
Robust Visual Recognition Using

Multilayer Generative Neural

Networks

by

Yichuan Tang

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2010

c© Yichuan Tang 2010

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Deep generative neural networks such as the Deep Belief Network and Deep Boltzmann

Machines have been used successfully to model high dimensional visual data. However,

they are not robust to common variations such as occlusion and random noise. In this

thesis, we explore two strategies for improving the robustness of DBNs. First, we show

that a DBN with sparse connections in the first layer is more robust to variations that are

not in the training set. Second, we develop a probabilistic denoising algorithm to determine

a subset of the hidden layer nodes to unclamp. We show that this can be applied to any

feedforward network classifier with localized first layer connections. By utilizing the already

available generative model for denoising prior to recognition, we show significantly better

performance over the standard DBN implementations for various sources of noise on the

standard and Variations MNIST databases.

iii

Acknowledgements

First, I would like to thank Chris Eliasmith for his encouragements, guidance, and

support through these past couple of years. Secondly, this work wouldn’t have been possible

without the state-of-the-art office that is the CTN. From the big monitors, the super fast

GPUs, and labmates who stay for far longer hours to the weekly roundtable meetings and

doodles on the whiteboards, the CTN deserves all the credit. In addition, there wouldn’t

be nearly as much excitement without Chris bringing in world famous researchers for the

annual Brain Day and the seminar series. I would also like to warmly thank Pascal Poupart

and Ali Ghodsi for taking the time out of their busy schedule to read this thesis.

iv

Dedication

This is dedicated to my parents for all the sacrifices they’ve made over the years, to a

“rabbit” named Selena, and to the mountain in Valley Paradise yet to be conquered.

v

Contents

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Contribution of the thesis . 2

1.2 Outline of Thesis . 3

2 Visual Recognition Architectures 4

2.1 Multi-stage Hubel-Weisel models . 4

2.1.1 Convolutional Neural Networks (CNNs) 5

2.1.2 The Standard Model . 6

2.2 Scale Invariant Feature Transforms (SIFT) 8

2.3 Active Appearance Models (AAMs) . 9

3 Restricted Boltzmann Machines 11

3.1 Restricted Boltzmann Machines . 11

3.2 RBM Learning . 13

3.2.1 Contrastive Divergence (CD) . 14

3.2.2 Stochastic Approximation Procedure (SAP) 14

3.3 RBM Evaluation . 16

vi

3.4 Exponential Family RBMs . 18

3.4.1 Gaussian Binary RBM . 20

3.5 Sparsity in RBMs . 21

4 Deep Belief Networks 24

4.1 Greedy learning . 24

4.2 Fine-tuning . 27

4.2.1 Up-down . 27

4.2.2 Discriminative . 28

5 Deep Boltzmann Machines 30

5.1 Formulation . 30

5.2 Pros and cons . 32

6 Sparsely Connected DBN 35

6.1 Introduction . 35

6.2 Related Work . 36

6.3 sDBN . 36

6.3.1 Why Sparseness . 38

6.3.2 Sparse RBM Learning . 38

6.3.3 Sparse RBM Evaluation . 39

6.3.4 Sparse DBN . 41

6.4 Probabilistic Denoising . 42

6.4.1 Denoising via Unclamping . 43

6.4.2 Determining Which Nodes to Unclamp 44

6.4.3 Combining with Visible Layer Inputs 46

6.4.4 Denoising Results . 47

6.4.5 Recognition Results . 49

vii

6.4.6 MNIST Variations . 49

6.5 Discussion . 52

7 Conclusions and Future Work 53

APPENDICES 55

A MNIST Dataset 56

A.1 MNIST . 56

A.2 MNIST Variations . 57

B Probabilistic Learning 59

B.1 Supvervised Learning . 60

B.2 Unsupervised Learning . 61

Bibliography 70

viii

List of Tables

6.1 Sparse RBM and sparse DBN evaluations 40

6.2 Summary of recognition results . 49

ix

List of Figures

2.1 LeNet5, a type of Convolutional Neural Network [31]. 6

2.2 Visual cortex hierarchy model. The bottom level represent neurons from the

primary visual cortex, the top layer represent neurons from the Inferotem-

poral cortex. As level increases in the hierarchy, neurons become selective

of more complex pattern as well as become more invariant to natural trans-

formations. Diagram is from [64]. 7

3.1 RBM architecture . 12

3.2 Exponential RBM formulation process. 19

3.3 Filters learned represent varying spatial location, frequency, scale, and ori-

entation. 23

4.1 The RBM on the left has an equivalent DBN on the right. 25

4.2 DBN for classification . 26

4.3 DBN for discriminative classification. 29

5.1 DBN has undirected connections on top and directed connections on the

bottom. DBM have directed connections everywhere. 31

5.2 For classification, a DBM can be modified by adding the visible input to

the H2 layer to make a concatenated new visible layer. The new input

is then fed to H1 and subsquently onto the top layer H3. The node on

top is a multinomial node used for 1-of-K coding. During optimization,

only the weights above the new visible layer is modified. This perculiar

formulation uses the bidirectional connectivity of the DBM to achieve more

robust inference for H1 nodes. 34

x

6.1 Standard filter for a DBN trained on MNIST. 37

6.2 DBNs fail to be robust to various noise. The noise includes added borders,

randomly placed occluding rectangles, and random pixels toggled to white. 37

6.3 Plot of histogram of absolute difference in hidden node activations for (a)

standard DBN and (b) sparsely connected DBN, when occlusion is applied

to digit images. 39

6.4 Filters from a sRBM with 7x7 RF learned on MNIST. 40

6.5 A deep network for feedforward recognition with denoising. Upward arrows

are feedforward recognition weights, the downward dashed arrow is the gen-

erative weight, and the bidirectional dashed arrow is the weight of the de-

noising RBM. W1
gen is part of the DBN and is used to calculate p(v|h1). If

the network is not a DBN we can easily learn W1
gen to predict the data v

given h1. 41

6.6 A sparse DBN is more robust to noise than the standard DBN, and only

slightly worse on the clean images. 42

6.7 A hypothetical state space with the dark band being the region of high

probability. See text for details. 43

6.8 The shaded nodes are clamped. Denoising is performed by running block

Gibbs sampling on the unclamped nodes. 44

6.9 The first row are occluded images, the second row are the denoised results,

and the third row are the original images. 44

6.10 Denoised results on various types of noise. The first column from the left

contains the original images, the second column contains images with noise

added. Subsquent columns represent the denoised images from t = 1 to t = 6. 48

6.11 Examples of mnist-back-rand and mnist-back-image digits. 50

6.12 Denoising results. 51

6.13 Denoising results. 51

A.1 Random examples from the MNIST dataset. 57

A.2 Random examples from the MNIST Variations dataset [30]. 58

xi

Chapter 1

Introduction

Visual recognition and understanding is one of the grand challenges of computer vision

and artificial intelligence. Over the past 50 years, many algorithms have been tried to

further this ambition, yet we are still a ways from accomplishing this goal. The difficulty

of recognition comes from the highly nonlinear intra-class variations exhibited by objects

under various pose and illumination changes [10].

In recent years, unsupervised learning has provided a way to learn a more efficient

representation of visual data [24, 55], thereby allowing for better generalization and im-

proved recognition [56, 23]. Biological inspirations and theoretical arguments have also

called for a need to have a “deep” or multilayer network for these tasks [4]. The Deep

Belief Network [23] and Deep Boltzmann Machine [60] are hierarchical generative models

which use nonlinear layers for unsupervised and semi-supervised learning. These models

and variants have been successfully applied to visual recognition [48, 17], speech recog-

nition [54], nonlinear dimensionality reduction [62, 43], modeling image patches [52, 38],

image transformations [42], and others.

These models have several crucial advantages:

• There are greedy layer-wise training algorithms which allows for efficient initialization

of weight parameters.

• Learning is generative and unsupervised, allowing the use of copious amounts of

unlabeled data.

1

• There exist approximate inference methods which allows for fast inference even for

the deepest layer.

• Several fine-tuning algorithms exist to improve the performance by optimizing the

network as a whole.

Building on top of the Deep Belief Network architecture, the goal of this thesis is to

demonstrate one additional advantage: the generative model. While discriminative models

seek to simply learn the conditional distribution of the label given the input, generative

models go the extra mile and learn a density of the input. Currently, most deep networks

use their model of input density rather indirectly. Generative learning is used to learn a

set of “good” weights or filters which are then used to initialize a discriminative classifier.

The filters are good in the sense that they are representative of the structure of the inputs

and allow for lower generalization error compared to a classifier initialized with random

filters.

This thesis demonstrates how to improve recognition by leveraging the generative model

directly. Our framework uses feedback connections to denoise visual inputs prior to recog-

nition, obtaining much lower errors for handwritting digit recognition problems under noise.

It is also consistent with neurophysiology, where there are massive feedback connections

in the primate visual cortex, often out numbering feedforward connections. Psychological

experiments validate more computational time during visual recognition when the stimulus

is complex and noisy.

1.1 Contribution of the thesis

There are two main contributions of this thesis:

1. We show that by restricting the connection of the first layer in a Deep Belief Network

to be local and sparse, it is not only more biologically more plausible, but it also

increases the robustness of the system to noise in the environment.

2. Recognition is typically performed in one feed-forward sweep where the conditional

of p(label|input) is estimated in one way or another. We introduce a probabilistic

denoising algorithm which uses the density model learned to denoise an input image

before classification, achieving a much lower error rate.

2

1.2 Outline of Thesis

In chapter 2 we discuss background material on other types of visual recognition archi-

tectures. They include the Convolutional Neural Network, visual cortical models, Scale

Invariant Feature Transform, and the Active Appearance Models.

In chapter 3 we provide the technical details of the Restricted Boltzmann Machine

(RBM). The RBM forms the building block of the Deep Belief Network and the Deep

Boltzmann Machine. In this chapter we review the learning and evaluation procedures.

We also derive a way to extend the RBMs to be able to model continuous valued inputs.

We also give a derivation for adding sparsity to the RBM, which improves generalization

and learning.

In chapter 4 we review the formulation of the Deep Belief Network, which consists of a

stack of RBMs. We also review fine-tuning methods.

Chapter 5 discusses the recently introduced Deep Boltzmann Machine, which is an

undirected multilayer neural network. We present its formulation and also its advantages

and disadvantages. While our contribution in this thesis does not deal directly with the

Deep Boltzmann Machine, its signature idea of combining top-down and bottom-up input

has inspired a similar idea in our denoising algorithm.

Chapter 6 introduces a modified Deep Belief Network with sparsely connected first

layer. We present quantitative evaluations, experimental recognition error rates, and some

qualitive denoising images to demonstrate the advantage of our network when images are

affected by occlusion or random noise. Experimental results are presented for the MNIST

and MNIST Variations datasets.

Finally, we conclude with some remarks and direction for future work in chapter 7.

