˆt yk

]

. (16)

C. Intentional Motion Estimation and Motion Compensation

When the camera moves with the user, i.e., the frames

in the video observe an intentional motion, we should not

compensate for the global motion directly. Instead, we should

estimate the desired motion caused by the user and compensate

only for the undesired motion caused by camera vibration.

For intentional motion estimation, we apply the Kalman filter-

based technique proposed in [4]. The input of the Kalman

filter is the accumulative rotation matrix R A
k , translation vector

T A
k , and scaling factor s A

k . With the assumption that the

desired motion takes place with constant velocity, the velocity

variables for all six parameters are introduced into the state-

space model. Following the independence assumption made

above, the six parameters can be modeled separately, which

leads to simple state transition and observation models. For

example, translation along x-axis T x and the velocity of

translation T xv follow the state transition process given by
[

T xk

T xv
k

]

=
[

1 1

0 1

] [

T xk−1

T xv
k−1

]

+
[

0

n

]

(17)

where n is the state noise. The observation matrix is set to be

identity, so the observation equals estimation plus observation

noise.

Implementing Kalman filtering is a recursive way to get

the intentional rotation matrix RD
k and translation vector T D

k ,

scaling s D
k for frame k. We can then compensate for the

unwanted motion by applying the following inverse transform

[

us

vs

]

=
s D

k

s A
k

RD
k

(

R A
k

)−1
([

uk

vk

]

− T A
k

)

+ T D
k (18)

where [uk, vk] and [us, vs] are pixel locations of unstable

frame k and the stabilized output, respectively.
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(a)

(b)

(c)

(d)

Fig. 2. Indoor scenario: Comparison of video stabilization methods for the ONDESK video sequence: (a) Original image. (b) Matched-feature-based motion
estimation (MFME). (c) p-norm cost function-based motion estimation (CFME). (d) Proposed particle filtering-based motion estimation (PFME).

To summarize, the algorithm for each time step at time k

is given as follows.

1) Load two successive frames: frame k and frame k − 1.

2) Extract and match SIFT feature points in the two images.

3) Reject the features that might corresponds to moving

objects by detecting the motion speed.

4) Compute x̄k vector from SIFT feature matches as in

(10).

5) Use particle filtering framework to estimate the global

motion between frame k and frame k − 1:

a) for i = 1 : N , generate particles from an Gaussian

importance density, as in (11);

b) for i = 1 : N , calculate the normalized weight

from the importance sampling, as in (14);

c) form the estimation using the weighted sum of

samples, as in (8).

6) Calculate the accumulative motion as in (15) and (16).

7) Use Kalman filter to estimate intentional motion from

accumulative motion.

8) Reconstruct the stabilized image, as in (18).

V. EXPERIMENTAL RESULTS

We test the effectiveness of our algorithm in stabilization of

several real-life video sequences captured by a handheld digital

camera. The experiments are performed using MATLAB on

a 3.2 GHz Pentium IV PC. We compare three methods

for video stabilization: 1) global motion estimation with p-

norm cost function-based motion estimation (CFME) [4]; 2)

global motion estimation with matched feature-based motion

estimation (MFME) [5]; and 3) the proposed approach to

global motion estimation with particle filtering-based motion

estimation (PFME). In order to ascertain the impact of particle

filtering on global motion estimation, we modify the MFME

approach to use the same feature points proposed in our ap-

proach to PFME, i.e., SIFT points. All three video stabilization

techniques are implemented on a frame-to-frame basis. The

particle filters use 30 particles per frame in all cases. In the

stabilized sequences, black areas along the boundary result

from undefined regions that are beyond the field of view of

the camera. However, the use of mosaicking to extend the

field of view is beyond the scope of this paper. Besides,

we use red markings for easy visualization of the video

stabilization results. Also note that some of the scenes (e.g., in

video ONROAD) have nonuniform depths, which in principle

violates the assumption of the 2-D affine model. However,

the results still have good quality, which in turn shows the

2-D affine model is an accurate approximation of the 3-D

motion.

The video clip ONDESK has been captured with an indoor

background and no moving objects. It has 120 frames with res-

olution 160×120 and frame rate 15 frames/s. A comparison of

video stabilization based on MFME and CFME with the pro-

posed video stabilization method based on PFME is depicted

in Fig. 2. Snapshot images of the original video sequence

corresponding to Frames 1, 13, 50, 75, and 114 are illustrated

in Fig. 2(a). The vertical red line passes through a gray line on

the wall, and the horizontal red line represents the intersection

of the wall and the desk in the first frame. The results of video

stabilization using the methods based on MFME, CFME, and
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(a)

(b)

(c)

(d)

Fig. 3. Outdoor scenario I: Comparison of video stabilization methods for the STREET video sequence: (a) Original image. (b) Matched-feature-based
motion estimation (MFME). (c) p-norm cost function-based motion estimation (CFME). (d) Proposed particle filtering-based motion estimation (PFME).