3

Chapter 2

Visual Recognition Architectures

In this chapter, we describe serveral prominent visual recognition architectures. Although

all recognition tasks can be formulated in the classification framework using standard

methods like Linear Discriminant Analysis [20], SVMs [9], or Boosting [74], we present

several specialized algorithms which are state-of-the-art in their respective subfields. We

will also briefly discuss their strengths and weaknesses.

2.1 Multi-stage Hubel-Weisel models

Human vision has not yet been surpassed by computer vision systems. The ease at which we

can recognize the identity of family, old friends, and foe under extreme lighting, pose, and

expression variations suggest that algorithms can be inspired by biological vision. However,

due to the highly complex nature of the visual cortex, viable models only appeared after

the seminal work by Hubel and Wiesel exploring the cortical cells of cats [25]. Their work

revealed that neurons known as Simple cells in the primary visual cortex are selective or

tuned towards stimuli of different orientations, blob sizes, and spatial frequencies. It was

subsequently discovered that there are massive feed-forward pathways from the primary

visual cortex (V1) to the V2, V4, and Inferotemporal (IT) cortices, forming a hierarchy [11].

Along this pathway, neurons are selective towards more and more complex shapes. In the

IT, neurons that are selective towards faces have been discovered [68].

In this framework, there are also cells called Complex cell which pool together many

Simple cells. The pooling operation is often modeled as either an average or max operation.

4

This allows the Complex cell to respond almost the same way even if the activity of its

pooled Simple cells is shifted. Therefore, this property achieves certain localized invariance

and is a key feature of computational models belonging to this class. They include the

Neocognitron [14], Convolutional Neural Nets [31], HMAX [57], the Standard Model [65],

and a multi-class recognition model [44].

2.1.1 Convolutional Neural Networks (CNNs)

The Convolutional Neural Network is the first and only deep architecture which achieved

vast success for various visual recognition tasks from handwriting, face, and license plate

recognition. Inspired by experimental findings from the visual cortex and similar to an

earlier network called the Neocognitron, the CNN is composed of successive convolutional

and pooling stages. A key feature of CNNs is that as the number of feature maps increase,

the spatial resolution decreases, avoiding an explosion of nodes in the higher layers. CNNs

also share weights (by definition a convolution operation is performed using the same filter)

and is trained using backpropagation and stochastic gradient descent.

The name convolutional is a bit of a misnomer as the mathematical operation is filtering

instead of convolution1. Nevertheless, by formulating the problem as convolution, we are

able use FFT based algorithms to perform fast learning and inference on modern CPUs

and GPUs.

For example, a specific CNN called LeNet5 is shown in figure 2.1. In LeNet5, the

pooling is non-overlapping average filters connecting 4 Simple cells to 1 Complex cell,

thereby performing subsampling. In addition, after each filtering operation, a bias is added

to the activation and passed through a tanh sigmoid.

1Filtering with a specific filter is equivalent to convolving with the same filter rotated 180 degrees.

5

Figure 2.1: LeNet5, a type of Convolutional Neural Network [31].

Convolutional neural network based algorithms currently hold the record for MNIST

digit recognition [26]. They have also been applied to face dectection and pose estima-

tion [51], object recognition [4], metric learning and dimensionality reduction [19], license

plate and pedestrian dection for Google Street View [12, 13].

While CNNs are fantastic for feedforward recognition, they cannot handle noise in

a probabilistic fashion. In fact, recognition results for CNN when faced with random

noise and occlusion2 is very similar to a sparsely connected Deep Belief Network without

denoising (see section 6.6).

2.1.2 The Standard Model

The so called Standard Model is the most neurobiologically plausible model of the class [65,

64]. Figure 2.2 shows a graphical overview of the architecture.

2See section 6.

6

Figure 2.2: Visual cortex hierarchy model. The bottom level represent neurons from the

primary visual cortex, the top layer represent neurons from the Inferotemporal cortex. As

level increases in the hierarchy, neurons become selective of more complex pattern as well

as become more invariant to natural transformations. Diagram is from [64].

This network has four layers, consisting of alternating ‘S’ and ‘C’ layers. A S layer

contains neurons which detect small localized features within the big image. A C layer

contains neurons which are invariant to small transformation in the S layer below. The

bottom input layer is basically the retina or image pixel space. The first hidden layer is

occupied by the so called S1 neurons. They are basically Gabor wavelets selective toward

oriented edges. Pixels are connected to (innervate) the S1 layer. The second hidden layer

are occupied by the so called C1 neurons, which will be active if their preferred type of S1

7

neurons are active within a local window of the C1 neuron. The C1 neurons essentially

perform a max operation and this step is vital to ignore some small variances such as shift,

scale, and rotation. The next layer is another S layer known as S2, which is followed by

the C2 layer. This type of alternating layering could continue for higher layers.

The types of filters in the S1 layer is fixed to be Gabor wavelets of varying spatial

frequencies, scale, and orientation. The S2 to S4 layers are learned by presenting the

network with natural images and a universal dictionary is learned by each Sn unit storing

a specific prototype of its afferents. Each Sn unit is replicated across the visual field just

like in the CNN. After learning, the weights up to S4 are fixed and task-dependent learning

of layer IT to PFC is used for classification3.

Quantitative experiments on the Standard Model show that it is successful in mirroring

the performance of humans in rapid categorization tasks. This suggests that immediate

vision, or recognition without time for indepth analysis, is mainly feedforward in humans.

In [65], the authors also report better than state-of-the-art results for several object recog-

nition dataset involving faces, cars, and airplanes. In that paper, the features of the C2

layers were used as input to a linear SVM and a gentle AdaBoost classifier.

2.2 Scale Invariant Feature Transforms (SIFT)

Arguably the most important invention in computer vision in the past decade, SIFT [37] is

a marvelous engineering solution to recognition in the presence of variations such as shifts,

rotations, lighting variations, and pose changes. SIFT is a two stage feature detector

and descriptor extractor. First, interesting locations in the image across scale are found

using a “blob”-like detector. Then, a 128 dimensional feature vector is extracted around

a local patch of the interest points. By using edges and feature vector normalization

during descriptor extraction, affine illumination variations are eliminated. Its formulation

of 4 × 4 histograms further alleviate small shifts and distortions of local image patches.

Finally, by aligning the feature detector in the direction of dominate edge, rotational

invariance is achieved. SIFT and its variants have been applied to virtually all domains of

computer vision and image recognition, including object recognition [16], image stiching [5],

tracking [79], and vSLAM [28].

3Typically, a linear classifier would be learned.

8

While SIFT is excellent for describing images with sharp contrast, it is not good for

images with soft edges or images with a dearth of interest points. For example, icons

and logos on commericial products are “SIFT friendly” while faces under various lighting

conditions are not. In addition, recognition with the SIFT architecture requires approxi-

mate nearest neighbor search in a database storing all keypoints from the training images.

Considering the fact that thousands of descriptors are typically extracted from a typical

image, scalability is a problem which needs to be addressed. By using only edge gradient

information, SIFT can not encode color information, which might be important for certain

problems (e.g. asking a robot to pick up the red cup).

2.3 Active Appearance Models (AAMs)

AAMs are general models of visual objects [8]. AAMs combine a statistical shape model

with an appearance model. The shape model consists of landmark points ([x,y] pairs) for

different instances of the same object. For example, a human face shape model could

consists of 60 points defining the shape of the eyes, mouth, nose, forehead, and jaw.

The appearance model consists of pixels which define the illumination of the object. For

example, the pixels of the face which belong inside4 of the face shape model would make

up the face appearance model. Statistical models can then be fit to the dataset consisting

of many face images of the same person or that of many different people. Traditionally,

a simple PCA is used to describe the variations, but nothing prevents the use of other

density models.

After model learning, inference is performed by “fitting the model” to the test image.

This is basically an optimization problem which can be solved efficiently using the inverse

compositional image alignment algorithm [41]. The intuition here is to perform inference

by adjusting the model parameters until the model aligns with the test image as well as

possible. Adjusting the shape parameters will deform or transform the shape of the model;

while adjusting the appearance parameters will change the illumination of the object,

i.e. making the face darker on the left. Classification is performed on the fitted model

parameters.

By separately modeling the spatial variation and illumination variation, the AAM

achieves impressive results in face tracking, morphing, and expression transfer [77, 39].

4Typically there is a subset of the landmark points which form a convex hull.

9

However, there are downsides to AAMs. Learning often requires laborious work to manu-

ally mark the landmarks for each image in the training set. During recognition, the model

parameters often need to be initialized fairly close to the true values lest the optimization

will get stuck in a local minima. An even more serious problem is in the substantially worse

performance of AAMs that model a generic class (faces of everyone) compared to AAMs

which model a specific class (faces of one person in various poses and expressions) [18].

10

Chapter 3

Restricted Boltzmann Machines

In the next chapter, we explore a powerful class of multilayer generative nerual network

known as the deep belief network. In this chapter, we discuss its building blocks - the

Restricted Boltzmann Machine.

3.1 Restricted Boltzmann Machines

A Restricted Boltzmann Machine is a type of Markov Random field. In graphical model

terminology, it is an undirected graphical model where a potential function is defined by the

weights and biases (parameters) of the RBM. The RBM has a bipartite architecture with

2 sets of binary stochastic nodes: the visible v ∈ {0, 1}Nv and hidden h ∈ {0, 1}Nh layer

nodes [67]. The RBM has only visible to hidden connections but no intra-layer connections.

See figure 3.1. With every RBM, there is an associated energy function and probability

distribution:

E(v,h; θ) = −bTv − cTh− vTWh (3.1)

where θ = {W,b, c} are the model parameters. In neural network terms, the W are

symmetric weights modeling the correlation between vi and hj, and bi, cj are the biases to

the visible and hidden neurons. The probability distribution of the system {v,h} can be

written as:

p(v,h; θ) =
p∗(v,h)

Z(θ)
=

exp−E(v,h)

Z(θ)
(3.2)

11

Figure 3.1: RBM architecture

where Z(θ) is the normalization constant:

Z(θ) =
∑

v,h

exp−E(v,h) (3.3)

The popularity of the RBM stems from the ability to calculate conditional distributions

over v and h easily. With some simple derivations from eq. 3.2,

p(v = 1|h; θ) =
Nv∏

i

p(vi = 1|h) = σ
(
WTv + c

)
(3.4)

p(h = 1|v; θ) =

Nh∏

j

p(hj = 1|v) = σ
(
Wh + b

)
(3.5)

Where the σ(x) = 1/(1 + exp(−x)) is the logistic or sigmoid function.

The fact that these conditional distributions are factorial means inference and learning

is dramatically simplified, compared to a fully connected Boltzmann Machine [1]. The

marginal distribution over v is also important and can be analytically marginalized out

due to the structure of the RBM:

p(v; θ) =
1

Z(θ)

∑

h

exp
(
bTv + cTh + vTWh

)
(3.6)

=
1

Z(θ)
exp

(
bTv

) Nh∏

j

∑

hj∈{0,1}

exp
(
(WT

(:,j)v + cj)× hj
)

(3.7)

=
1

Z(θ)
exp

(
bTv

) Nh∏

j

(
1 + exp(WT

(:,j)v + cj)
)

(3.8)

12

Therefore, the unnormalized log probability of an RBM is given as:

log p∗(v; θ) = bTv +

Nh∑

j

log
(
1 + exp(WT

(:,j)v + cj)
)

(3.9)

3.2 RBM Learning

RBM is a model for unsupervised learning, where only a dataset of observations v1...N is

available. The RBM models the input distribution by maximizing the log-likelihood of the

data, denoting v̂ to a sample:

log p(v̂) = log
∑

h

p(v̂,h) (3.10)

= log
∑

h

exp
(
− E(v̂,h)

)
− log

∑

v,h

exp
(
− E(v,h)

)
(3.11)

The partial derivative with respect to the parameters θ is

∂ log p(v̂)

∂θ
= −

∑

ĥ

q(ĥ|v̂)
∂E(v̂, ĥ)

∂θ
+

∑

h,v

p(h,v)
∂E(v,h)

∂θ
(3.12)

Substituting the weights for θ, we have

∂ log p(v̂)

∂W
= Edata[v̂hT]− Emodel[vhT] (3.13)

∂ log p(v̂)

∂b
= Edata[v̂]− Emodel[v] (3.14)

∂ log p(v̂)

∂c
= Edata[h]− Emodel[h] (3.15)

Edata[·] denotes the expectation over the data distribution pdata(v̂, ĥ) = p(ĥ|v̂)pdata(v̂),

where pdata(v̂) = 1
N

∑
n δ(v − vn). Edata[·] denotes the expectation over the distribution

defined by the model in eq. 3.2.

The simplicity of the learning rule makes it biologically plausible. Each of the two terms

in eq. 3.13 is Hebbian-like and requires only local information. This is in sharp contrast to

backpropagation where the error signal must be passed back through the entire network.

Intuitively, the weights and biases define an energy function over all the configurations of

13

the states. Learning will push down (the first term in 3.13)) the energy function at the

data vectors and push up (the second term in 3.13))the energy at all other regions of state

space.

For general Boltzmann machines, the form of 3.13 holds. MCMC and simulated an-

nealing was used in [1] to estimate the expectations. However, this resulted in very slow

learning since we have to wait for the Markov chain to converge for every learning step.

In the case of RBMs, Edata[·] is easy to calculate but the Emodel[·] is still computationally

intractable, requiring computational time that is exponential in the minimum of {Nv, Nh}.

In the following sections, we will discuss a couple of approximation procedures which allow

for faster learning.

3.2.1 Contrastive Divergence (CD)

In practice, learning follows not the gradient of the log-likelihood but an approximate

objective function, known as “Contrastive Divergence” or (CD) [21]. The idea of CD is to

approximate the Emodel[·] by running a Gibbs chain for only 1 iteration, instead of ∞ as

required for exact maximum likelihood learning. Specifically, the weights are updated as

∆W = α(Edata[vhT]− Erecons[vhT]) (3.16)

where Erecons[·] is found by starting a Gibbs chain with the data, and running one iteration

by sampling the hidden given the visible, then reconstructing the visible given the hidden

activations.

While CD can work well for certain problems [21, 23, 30], it is in general suboptimal

and can leave undesirable modes in state space [61]. This is because by starting the Gibbs

chain at the data and running for a short while, it often fails to explore other low energy

parts of the state space.

3.2.2 Stochastic Approximation Procedure (SAP)

Instead of running a few iterations of the Gibbs chain for the reconstruction phase of learn-

ing, we can use MCMC methods to stochastically approximate the model’s expectations.

14

Robbins and Monro [58] presented a general solution to solve problems of this type. Let

L(θ) = E[log p(v̂)|θ] ≈
1

N

N∑

i

log p(v̂i; θ) (3.17)

be a function over θ. We shall assume that the variance is finite

E[(L− log p(v̂))2|θ] <∞ (3.18)

Let us also define

M(θ) =
∂L(θ)

∂θ
(3.19)

the stationary points of L(θ) must satisfy

M(θ∗) = 0 (3.20)

We can solve the above equation by taking a gradient step in L(θ), thereby suggesting the

following online algorithm:

θt+1 = θt + αtM(θt) (3.21)

if α follows these three conditions:

lim
N→∞

αt = 0 (3.22)

∞∑

N=1

αt =∞ (3.23)

∞∑

N=1

α2
t <∞ (3.24)

it can be shown that the sequences of estimates θt do converge to the root θ∗ [58], [78].

[46], [72] have adapted SAP to estimate the model’s expectation in RBM learning. In

this case, M(θ) = Edata[vhT]−Emodel[vhT]. Since M(θ) is intractable to obtain, we draw a

sample m(θ) ∼M(θ) where m(θ) = Edata[vhT]− 1
M

∑M

i ṽih̃
T

i is a sample from the model’s

true expectations. The update rule becomes

θt+1 = θt + αt

[
m(θt)

]
(3.25)

= θt + αt

[
Edata[vhT]−

1

M

M∑

i

ṽih̃
T

i

]
(3.26)

= θt + αtM(θt) + αt

[
Emodel[vhT]−

1

M

M∑

i

ṽih̃
T

i

]
(3.27)

= θt + αtM(θt) + αtǫt (3.28)

15

By satisfying the learning rate conditions, we can prove that ǫt will be small. In persistent

CD learning, {ṽi, h̃i} is found by several iterations of a Gibbs chain.

3.3 RBM Evaluation

There are two indirect ways to assess the performance of an RBM:

1 Visualization by generating samples from the RBM

2 Recognition performance

There are flaws with both approaches. With sample generation, any MCMC sampling

algorithm has the potential to not be able to draw independent samples from the distri-

bution, i.e. if the energy landscape contains high energy barriers. An example of this is a

typical binary RBM learned on MNIST using CD25. The log probability of v = 0 gives

almost 40 nats higher than a typical test digit image, even though Gibbs sampling can not

generate any samples of such all black images. Secondly, human visual evaluation of how

“good” the samples are can only be done for visual data.

Using recognition performance for RBM evaluation only works for supervised learning,

where a joint density of the labels and data must be learned. This is not possible if we

only want to use an RBM to learn a prior for denoising or segmentation.

A third and more principled approach would be to look at the average log-probability

of the test set the model assigns. However, for Markov random fields, the log partition

function (logZ) is intractable to calculate. Therefore, we can only resort to approximate

logZ. Recently, Annealed Importance Sampling, a Monte Carlo method, has been adapted

to estimate the logZ of an RBM [61, 47]. Annealed Importance Sampling, by using

annealing over many intermediate distributions, overcomes the need to have a very good

base distribution as in the case of Simple Importance Sampling.

With Simple Importance Sampling, the idea is to draw independent samples from a

tractable distribution vi ∼ p∗A(·) and then we can estimate the ratio of the partition

function using

ZA
ZB
≈

1

M

M∑

i=1

p∗B(vi)

p∗A(vi)
= r̂IS (3.29)

16

When p∗A(·) and p∗B(·) are similar, and since ZA would be known, we can thus estimate ZB.

However, in high dimensional spaces, r̂IS would typically have very high variance and the

estimation of ZB can not be trusted.

The idea of Annealed Importance Sampling is to introduce intermediate distributions

pk(v), each with an unique inverse temperatures 0.0 = β0 < β1 < ... < βK = 1.0:

pk(v) ∝ p∗A(v)1−βkp∗B(v)βk (3.30)

The intuition is that with suitably small temperature steps, neighboring distributions would

be close enough to give us valid ratio estimations.

Several condition must hold inorder for AIS to work:

• pk(v) 6= 0 whereever pk+1(v) 6= 0, for all v

• p∗k(v) must be easily evaluated, for all k and v

• For k = 0, ..., K−1, we must be able to sample v′ given v using an MCMC transistion

operator Tk(v
′ ← v) which leaves pk(v) invariant.

• We need to draw independent samples from p∗A(·)

Following [61], we give an algorithm for obtaining the importance weights using AIS in

algorithm 1.

Algorithm 1 One Annealed Importance Sampling run

1: Sample v1 ∼ pA(·) = p0(·)

2: Sample v2 given v1 using T1

3: . . .

4: Sample vK given vK−1 using TK−1

5: compute

wi =
p∗1(v1)

p∗0(v1)

p∗2(v2)

p∗1(v2)
· · ·

p∗K−1(vK−1)

p∗K−2(vK−1)

p∗K(vK)

p∗K−1(vK)

after obtaining M annealed importance weights wi, we can estimate the ratio of the

partition functions by averaging the annealed importance weights

ZA
ZB
≈

1

M

M∑

i=1

wi = r̂AIS (3.31)

17

In practice, a base-rate RBM with biases bA is used for the base distribution

pA(·) =
1

ZA
exp(bT

Av) (3.32)

and

ZA = 2Nh

Nv∏

i

(1 + ebi) (3.33)

Once we obtain an estimate of the log partition function logZB, we can estimate the

avearge test data log likelihood by subtracting it from the unnormalized log likelihood in

eq. 3.9

log pB(vtest) = log p∗B(vtest)− logZB (3.34)

Typically, M = 100 runs is performed with 20,000 intermediate distributions. Even though

a disadvantage of AIS is that it sometimes underestimates the logZB, it is still useful as

a quantitative estimation of how good an RBM is as a generative model. See [47], [61] for

more detail and analysis.

3.4 Exponential Family RBMs

In a deterministic feedforward neural network, the activation (total input passed through

a transfer function) of one neuron represents a scalar value. In a probabilistic neural

network such as the RBM, the activation of a neuron needs to represent the parameter of

a distribution. In the discussions above, that parameter is from the Bernoulli distribution.

We now look at ways to extend the RBM such that its nodes (both visible and hidden)

may be taken to be any one of the exponential family distributions. Following [76], the

main idea is to assign a sufficient statistic1 to each node, and interpret the total node

activation as the natural parameter to that statistic.

The exponential family distribution with vector parameterization is defined as:

p(x) = h(x) exp(
∑

i

ηi(θ)Ti(x)− A(η)) (3.35)

where θ is a vector of parameters for the distribution and η is a vector natural parameters,

Ti(x) is a sufficient statistic of the distribution, and A(η) is the log-partition function. We

1In general, we can assign a sufficient statistic vector to each node.

18

can write the density of eq. 3.35 using biases and visible nodes:

p(v) =
1

Z
exp(

∑

i

bifi(v)) (3.36)

Therefore, by replacing the natural parameters with biases bi and the sufficient statistics

Ti with fi, we have an equivalent MRF model of any exponential family distribution2.

(a) Disconnected RBM (b) Connected RBM

Figure 3.2: Exponential RBM formulation process.