(a)

(b)

(c)

(d)

Fig. 4. Outdoor scenario II: Comparison of video stabilization methods for the ONROAD video sequence: (a) Original image. (b) Matched-feature-based
motion estimation (MFME). (c) p-norm cost function-based motion estimation (CFME). (d) Proposed particle filtering-based motion estimation (PFME).

PFME are depicted in Fig. 2(b)–(d), respectively. We observe

that all three output sequences remove the unwanted motion

of the camera and improve the video images. We further

observe that when the camera rotates (frames 75 and 114),

the rotation angles of the recovered images using the CFME

are less accurate than the corresponding images for the MFME

and PFME methods. In this scenario, we conclude that when

the feature correspondences are correct, the MFME and PFME
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(a)

(b)

(c)

Fig. 5. Synthetic video: Performance of video stabilization algorithm.
(a) Original LAB_Stable video sequence (ground truth). (b) Synthetic
LAB_Unstable video sequence. (c) Proposed particle filtering-based motion
estimation (PFME).

provide more accuracy compared to the CFME-based method,

whereas the performance of the MFME and the proposed

PFME is nearly identical.

We capture an outdoor video STREET (200 frames, 320 ×
240, 15 frames/s), which contains a car moving across the

camera and a building in the background. This scene is chal-

lenging due to the presence of moving objects and image blur-

ring due to fast camera vibrations. Snapshots of the original

video clip corresponding to Frames 1, 104, 110, 114 and 120

are depicted in Fig. 3(a). The vertical red line marks the front

edge of the building in Frame 1. Stabilization results based

on MFME, CFME, and the proposed PFME are presented

in Fig. 3(b)–(d), respectively. We observe that the MFME-

based stabilization loses the ability to stabilize the scene since

the global motion estimation suffers from incorrect feature

matching due to blurring. One illustration of the incorrect

matchings in the background has been provided earlier in

Fig. 1. On the other hand, despite the fact that the particle filter

relies on the same incorrect feature matching, PFME is still

able to recover the correct global camera motion and stabilize

the video sequence. This experiment demonstrates that particle

filtering is resistant to errors due to incorrect feature matching

and yields a robust method for video stabilization. Also, we

can see that CFME is robust with outliers and gives almost

the same performance as PFME except for being less accurate

(e.g. frame 114).

The outdoor video clip ONROAD (400 frames, 320 ×
240, 30 frames/s) has been captured with a camera mov-

ing in the optical direction, which is a popular example

of intentional camera motion. Frames 1, 96, 166, 244, and

324 of the original video sequence are illustrated in Fig.

4(a). The red cross marks the vanishing point of the road

in the first frame, and its location is fixed throughout the

snapshots presented. We once again compare the results of

video stabilization using MFME, CFME, and the proposed

PFME in Fig. 4(b)–(d), respectively. As can be seen, in this

scenario both MFME and CFME produce errors in some

of the video frames, which yield annoying vibrations in the

resulting video sequence. Similar as in STREET, the errors
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Fig. 6. Comparison between the ground-truth representation of the global
camera motion (black line), the estimated global camera motion using the
PFME method (blue line), and the estimated intentional camera motion (red
line), for translation (in pixels) in both the horizontal and vertical directions.
(a) Motion in horizontal direction. (b) Motion in vertical direction.

of MFME are resulting from incorrect feature matching, and

CFME is less accurate. The red cross remains in the road

vanishing point in all of the frames of the PFME, which

points to the superiority of the PFME-based video stabilization

algorithm.

We test our algorithm on synthetic videos where we record a

stable video LAB_Stable (150 frames, 320×240, 15 frames/s)

with the camera observing only intentional motion along the

optical axis toward the object and no vibrations. It is used

as the ground-truth video. We artificially produce an unstable

video sequence LAB_Unstable by applying predetermined

affine transforms to every frame in LAB_Stable, which serve

as ground-truth for image motions. A quantitative evaluation of

the performance of the various video stabilization algorithms

are given. Fig. 5(a) illustrates Frames 30, 60, 90, and 120

of the original stable video LAB_Stable. The corresponding

and enlarged snapshots of the unstable video LAB_Unstable

generated from original video sequence is depicted in Fig.

5(b). The results of video stabilization using the proposed

PFME are provided in Fig. 5(c). The red rectangle denotes the

location of a microwave oven in each frame of the original

stable video sequence. As we can see in Fig. 5(c), the red

rectangle outlines the image of the microwave oven nearly

perfectly throughout the stabilized video sequence using the

PFME-based method. This illustration shows that the output

sequence using the proposed video stabilization algorithm is

very close to the original stable sequence, and demonstrates

the efficiency of our system.