To formulate an exponential family RBM, we start with a fully disconnected RBM, see

figure 3.4(a). The unnormalized probability is given as

p({vi, hj}) ∝ exp
[∑

i

bifi(vi) +
∑

j

cjgj(hj)
]

(3.37)

By adding weights Wij to connect between vi and hj, we are adding a 2nd order statistic

to the probability distribution, therefore, for figure 3.4(b),

p({vi, hj}) ∝ exp
[∑

i

bifi(vi) +
∑

j

cjgj(hj) +
∑

ij

Wijfi(vi)gj(hj)
]

(3.38)

The conditional distributions over each node is independent given the other layer and are

in the exponential family:

p(vi|{hj}) ∝ exp
[
b̂ifi(vi)

]
b̂i = bi +

∑

j

Wijgj(hj) (3.39)

p(hj|{vi}) ∝ exp
[
ĉjgj(hj)

]
ĉj = cj +

∑

i

Wijfi(vi) (3.40)

Note the effect of the conditioning on one layer effectively changes the biases of the other

layer, or shifting the natural parameters by a linear term.

2For clarity, we can create another v node with “sufficient statistic” log h(x), and an accompanying

constant bias, to replace h(x).

19

3.4.1 Gaussian Binary RBM

We derive the visible layer Gaussian, hidden layer binary RBM. Gaussian-Binary RBMs

can be used to model continuous-valued inputs [24], [60].

For Gaussian-Binary RBMs, one way to set the sufficient statistics and natural pareme-

ters is

fi(vi) =
vi
σ

bi =
µi
σ

and

gj(hj) = hj cj = pj

where σ is the fixed standard deviation of all visible nodes, µi is the centre of the visible

nodes, and pj is the parameter of the binary hidden nodes.

p({vi, hj}) ∝ exp(−
1

2σ2

∑

i

v2
i) exp

[∑

i

bifi(vi) +
∑

j

cjgj(hj) +
∑

ij

Wijfi(vi)gj(hj)
]

(3.41)

= exp
[
−

1

2σ2

∑

i

v2
i +

1

σ2

∑

i

µivi +
∑

j

pjhj +
1

σ

∑

ij

Wijvihj
]

(3.42)

With some simple manipulations, we have conditional distributions in the form

p(hj|v) ∝ exp
[
cjhj +

1

σ
WTv

]
(3.43)

p(vi|h) ∼ N (bi + σ
∑

j

Wijhj, σ
2) (3.44)

Learning equations need to be modified accordingly, specifically,

∂ log p(v̂)

∂W
= Edata[

1

σ
v̂hT]− Emodel[

1

σ
vhT] (3.45)

∂ log p(v̂)

∂b
= Edata[

1

σ2
v̂]− Emodel[

1

σ2
v] (3.46)

∂ log p(v̂)

∂c
= Edata[h]− Emodel[h] (3.47)

Gaussian-RBMs have been successfully used in [24], [34], [32], [70]. The disadvantage about

this formulation is that since σ is fixed, the distribution learned is a combinatorial mixture

of isotropic Gaussians with fixed variances. There has been work extending this by trying

to learn σ as well [66].

20

3.5 Sparsity in RBMs

Sparsity of codes or neuron activity is important for a variety of reasons. Neurobiologically,

neuron activations are thought to be sparse due to energy considerations in the brain. The

high cost of spike require an estimated of less than 1% of neurons to be on concurrently [36].

In pattern recognition, sparse codes are often better for recognition since they tend to

represent the input data in a more dis-entangled format [2, 50, 56].

Sparse coding has been used to learn V1 like filters from natural images [49, 33], and has

been shown to improve the performance of various types of autoencoder [56, 55]. Sparse

coded RBMs were first introduced in [34] and a different version was used in [45]. Our

derivation here follows from the formulation in [45].

RBMs by nature form a distributed code, where a given configuration of h specifies a

given setting of the natural parameters for the visible nodes (see Eq. 3.39). Theoretically,

an RBM’s representational power is exponential in the number of hidden layer nodes Nh.

When we enforce sparsity, we reduce its generative power, but it will make the RBM a

better feature encoder, which facilitates recognition and learning. In addition, any hidden

layer nodes which are remissive in their activities will be revived.

In order to enforce sparsity, we need to add a constraint to the log likelihood learning

criterion during RBM training. Our new objective function becomes

Ocombined =
1

N

N∑

k=1

log p(vk) + λOsparse (3.48)

Osparse =

Nh∑

j=1

ρ log qj + (1− ρ) log(1− qj) (3.49)

where qj is the average activity of the j-th hidden node over time, λ influences the impor-

tance of sparsity, and ρ is our desired activity of hidden layer nodes. One simple way to

calculate q is

qt+1
j = 0.9qtj + 0.1qnowj (3.50)

qnowj is the instantenous activiation of node j over a some small batch of data (M << N)

qnowj =
1

M

M∑

k=1

σ(WT

(:,j)v
k + cj) (3.51)

21

For learning, the derivative of Osparse w.r.t. qtj gives

∂Osparse

∂qtj
= λ

[ρ− qtj
qtj(1− q

t
j)

]
(3.52)

letting ykj = σ(WT

(:,j)v
k + cj), the gradient for the biases is

∂Osparse

∂cj
=
∂Osparse

∂qtj

∂qtj
∂cj

(3.53)

= 0.1
λ

M

M∑

k=1

ykj (1− y
k
j)

[ρ− qtj
qtj(1− q

t
j)

]
(3.54)

and for the weights

∂Osparse

∂Wij

=
∂Osparse

∂qtj

∂qtj
∂Wij

(3.55)

= 0.1
λ

M

M∑

k=1

vki y
k
j (1− y

k
j)

[ρ− qtj
qtj(1− q

t
j)

]
(3.56)

In practice, setting the two hyperparameters ρ and λ is an art, with usual ranges for

ρ = [.01, .2] and λ = [.01, 10]. However, there is no reason to be concerned about how to

choose them, as a few validation runs can give a sense of what would be valid values for

each problem.

To show that RBM with sparsity can learn similar filters to V1, and a plethora of visual

models such as SparseNet [49] and ICA algorithms [71], we trained a 200 hidden node RBM

with Gaussian visible nodes on a subset of the van Hateren natural images database3, with

patches of 14 by 14 randomly sampled from roughly 2000 natural images. We show the

resulting filters in figure 3.3.

3The images were obtained via the web at http://pirsquared.org/research/vhatdb/.

22

Figure 3.3: Filters learned represent varying spatial location, frequency, scale, and orien-

tation.

23

Chapter 4

Deep Belief Networks

A Deep Belief Network is an hybrid of directed and undirected graphical model where the

top layer is a RBM and subsequent lower layers form a directed graphical models known

as a Sigmoid Belief Network [46]. DBNs are attactive because of their generative modeling

capabilities as well as simple unsupervised training algorithms that allow for them to learn

from large scale datasets. DBNs are built from stacking together RBMs and have been

successfully adapted to handwritten digit recognition, dimensionality reduction, natural

image modeling, and speech recognition [23, 24, 52, 54].

4.1 Greedy learning

The RBM, using its weights and biases, defines a joint distribution which can be factored

into a prior and a conditional:

p(v,h) = p(v|h)p(h) (4.1)

This definition means that our original RBM has an equivalent 2 layer network shown in

figure 4.1. The network on the right is a DBN composed by stacking 2 RBMs on top of

each other. The weight for the top RBM (W 1)T is the transpose of the bottom RBM W 1.

Note that the top RBM has undirected connections while the bottom RBMs function as a

directed network.

For any distribution approximating the true posterior q(h1|v) ≈ p(h1|v), we have a

24

Figure 4.1: The RBM on the left has an equivalent DBN on the right.

variational lower bound on the log probability of the data

log p(v; θ) =
∑

h1 q(h1|v)
[
log p(v,h1; θ)

]
+H(q(h1|v)) +KL(q(h1|v)||p(h1|v)) (4.2)

≥
∑

h1 q(h1|v)
[
log p(v|h1;W 1) + log p(h1;W 2)

]
+H(q(h1|v)) (4.3)

H(·) is the entropy functional and KL(·) is the Kullback-Leibler divergence. When the

RBM is formulated as a 2 layer DBN as in figure 4.1, the bound is tight.

Greedy learning of a DBN requires the freezing of W 1 and learning W 2 to optimize this

lower bound. This is essentially maximizing

∑

h1

q(h1|v) log p(h1;W 2) (4.4)

At first, when W 2 ≡ (W 1)T, any increase in the lower bound will increase the log-

likelihood, since the bound is tight. However, when the bound is not tight (KL(q||p) > 0),

changing W 2 to increase the bound might actually decrease the actual log-likelihood, since

KL(q||p) might decrease more. Such could be the situation when greedily learning deeper

layers. Despite a lack of guarantee, in practice the CD algorithm tends to find good weights

to model p(v|h1;W 1), and learning a W 2 will better model p(h1;W 2), thus improving the

DBN.

Algorithm 2 summarizes the greedy learning of a DBN. For a L layer DBN, its joint

probability can be defined as

p(v,h1, . . . ,hL−1,hL) = p(v|h1) . . . p(hL−1,hL) (4.5)

25

Algorithm 2 Greedy Learning DBN

1: Learn W 1 for the 1st layer RBM.

2: Freeze W 1, learn 2nd layer RBM with q(h|v) as its visible layer data.

3: Freeze W 2, learn 3rd layer RBM with q(h2|h1) as its visible layer data.

4: Recursively learn as many layers as desired.

Figure 4.2: DBN for classification

An example of a 3 layer DBN is shown in figure 4.2.

To generate data from a DBN, the standard way is to run Gibbs sampling for the top

RBM, then propagate down the stochastic activation to the visible layer. For posterior

inference, q(·) is used to approximate the true posterior which is in general intractable to

compute.

26

4.2 Fine-tuning

While recursively stacking RBMs together to form the DBN is easy and efficient, the model

learned is not optimal since the weights of all layers were never learned together. In this

subsection, we describe two ways to fine-tune the weights of DBN for better performance.

4.2.1 Up-down

The up-down algorithm [23] is a contrastive version of the wake-sleep algorithm [22]. The

wake-sleep algorithm is used for unsupervised (generative) learning of a Sigmoid Belief

Network (SBN) [46]. There are two phases during learning: wake and sleep. The wake

phase consist of using recognition weights to sample from the posteriors of the hidden

nodes. Generative or model weights are then learned. The sleep phase consists of using

the generative weights to generate samples from the model, and then learn the recognition

weights.

In a sigmoid belief network, the gradient of the log-likelihood of the data is stated in

eq. B.17. For gradient ascent on the log-likelihood objective, we need pθ(h|v̂), where v̂

are samples from the training data, and the subscript θ denotes the distribution is from

the SBN defined by model parameters θ. For SBNs, which are directed graphical models,

the posterior is in general intractable to compute. We can approximate the intractable

pθ(h|v) using a factorial distribution q(h|v). For the approximation, since we can not

obtain samples from p(v̂)pθ(h|v̂), we draw samples from pθ(h)pθ(v|h) instead1. Learning

q becomes minimizing the cross-entropy defined in eq. B.12. This is exactly the same as

minimizing Epθ(v)[KL(pθ(h|v)||q)]. After learning q, we can draw posterior samples from

q and can then perform gradient ascent on the original log-likelihood function.

The wake-sleep algorithm has some flaws. First, it is not following the gradient of the

log-likelihood of the data. Second, the learning of q does not maximize the lower bound

to the log-likelihood, as eq. 4.2 shows that to maximize the bound we need to minimize

Ep(v̂)[KL(q||pθ(h|v))] instead. The key difference is that fact that KL-divergence is not

symmetric and learning KL(p||q) can lead to mode-averaging. Another difference is that

we are not using model generated v instead of training v̂. This may lead to inefficient

learning since we really only care about the approximation q(h||v̂).

1This ancestral sampling is easy since SBN is directed.

27

The up-down algorithm, on the other hand, is based on the wake-sleep algorithm but

designed for the DBN. During the up phase, q is used to sample all hidden layer activities.

The generative weights are learned as in the wake-sleep. However, for the down phase,

instead of generating random samples2 from the model, a short Gibbs chain is run at the

top RBM layer. Samples of the lower layers are then stochastically activated. Recognition

weights are learned during the down phase. By not using a random sample during the down

phase, the up-down algorithm alleviates the problem of mode-averaging and not learning

q from the data distribution [23].

4.2.2 Discriminative

While the up-down algorithm is generative, we can also turn our DBN into a discrimina-

tive classifier and train using standard backpropagation. By using unsupervised learning,

the weights of a DBN represent features or components of the distribution formed by the

visible data. When we use the same set of weights as the starting parameters of a feed-

forward neural network, optimization is much easier as the pre-initialized weights act as a

regularizer. This means we can train very deep networks and achieve better generalization.

A DBN can be converted to a feedforward neural network classifier by simply treating

all stochastic hidden layer nodes as mean-field units and adding a softmax node at the top,

see figure 4.3. The error gradients can be backpropagated and any optimization algorithm

(e.g. stochastic gradient descent or Conjugate gradients) can be used to improve the

network. It can be shown that the error rate can be reduced further using this approach

for MNIST classification as well as for autoencoders [69, 24].

2Generating a random sample from the DBN requires running the Gibbs chain until convergence.

28

softmax

7x7 RF

label

Figure 4.3: DBN for discriminative classification.

29

Chapter 5

Deep Boltzmann Machines

While the DBN is an hybrid generative and discriminative network, the DBM is a multilayer

network which is entirely undirected and defined by a single energy function. Figure 5.1

illustrate the difference in network architecture.

In this section, we briefly discuss the DBM as an alternative deep generative model to

the DBN.

5.1 Formulation

A 3 layer DBM is defined by the energy function

E(v,h1,h2,h3) = −vTW 1h1 − (h1)TW 2h2 − (h2)TW 2h3 (5.1)

p(v,h1,h2,h3) =
1

Z
exp−E(v,h1,h2,h3) (5.2)

the conditional distributions over each of the layers are given by1

p(vi = 1|h1) = σ
(∑

j

W 1
ijh

1
j

)
(5.3)

p(h1
j = 1|h2,v) = σ

(∑

i

W 1
ijvi +

∑

k

W 2
jkh

2
k

)
(5.4)

1We ommitted the biases for clarity of presentation.

30

(a) Deep Belief Network (b) Deep Boltzmann Machine

Figure 5.1: DBN has undirected connections on top and directed connections on the bot-

tom. DBM have directed connections everywhere.

p(h2
k = 1|h3,h1) = σ

(∑

j

W 2
jkh

1
j +

∑

l

W 3
klh

3
l

)
(5.5)

p(h3
l = 1|h2) = σ

(∑

k

W 3
klh

2
k

)
(5.6)

Approximate MLE learning as described in section 3.2.2 can be used to learn the model.

However, unlike the RBM, the first term in MLE learning, which involves the calculation

of data-dependent expectations, is no longer independent given the visible nodes due to

the multiple hidden layers. For DBMs, we can use a variational approach to estimate the

data-dependent expectations. For any value of the parameters θ, we can decompose the

log-likelihood of the data as

log p(v; θ) =
∑

h

q(h|v;µ)
[
log p(v,h; θ)

]
+H(q) +KL(q(h|v;µ)||p(h|v; θ)) (5.7)

≥
∑

h

q(h|v;µ)
[
log p(v,h; θ)

]
+H(q) (5.8)

31

where we have used h above to include all hidden nodes. In variational learning, we first

optimize µ to tighten the lower bound of log p(v; θ). As a consequence of the decomposition,

it also means we minimize the Kullback-Leibler divergence between the approximating and

true posteriors. For simplicity, we take the approximating posteriors to be q(h|v;µ) =∏Nh

j=1 q(hj), where µj ≡ q(hj = 1). We can solve for µj by running mean-field fixed-point

equations to convergence

µ1
j ← σ

(∑

i

Wijvi +
∑

k

Wjkµ
2
k

)
(5.9)

µ2
k ← σ

(∑

j

Wjkµ
1
j +

∑

l

Wklµ
3
l

)
(5.10)

µ3
l ← σ

(∑

k

Wklµ
2
k

)
(5.11)

where the superscript of the µ’s indicate the layer of the hidden nodes. Empirically, 25

iterations of this mean-field updates guarantees convergence. Additionally, damping by

using a momentum term can also help convergence. After finding variational parameters

µj, learning proceeds by optimizing θ while fixing µ. This is accomplished by using the

SAP (section 3.2.2) algorithm to sample from the model’s expectation.

By using mean-field for approximating p(h|v), the assumption is that the true condi-

tional distribution is unimodal. This assumption is often not a bad one to make when the

task at hand is interpretation of visual or auditory data. It is also advantageous for h to

be unimodal if the system requires further processing [60], [23].

In order for the DBM to work in practice, a pretraining step is also required similar

to DBNs. The pretraining is also greedy and layerwise and will initialize the weights at

a better location before approxmiate MLE learning. In addition, sparsity constraints2 on

the hidden layers are also found to be critical for DBM learning.

5.2 Pros and cons

The main advantage of the DBM is that the conditional distribution of any intermediate

layer is a function of both the bottom layer and the top layer. In contrast, the approximate

inference procedure for DBN is only a function of the bottom layer. This fact allows for

2Typically the hidden layers nodes are encouraged to have an average activation between 0.1 and 0.2.

32

the top-down influence to alter the purely bottom-up inputs and allows for the posterior

inference to take into account the correlation between hidden nodes. Empircally, [60] has

demonstrated that DBMs is slightly better than DBNs on MNIST and NORB, both for

generative modeling and discriminative performance.

The main disadvantage of the DBM is the computational resources used during learning

and influence. Let n be the number of mean-field iterations needed during variational influ-

ence, that’s n times more expensive than the approximate inference computation needed for

a DBN. This problem can be significantly alleviated by using separate weights to “predict”

the variational parameters µ [63].

When the DBM is turned into a discriminative network for classification, a larger

concatenated new visible layer is created by adding all the nodes in h2. The new visible

layer inputs into h1 and up to the top layer. An additional multinomial node is added and

backpropagation can calculate the gradient needed to optimize the entire network. The

disadvantage of this formulation is that the size of the network has increased by the first

three node layers. Figure 5.2 shows a diagram of the DBM modified for discriminative

fine-tuning.

33

Figure 5.2: For classification, a DBM can be modified by adding the visible input to the

H2 layer to make a concatenated new visible layer. The new input is then fed to H1 and

subsquently onto the top layer H3. The node on top is a multinomial node used for 1-of-K

coding. During optimization, only the weights above the new visible layer is modified.

This perculiar formulation uses the bidirectional connectivity of the DBM to achieve more

robust inference for H1 nodes.

34

Chapter 6

Sparsely Connected DBN

In this chapter, we define and evaluate a modified version of DBN which is more robust to

noise. We show that the two modifications implemented drastically improve the recognition

accuracy on MNIST images with occlusions and random noise.

6.1 Introduction

We have seen in chapter 4 that DBNs are hierarchical generative models with many latent

variables. It has been shown that they can effectively model high dimensional visual image

data [23].

However, DBNs model all the pixels in the visible layer probabilistically, and as a

result, are not robust to images with “noise” which are not in the training set. We include

occlusions, additive noise, and “salt” noise in our definition of noise here.

To improve the robustness of the DBN, we introduce a modified version of the DBN

termed a sparse DBN (sDBN) where the first layer is sparsely (and locally) connected1.

This is in part inspired by the properties of the human visual system. It is well-established

that the lower cortical levels represent the visual input in a local, sparsely connected

topographical manner [25]. We show that a sDBN is more robust to noise on the MNIST

(see Appendix A.1) dataset with noise added to the test images. We then present a

1This is not to be confused with the sparsity constraints in section 3.5. The spasity constraint is a

constraint on the activation of hidden layer nodes over time, whereas here sparse refers to the sparse weight

connections.

35

denoising algorithm which combines top-down and bottom-up inputs to “fill in” the subset

of hidden layer nodes which are most affected by noise. [35] proposed that the human

visual cortex performs hierarchical Bayesian inference where “beliefs” are propagated up

and down the hierarchy. Our attention-esque top-down feedback can be thought of as

a type of “belief” that helps to identify object versus non-object (noise) elements in the

visible layer.

6.2 Related Work

Sparsely connected weights have been widely used in visual recognition algorithms [14, 31,

65] (see also section 2). Most of these algorithms contain a max-pooling stage following

a convolutional stage to provide a certain amount of translational and scale invariance.

Recently there has been work combining the convolutional approach with the DBN [32, 48].

These efforts enforce sparse connections similar in spirit to those enforced here. However,

unlike those methods, our main motivation is not to provide translational invariance and/or

to reduce the number of model parameters, but rather to diminish the effect of noise on

the activations of hidden layer nodes. In addition, our algorithm does not require weight

sharing (applying the same filter across an image), which would increase the total number of

hidden layer nodes and increase the computational complexity of our denoising algorithm.

[75, 59] also learned MRFs to model the prior statistics of images for denoising and

inpainting. Whereas those methods model at the pixel level and explicitly specify a noise

likelihood, our proposed algorithm uses the prior over the first hidden layer to estimate the

subset of nodes which are affected by noise. This allows the method to be agnostic about

the noise likelihood distribution.

We will evaluate our methods on the widely-used MNIST handwritten digit classi-

fication task, where the state-of-the-art performance is currently 0.53% [26] for domain

knowledge based methods and 0.95% [60] for permutation invariant methods.