Fig. 6 provides a graphical illustration of the ground truth of

the global camera motion, the estimated global camera motion

using PFME, and the estimated intentional camera motion, for

horizontal and vertical translations of the first 50 frames of

the LAB video sequence. We observe that the global motion

estimation using the proposed method is very close to the

ground truth. Following the evaluation measures proposed in

[34], we also compute the MSE and PSNR for LAB_Unstable,
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TABLE I

COMPARISON OF AVERAGE MSE AND PSNR FOR STABILIZED OUTPUT

Statistics Unstable MFME CFME PFME
Average MSE 4238.9 2282.7 2373.5 1332.9

Average PSNR (dB) 11.858 15.549 15.494 17.500

as well as for the stabilized output produced by three methods

(CFME, MFME, and PFME). A summary of the average MSE

and average PSNR results of the whole 150 frames is provided

in Table I. We observe that PSNR for the stabilized outputs

produced by the three methods are all higher than those of

the unstable video. Among the three, PFME gives the highest

PSNR. Specifically, the average MSE of PFME is nearly one-

half of the corresponding MSE using MFME and CFME,

whereas the average PSNR improvement for PFME is more

than 50% larger than the corresponding PSNR gains of MFME

and CFME.

VI. CONCLUSION

In this paper, we presented a novel approach for robust video

stabilization based on particle filter estimation of projected

camera motion. Our proposal has been to extend particle filter-

ing to the estimation and tracking of the global camera motion

parameters in video sequences. An efficient implementation

of particle filters for global motion estimation has been pro-

posed based on carefully designed importance sampling. We

relied on corresponding SIFT points to obtain an estimation

of the camera motion model. We then generated particles

by sampling from a density function characterized by the

estimated camera motion model. We also proved analytically

that particle filtering can be used to reduce the variance of a

time series estimate and thus yield a smooth and more accurate

estimate when the number of particles is sufficiently large.

We demonstrated experimentally that the proposed particle

filtering scheme can be used to obtain an efficient and accurate

motion estimation in video sequences.

APPENDIX

PROOF OF LEMMA 1

Without loss of generality, we can denote the true state xk

as in the origin of the state-space to simplify the notations.

In such case, εk ≡ x̂k and ek ≡ x̄k . Both of them have zero

mean.

Proof: Note that

E
[

xi
k

]

= E
[

E
[

xi
k |x̄k

]]

= E [x̄k] = 0 (19)

E
[

xi
kxi

k

T
]

= E
[

E
[

xi
kxi

k

T |x̄k

]]

= E
[

�1 + x̄k x̄T
k

]

= �1 + �2. (20)

In the following derivation, we assume that wi
k and xi

k are

statistically independent. The assumption is meaningful when

we consider that the posterior function is unknown and par-

ticle samples are drawn from an arbitrary proposal density.

Therefore, the distribution of the random samples xi
k from

the proposal density, and the weight wi
k used to estimate the

posterior function are assumed to be independent. From this

assumption, the error variance of εk can be obtained as

Cov(εk, εk) = E
[

x̂k x̂
T
k

]

=
N

∑

i=1

N
∑

j=1

E
[

wi
kw

j

k xi
kx

j

k

T
]

(21)

=
N

∑

i=1

E

[

(

wi
k

)2
]

(�1 + �2). (22)

Equation (21) comes from (8). We then separate the summa-

tion of j to two portion j = i and j �= i . Equation (22)

holds due to the independence assumption of wi
k , and xi

k , and

following from (19) and (20).

Further, the normalized weights wi
k for frame k are cal-

culated from the importance sampling function, i.e., wi
k =

π i
k/

∑N
i=1 π i

k , where π i
k are the likelihood computed for i.i.d

particles, and hence can be regarded as i.i.d random variables

and have finite mean. Denote their mean and variance as

mπ and σ 2
π , varying with k. When the number of parti-

cles N is large, according to Kolmogorov’s Strong Law of

Large Numbers [35], the sum of π i
k can be approximated by

∑N
i=1 π i

k ≃ N E
[

π i
k

]

= Nmπ . Therefore

N
∑

i=1

E

[

(

wi
k

)2
]

≃
N

∑

i=1

E
[

(

π i
k

)2
]

(

∑N
i=1 π i

k

)2

=
N

∑

i=1

m2
π + σ 2

π

N 2m2
π

= m2
π + σ 2

π

Nm2
π

. (23)

Denote ck � (m2
π + σ 2

π )/m2
π , we can further simplify (22) to

Cov(εk, εk) = 1
N

(�1 + �2)ck .
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