6.3 sDBN

While the first layer weights of a standard DBN are somewhat spatially localized, they are

not forced to be zero past a given radius. Consequently, the small but significant weight

36

values affect a given hidden node’s activation if any noise are present anywhere in the

image. For example, figure 6.1 shows some filters of a standard RBM trained on MNIST.

Figure 6.1: Standard filter for a DBN trained on MNIST.

Classification results are likewise affected, making DBNs not robust to various types of

noise. For instance, figure 6.2 gives examples of noisy images and their respective classi-

fication errors of a DBN. This DBN was trained using the up-down algorithm, according

to [23], followed by 30 epochs of discriminative optimization and achieves 1.03% test error

on the clean images. However, error dramatically increased under various types of noise.

These particular kinds of noise were chosen to reflect various possible sources of error

for which biological visual systems are robust. The first is the simple introduction of a

border that does not overlap with the foreground of the digits. The second is the occlusion

by a rectangular block random in size and location. The third is the corruption of the

images by random noise.

Figure 6.2: DBNs fail to be robust to various noise. The noise includes added borders,

randomly placed occluding rectangles, and random pixels toggled to white.

The poor classification performance on the noisy test images is expected since a DBN

models the joint probability of 28x28 = 784 pixels, all with black borders. Therefore,

test images with white borders are not probable and the ensuing classification is not very

37

accurate. Of course, when images with these variations were to added to the training set,

we obtained better recognition results. However, due to the impractical nature of adding

all possible noise that might exist in a real world environment, it is desirable to have a

DBN which is more robust to out-of-sample test data before resorting to enlarging the

training set.

6.3.1 Why Sparseness

We use V , H1, H2, H3 to refer to each of the layers (see figure 6.5), and V = v to denote

a specific activation of layer V . We will also use q(·) to refer to the approximate posterior

computed by the recognition weights. Specifically, q(h1|v) = σ
(
(W1

rec)
Tv + c

)
and σ(·) is

the logistic function.

We improve the robustness of the DBN by first reducing the effect that a noisy image

V = ṽ has on the hidden layer activation q(h1|ṽ). We accomplish this by specifying

sparse connections between each hidden layer node and a spatially local group of visible

layer nodes in the first RBM. We use sRBM to refer to this even more restricted type of

RBM. For example, each h1 node is randomly assigned a 7x7 receptive field (RF), and

it has no connections to visible nodes outside of its RF. With local connections, noise

or occlusion in one subset of V nodes will only affect a subset of H1 nodes. The main

motivation here is to reduce the change between H1 activation given the noisy image,

q(h1|ṽ), and H1 activation given the original image, q(h1|v). For example, when block

occlusion were added to random test images, figure 6.3(a) shows the histogram of the

difference in h1 activation under a standard DBN. Figure 6.3(b) plots the difference under

a sparsely connected DBN. Note that more hidden nodes have lesser change in activation,

leading to more robust recognition.

6.3.2 Sparse RBM Learning

Section 3 discussed in detail the training and evaluation of a RBM. When learning a sRBM,

the only modification needed is to zero out the weights connecting each hidden node to

visible nodes that are outside of its RF:

∆Wij ∝ (Edata[vihj]− Erecons[vihj])W̃ij (6.1)

38

(a) (b)

Figure 6.3: Plot of histogram of absolute difference in hidden node activations for (a)

standard DBN and (b) sparsely connected DBN, when occlusion is applied to digit images.

where

W̃ij =

{
1 if vi is in hj’s RF

0 otherwise
(6.2)

In our experiments, we used 25 step CD for sRBM training. Additional computational

efficiency can be obtained by using sparse matrix operations for learning and inference.

6.3.3 Sparse RBM Evaluation

As the RF approaches 28x28 (the dimension of the visible layer for the MNIST digits), the

sRBM approaches the standard RBM. Using a 7x7 RF instead of the standard 28x28 re-

duces the number of weights for the first layer RBM by a factor of 16. Certainly a concern

is whether or not this sRBM would still be a good generative model of the data. To find

the average log probability of the test set, we estimated the normalization constant Z(θ)

for each sRBM by using the Annealed Importance Sampling algorithm [47], section 3.3.

Following [61], we performed 100 annealing runs using around 15,000 intermediate distri-

butions.

Table 6.1 shows the estimated average test log probability for various sparse RBMs. It

also shows the error rate of the DBNs built from these sparse RBMs (section 6.3.4). The

log probability is positively correlated with RF size and the number of hidden layer nodes.

While not shown on this table, it is worth noting that the best 12x12 sRBM achieves a

39

Table 6.1: Sparse RBM and sparse DBN evaluations

RF size Number of hidden nodes Avg. test log probability sDBN recognition error

7x7 500 -94.62 1.19%

1000 -92.50 1.20%

1500 -91.77 1.60%

10x10 500 -91.53 1.17%

1000 -90.16 1.24%

1500 -89.78 1.55%

12x12 500 -90.30 1.18%

1000 -89.72 1.16%

1500 -89.56 1.63%

log probability that is only about 3 nats below an equivalently trained standard RBM. In

addition, the worst sRBM considered here (7x7, 500 hidden nodes), is still about 11 nats

better than a standard RBM trained using 3-step CD [61]. Figure 6.4 shows some of the

filters learned by a 7x7 sRBM on MNIST.

Figure 6.4: Filters from a sRBM with 7x7 RF learned on MNIST.

This quantitative analysis shows us that the generative modeling abilities of a sRBM

is positively correlated with the number of hidden nodes and RF size. It also shows that

despite having only 1/16 the number of weights of a regular RBM, it is still pretty good

at modeling the input data. The sDBN recognition error is the recognition error after

forumlating the sparse DBN, which we will discuss in the next section.

40

6.3.4 Sparse DBN

Chapter 4 showed how a DBN can be constructed with a hierarchical series of RBMs. We

train our 2nd level RBM in the standard way and allow for full connectivity between layers

H1 and H2. A greedy layer-wise training procedure is used where q(h1|v) is treated as the

visible layer data for the 2nd level RBM. A sDBN is then formed by stacking together the

RBMs and fine tuning the entire network using the up-down algorithm [23], section 4.2.1.

Alternatively, we can convert the sDBN into a deterministic feedforward network and

minimize the cross-entropy error [3]. An example of such a network is shown in figure 6.5,

where the the rec weights, W1,2,3,4
rec form a feedforward classifier. Layer Z, W2

denoise and

W1
gen are part of the denoising process described in section 6.4.

Output

Figure 6.5: A deep network for feedforward recognition with denoising. Upward arrows

are feedforward recognition weights, the downward dashed arrow is the generative weight,

and the bidirectional dashed arrow is the weight of the denoising RBM. W1
gen is part of

the DBN and is used to calculate p(v|h1). If the network is not a DBN we can easily learn

W1
gen to predict the data v given h1.

Specifically, the sDBN in our experiments has the same size and depth as the DBN

41

in [23], but its first layer is sparse with 7x7 RFs. It is fine-tuned using the up-down

algorithm for 300 epochs before discriminatively optimized for 30 more epochs2. Figure 6.6

shows the recognition errors on the noisy test set of the sDBN using only feedforward

weights. Significant improvements can be seen for all types of noise.

Figure 6.6: A sparse DBN is more robust to noise than the standard DBN, and only slightly

worse on the clean images.

6.4 Probabilistic Denoising

When noise is present during recognition, the affected H1 nodes increase the error rate.

This is an out-of-sample problem, where an affected q(h1|ṽ) have low probability as defined

by the training set. Classification boundaries in regions of state space with low probability

cannot be trusted due to the lack of training data in those regions. Therefore, we seek to

reduce the error rates by denoising h1 using a generative model of q(h1|v)3.

We accomplish this by learning a separate denoising RBM that uses q(h1|v) as its

visible data4. W2
denoise are the weights of this new RBM, which has Z (with 1000 nodes)

as its hidden layer (figure 6.5). This RBM’s energy function and the marginal of h1 are

E(h1, z) = −dTh1 − eTz− (h1)TW2
denoisez (6.3)

p(h1) =
p∗(h1)∑

h1,z exp−E(h1,z)
=

∑
z
exp−E(h1,z)

∑
h1,z exp−E(h1,z)

(6.4)

2We use Conjugate gradient method to minimize the cross-entropy error with training data divided

into batches of 5K each.
3While denoising can also be done at the V layer, we prefer H1 due to its more abstract representation

of the input and smaller dimensionality.
4When the sDBN is fine-tuned as a generative model by the up-down algorithm, we would ideally want

to denoise using the p(h1) defined by all the higher layers of the sDBN. However, we can only approximate

the lower variational bound on log p∗(h1) by drawing samples from q(h2|h1) (see [61]). In contrast, a

separate denoising RBM allows its model of log p∗(h1) to be calculated exactly.

42

Note that log p∗(h1) can be calculated analytically due to the bipartite nature of the RBM.

We trained W2
denoise for 600 epochs by using 100 persistent Markov chains to estimate the

model’s expectations as described in section 3.2.2.

The idea of denoising before classification can be understood schematically as depicted

in figure 6.7, which shows a plot of noisy images above their unnormalized log probability

log p∗(h1). Not surprisingly, highly noisy test images have much smaller log p∗(h1) and

would be farther away from regions of high density. The dashed arrows indicate how we

would like to denoise a noisy image by moving it (not necessarily one shot) to a region in

state space of higher probability, putting it in a better region for classification.

Figure 6.7: A hypothetical state space with the dark band being the region of high prob-

ability. See text for details.

6.4.1 Denoising via Unclamping

If we know which of the nodes in H1 are affected, we can denoise by “filling in” their values

by sampling from the distribution conditioned on all other H1 nodes in the denoising RBM.

For example, in figure 6.8, the two left most nodes of H1 are unclamped while the rest are

clamped.

Let us use ψj ∈ {0, 1} = 1 to denote the unclamping of node h1
j and ψj = 0 the

43

Figure 6.8: The shaded nodes are clamped. Denoising is performed by running block Gibbs

sampling on the unclamped nodes.

clamping of h1
j . We run 50 iterations of block Gibbs sampling to sample H1 nodes using

p(zk|h
1) = σ

(∑

j

W 2
jkh

1
j + ek

)
(6.5a)

p(hj|z) = σ
(∑

k

W 2
jkzk + dj

)
(6.5b)

where we only use 6.5b to update the unclamped (ψj = 1) nodes. After denoising, we

denote the H1 activation as g. Figure 6.9 shows denoised results v̂ = σ
(
W1

geng+b
)

using

the above method when the noisy hidden nodes or ψj are explicitly specified. It is clear

that if the noisy nodes are correctly identified, correct classification will be much easier.

Figure 6.9: The first row are occluded images, the second row are the denoised results, and

the third row are the original images.

6.4.2 Determining Which Nodes to Unclamp

During recognition, a DBN does not know which H1 nodes to unclamp. We present here

an iterative denoising algorithm which uses the gradient of log p(h1) of the RBM defined in

44

eqs. 6.3 and 6.4 to determine which hidden layer nodes to unclamp. Denoting h1
0 = q(h1|ṽ)

to be the initial H1 activation at time step 0, we estimate ψ0 and compute g0. Setting

h1
1 = g0, we repeat this process for several time steps.

The discrete gradient of the log probability with respect to ψj at time step t is given

as:

∇ψj
log p(h1

t) = log p∗(h̃1
\j,t)− log p∗(h1

t) (6.6)

which is evaluated at ψ = 0. We denote h1
\j to be the set of all nodes in H1 except h1

j .

h̃1
\j,t is h1

t with the j-th node replaced by p(h1
j = 1|h1

\j), which is given by

p(h1
j = 1|h1

\j) =
exp(dj)

∏Nz

k (1 + exp(φk +W 2
jk))

exp(dj)
∏Nz

k (1 + exp(φk +W 2
jk)) +

∏Nz

k (1 + exp(φk))
(6.7)

and

φ = (W2
\j)

Th1
\j + e (6.8)

where W2
\j is W2

denoise omitting the j-th row, e is the bias to layer Z, d is the bias to

H1, and Nz is the number of nodes in layer Z.

We can then estimate which of the H1 nodes to unclamp by using a threshold

ψj,t =

{
1 if ∇ψj

log p(h1
t) > η(t)

0 otherwise
(6.9)

where η(t) is a constant decreasing with time. ψj,t is then used in the calculation of gt, as

described in section 6.4.1. We update the hidden layer activations in the next time step to

h1
t+1 ←− gt (6.10)

The standard Bayesian approach to denoising is to specify a prior over p(h) and then

to find the MAP estimate of p(h|h̃), where h̃ is the noisy H1 activation. In contrast, we try

to optimize log p(h) with respect to the parameters ψ. In our algorithm, unclamping node

h̃j is similar to specifying the noise likelihood to be flat for node j: p(h̃j|hj) ∝ constant;

while clamping node hj is similar to specifying the Dirac delta for the noise likelihood of

node j: p(h̃j|hj) = δ(h̃j − hj).

45

6.4.3 Combining with Visible Layer Inputs

Having obtained a denoised gt, we can simply use gt as our H1 activation and compute

q(h2|gt), q(h3|h2), etc. all the way up to the output for classification. However, it is much

better if we also take into account the bottom-up inputs from V . This idea comes naturally

for the DBM (section 5), where due to the fact that H1 has undirected connections from

both V and H2, p(h1|h2,v) involves both v and h2.

Since V layer nodes contain noise, we do not want to use the unreliable bottom-up influ-

ences directly. Instead, we would like to attenuate the noise part of V with an attention-like

multiplicative feedback gating signal u = [0, 1]. The attenuated bottom-up influence would

be

q(h1|v;u) = σ
(
(W1

rec)
T(v ⊙ u) + c

)
(6.11)

where we denote ⊙ to be element-wise multiplication. v⊙u is the multiplicative interaction

and partly inspired by visual neuroscience.

Recently, there has been mounting neurophysiological evidence for considerable atten-

tional modulation of early visual areas such as V1 [53, 6]. fMRI studies of human subjects

performing recognition tasks with distractors have suggested that attentional modulation

could be a delayed feedback to V1 from higher cortical areas [40]. Attention can also

be stimulus dependent and has been shown to affect visual processing both spatially and

feature-specifically [73]. In one interesting study, [29] showed that neurons in Macaque V1

responded better to texture in the foreground than to similar textures in the background

30-40 ms after onset of activation. The nonlocal nature and temporal latency of reponse

differences strongly suggest feedback from higher visual areas.

By using u in our algorithm, we introduce a very simple method for dealing with noisy

V layer nodes. To compute u we use5

u = 1− |v − p(v|g;W1
gen)| (6.12)

where W1
gen is the first layer’s generative weights. To combine the modulated bottom-up

input with the denoised activation g, we compute a weighted average based on the amount

of noise in the RF of a hidden node

gcombined = q(h1|v;u)⊙
uTW̃

γ2
+ g ⊙ (1−

uTW̃

γ2
) (6.13)

5 We can interpret ui to be p(vi = noise|g).

46

where γ is the size of the RF and W̃ is defined by eq. 6.2. To update our hidden layer

activation in the next time step, we modify eq. 6.10 to be

h1
t+1 ←− gcombined,t (6.14)

The entire training and inference process for the sDBN is summarized in Algorithm 3.

Algorithm 3 Sparse DBN Training and Inference

Learning:

1: Learn sRBM using eq. 6.1.

2: Greedy pretraining of higher layer RBMs and stack to form a sDBN.

3: Fine-tune using the up-down algorithm.

4: Convert the sDBN into a discriminative classifier and minimize cross-entropy error.

5: Learn W2
denoise using q(h1|v) as input.

6: Learn W1
gen by minimizing cross-entropy between the data and p(v|q(h1|v)).

Recognition:

1: For noisy input ṽ, compute h1
0 = q(h1|ṽ).

for t = 1 to n do

2: Estimate ψt using eq. 6.9

3: Gibbs sampling to obtain gt using eq. 6.5

4: Combine with bottom up input to obtain gcombined,t using Eq. 6.13

5: h1
t+1 ←− gcombined,t

end for

6: Compute q(h2|h1
n+1), then feedforward to output.

6.4.4 Denoising Results

In our experiments, we used 6 denoising iterations (t = 1 to t = 6) with a linearly decaying

η(t) from 1.0 to 0.0. Results were similar for other η(t) and number of iterations. Fig-

ure 6.10 shows the intermediate denoising results. The combination of the top-down and

bottom-up signals is vital to good results. Besides the aforementioned types of noise, we

also experimented with pepper noise and occlusions by crossed lines.

47

(a) Successful examples

(b) Failed examples

Figure 6.10: Denoised results on various types of noise. The first column from the left con-

tains the original images, the second column contains images with noise added. Subsquent

columns represent the denoised images from t = 1 to t = 6.

48

6.4.5 Recognition Results

For recognition, we performed 10 iterations of denoising with η(t) decaying from 2.0 to

0.2 for each test image. After denoising, we proceeded with the feedforward recognition

by computing q(h2|g10) and feedfoward to the output using the rec weights. In table 6.2,

we summarize the error rates on MNIST for all the networks. The 7x7+denoised line has

the error rates found after denoising. Denoising provides a large improvement over the

accuracy of the sDBN for noisy images. However, the denoising sDBN is slightly worse

than standard DBN on the clean images. This effect is hard to avoid since denoising

seeks to increase probability of h1 defined over all 10 digits and may cross classification

boundaries.

For comparison, we also trained a standard DBN and a 7x7 sDBN with noise added

evenly to the 60K MNIST training set. They are fine-tuned with 300 epochs of up-down

algorithm followed by 30 epochs of discriminative optimization. The results show that

sparse connections are better for recognition in this case as well. It is also revealing that in

comparison to the denoising sDBN (trained only on clean images), the error rates is only

lower on the block occluded test images.

Table 6.2: Summary of recognition results

Network clean border block random

28x28 DBN 1.03% 66.14% 33.78% 79.83%

7x7 sDBN 1.19% 2.46% 21.84% 65.50%

7x7+denoised 1.24% 1.29% 19.09% 3.83%

28x28+noise 1.68% 1.95% 8.72% 8.01%

7x7+noise 1.61% 1.77% 8.39% 6.64%

6.4.6 MNIST Variations

We also tried our denoising algorithm on a tougher dataset known as the MNIST Variations

dataset. This dataset contains MNIST digits (possibly rotated) pasted onto random noise

and random image backgrounds. See Appendix A.2 for more details. For our experiments,

we used the mnist-back-rand and mnist-back-image subsets. Examples of these digits with

variations are in figure 6.11.

49

(a) mnist back random

(b) mnist back image

Figure 6.11: Examples of mnist-back-rand and mnist-back-image digits.

The MNIST Variation datasets have smaller training set of 10,000 and a larger testing

set of 50,000. We trained a [784-500-500-2000-10] sDBN with 7x7 RF the same way as

outlined in algorithm 3 with one exception. Due to the extreme variation in the back-

grounds of the test digits, it is necessary to finetune W 1
rec to predict for the activation of

H1 when the input is a clean digit: q(h1|v). Specifically, after obtaining W 1
rec via algo-

rithm 3, we calculate the approximate posterior q1(h
1|v) for the training set. We then add

either random noise or an image patch to the background of the training set and form a

noisy training set. Likewise we obtain the approximate posterior given the noisy training

set q2(h
1|ṽ). We then minimize the cross-entropy between q1 and q2 by finetuning W 1

rec.

We finetuned W 1
rec using Conjugate gradient method for 30 epochs with a minibatch size

of 5000 training images.

Figure 6.12 shows the denoising results for various digits on random backgrounds.

50

Figure 6.12: Denoising results.

Figure 6.13 shows the denoising results for various digits on image patch backgrounds.

Figure 6.13: Denoising results.

After denoising the activation on H1, we can feed the activations forward for recog-

nition. For mnist-background-rand dataset, our method achieves an error rate of 4.48%,

which is significantly better than the state-of-the-art 6.73% reported with discriminative

DBNs [30] and 6.36% for multilayer Kernel Machines [7]. For mnist-background-image

dataset, our method achieves an error rate of 14.03%, which is comparable to the 14.34%

for the discriminative DBNs and better than the 18.52% for the multilayer Kernel Ma-

chines.

51

Our method, however, takes longer time for inference because of denoising, averaging

around 1 second in Matlab for each test image.

6.5 Discussion

It should be noted that the specific approach taken here does not depend on our adoption

of the DBN. That is, if the network is not a DBN fine-tuned by the up-down algorithm,

W1
gen can be learned by maximum likelihood estimation. Consequently, this denoising

algorithm can be easily adapted to any deep feedforward classifier as long as the first layer

has spatially localized receptive fields.

There are several avenues for extending the present model. For one, human visual

recognition of partially visible objects is more accurate if the occluding object can be

identified [15, 27]. In our experiments, when the block occluded region is known, denoising

is much better. Compare the results of the block occlusion from figure 6.9 with those of

failed examples from figure 6.10. Accordingly, recognition error is reduced from 19% to

10% for the block occlusion noise test set. We hypothesize that the identification of the

occluder is similar to specifying ψ. Therefore, an important avenue for future work is in

the improvement of estimating the occluding object or ψ.

Currently, denoising takes place on the hidden layer. It is also possible to denoise in

the visible layer. Even though preliminary results of applying our denoising algorithm on

the visible layer alone suggest that it is quite difficult, the combination of denoising on

both the hidden and visible layers may give better results. Denoising at higher layers is

also possible. However, due to the fact that the RFs of the first hidden layer are chosen

randomly, H1 is not topographically ordered. It is certainly possible to organize H1 to be

topographical and enforce sparse connections to H2, thereby making denoising h2 effective.

52

Chapter 7

Conclusions and Future Work

The main contribution of this thesis is the combination of filter localization and a denoising

algorithm which improves recognition performance of the DBN when the test images are

noisy. It is important to be robust to noise as recognition in the unconstrained environment

often encounters noise. We introduced an algorithm which is capable of denoising a test

image by combining top-down influences with bottom-up inputs. Our denoising algorithm

uses the log-probability to estimate which nodes should be unclamped. Our results show

that for the clean, border and random MNIST categories, recognition after denoising is

actually better than a similar DBN trained with noisy examples included in the training

set. On the MNIST Variations dataset, our results are better than the current state-of-the-

art which use purely discriminative approaches. Lastly, we stress that the denoising itself

can be adapted to a broad class of deep feedforward networks, making such an approach

likely to be useful for other types of classifiers.

Given these encouraging results, future work is needed to empirically test this approach

for other object datasets. Theoretical justifications for why denoising before recognition

can be better than training with noisy data is also much needed and may guide further

research. We outline some more specific research directions below:

• In this thesis, denoising is done by adding an additional RBM layer and the combina-

tion of bottom-up and top-down inputs is rather ad hoc and engineered. In contrast,

the conditional probability of a hidden layer in a DBM is defined to be the total

activation from both the bottom and top. Therefore, the introduction of a denoising

algorithm on the DBM is more probabilistically sound.

53

• When there is no noise in the environment, a simple feedforward step is good enough

for accurate classification, while for test images with highly complicated backgrounds,

many denoising iterations are needed. There is a tradeoff between recognition accu-

racy and speed. For optimum performance, we need an automatic way of determining

if and for how long to apply denoising before recognition.

• In this work, noise is defined to be either an occlusion or random point noise. Other

types of variations such as rotations, translations, and deformations are ignored.

Future work will need to address how to “denoise” these other types of variations

which also make recognition hard.

54

APPENDICES

55

Appendix A

MNIST Dataset

A.1 MNIST

MNIST database [31] is a freely available dataset of handwritting digits from 0 to 9. It

contains a training set of 60,000 28x28 greyscale images, and 10,000 test examples. It is

modified from the larger set available from NIST. Digit foregrounds are white on top of

black backgrounds. See figure A.1 for a sample of 100 random images from the dataset.

Examples from each digit classes are roughly split evenly. Since the test set is fixed, there

is no ambiguity to reported the recognition error rates. The MNIST database can be

downloaded at: http://yann.lecun.com/exdb/mnist/.

56

http://yann.lecun.com/exdb/mnist/

Figure A.1: Random examples from the MNIST dataset.

A.2 MNIST Variations

Almost all machine learning algorithms can achieve an error rate < 2% on the standard

MNIST. To raise the bar, the more challenging MNIST Variations datasets was created.

MNIST Variations datasets [30] modified the original MNIST database by adding factors

of variations. It applied 4 different variations to the standard MNIST:

1. mnist-rot - Digits are rotated by an angle uniformly taken from [0, 2π].

2. mnist-back-rand - Uniform random noise is added to the background of digits.

3. mnist-back-image - A patch of greyscale image is added to the background of digits.

4. mnist-rot-back-image - Digits are rotated and a background image is added.

57

An example of images in the dataset is displayed in figure A.2. The MNIST Varia-

tions dataset can be downloaded from: http://www.iro.umontreal.ca/~lisa/twiki/

bin/view.cgi/Public/MnistVariations.

Figure A.2: Random examples from the MNIST Variations dataset [30].

58

http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/MnistVariations
http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/MnistVariations

Appendix B

Probabilistic Learning

In this appendix, we review the basic formulas of probabilistic learning, and some com-

monly used terms. The information measure of discrete random variable in nats is:

h(x) = − log p(x) (B.1)

Entropy or average amount of information of a random variable:

H(x) = −
∑

x

p(x) log p(x) (B.2)

For continuous variables x the differential entropy is used:

H(x) = −

∫

x

p(x) log p(x)dx (B.3)

The conditional entropy of y given x:

H[y|x] = −

∫

y

∫

x

p(y, x) log p(y|x)dxdy (B.4)

The cross-entropy between two distribution p and q:

H(p, q) = Ep[− log q(x)] = −

∫

x

p(x) log q(x) (B.5)

Relative entropy or KL divergence between p : p > 0 and q : q > 0 for all x:

KL(p||q) = −

∫

x

p(x) log q(x)dx−
(
−

∫

x

p(x) log p(x)dx
)

(B.6)

=

∫

x

p(x) log

{
p(x)

q(x)

}
dx (B.7)

59

This term can be thought of as the average additional amounts of information needed to

transmit x if we use q instead of the correct p. KL(p||q) ≥ 0 and KL(p||q) 6= KL(q||p) in

general. The cross-entropy is related to the KL-divergence by:

H(p, q) = KL(p||q) +H(p) (B.8)

If p is fixed during learning (not a function of any parameters), then minimizing cross-

entropy or KL-divergence with respect to some parameters are equivalent.

B.1 Supvervised Learning

In supervised learning, we are interested in learning a good conditional distribution p(t|x),

where x is our input data and t is our target random variable. We denote y = f(x; θ) to be

the parameter of p(t|x) that our function predicts. Given a dataset of N iid. observations

X = {x1, ..., xN}, and their respective target values t = {t1, ..., tN}, we seek to minimize

the average KL-divergence between training data and our model’s conditional distribution:

N∑

i=1

KL(p̃(t|xi)||p(t|xi; θ)) (B.9)

where p̃(t|xi) = δti(t) is the empirical data distribution and assigns a delta spike to the

target value of xi and zero everywhere else. Note the above equation can also be interpreted

as ∫

x

∫

t

p̃(t,xi) log
p̃(t|xi)

p(t|xi; θ)
= −

∫

x

∫

t

p̃(t,xi) log p(t|xi; θ) + const (B.10)

Since p̃ is fixed during learning, the minimization is also over the cross-entropy (CE) error:

LCE(θ) = −
N∑

i=1

∫

t

p̃(t|xi) log p(t|xi; θ) (B.11)

60

When we are given precise target values instead of the distribution p̃(t|xi), our loss function

becomes

LCE(θ) = −
N∑

i=1

∫

t

p̃(t|xi) log p(t|xi; θ) (B.12)

= −
N∑

i=1

∫

t

δti(t) log p(t|xi; θ) (B.13)

= −
N∑

i=1

log p(ti|xi; θ) = LMLE(θ) (B.14)

This is exactly equivalent of maximizing the log-likelihood of the target values with respect

to θ. The formulation with KL-divergence is more general as it allows for the training set

to contain target distribution instead of only labels.

B.2 Unsupervised Learning

A common objective for unsupervised learning is the marginal distribution log p(x), where

x is the input data. Unsupervised learning do not require an output labels ti. Given a

dataset of N iid. observations X = {x1, ..., xN}, The CE objective is

LCE(θ) = −
N∑

i=1

∫

t

p̃(xi) log p(xi; θ) (B.15)

Since p̃(xi) = 1
N

∑N

i δxi
(x), the MLE objective to maximize is

LMLE(θ) = log p(X; θ) =
1

N

N∑

i

log p(xi; θ) (B.16)

Most model contain latent variables to allow for a more complex model of the input p(X; θ).

We calculate the gradient of the log-likelihood for optimization:

61

∂ log p(X; θ)

∂θ
=

1

N

N∑

i

∂

∂θ

{
log

∑

h

p(x,h; θ)
}

=
1

N

N∑

i

∑

h

1

p(x; θ)

∂p(x,h; θ)

∂θ

=
1

N

N∑

i

∑

h

p(h|x; θ)
∂ log p(x,h; θ)

∂θ
(B.17)

Intuitively, if we can sample from the posterior of this latent model and we can calculate

the derivative of the joint log-likelihood, then learning becomes easy. For the Restricted

Boltzmann Machine, the derivative of the log-likelihood is hard to calculate 3.12. For

Gaussian Mixture Models, although both term is easy calculate, the EM algorithm is more

powerful for learning. The idea is that there is a closed-form solution for maximizing

log p(x,h; θ). By using an approximate distribution instead of p(h|x; θ), we have a lower

bound on the log-likelihood objective, and we can use the closed-form solution to maximize

this lower bound instead.

62

Bibliography

[1] David H. Ackley, Geoffrey E. Hinton, and Terrence J. Sejnowski. A learning algorithm

for boltzmann machines. Cognitive Science, 9:147–169, 1985. 12, 14

[2] H. B. Barlow. Single units and sensation: A neuron doctrine for perceptual psychol-

ogy? Perception, 1:371–394, 1972. 21

[3] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training of

deep networks. In Adv. in Neural Information Processing Systems 19, pages 153–160,

2007. 41

[4] Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards ai. In L. Bottou,

O. Chapelle, D. DeCoste, and J. Weston, editors, Large-Scale Kernel Machines. MIT

Press, 2007. 1, 6

[5] M. Brown and D. G. Lowe. Automatic panoramic image stitching using invariant

features. International Journal of Computer Vision, 74(1):59–73, August 2007. 8

[6] E. A. Buffalo, P. Fries, R. Landman, H. Liang, and R. Desimone. A backward progres-

sion of attentional effects in the ventral stream. Proceedings of the National Academy

of Sciences, 107(1):361–365, Jan. 2010. 46

[7] Youngmin Cho and Lawrence K. Saul. Kernel methods for deep learning, 2009. 51

[8] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models. IEEE

Trans. Pattern Analysis and Machine Intelligence, 23(6):681–685, June 2001. 9

[9] Dennis DeCoste, Bernhard Schlkopf, and Nello Cristianini. Training invariant support

vector machines. Machine Learning, 46:161–190, 2002. 4

63

[10] James J. DiCarlo and David D. Cox. Untangling invariant object recognition. Trends

in Cognitive Sciences, 11(8):333 – 341, 2007. 1

[11] David C. Van Essen and John H.R. Maunsell. Hierarchical organization and functional

streams in the visual cortex. Trends in Neurosciences, 6:370 – 375, 1983. 4

[12] Andrea Frome et. al. Large-scale privacy protection in google street view. IEEE

International Conference on Computer Vision, 2009. 6

[13] Arturo Flores and Serge Belongie. Removing pedestrians from google street view

images. In IEEE International Workshop on Mobile Vision, San Francisco, CA, June

2010. 6

[14] K. Fukushima. Neocognitron: A neural model for a mechanism of visual pattern

recognition. IEEE Trans. SMC, 13(5):826–834, 1983. 5, 36

[15] K. Fukushima. Recognition of partly occluded patterns: A neural network model.

Biological Cybernetics, 84(4):251–259, 2001. 52

[16] K. Grauman and T. J. Darrell. The pyramid match kernel: Discriminative classifica-

tion with sets of image features. In ICCV, pages II: 1458–1465, 2005. 8

[17] Karol Gregor and Gregory Griffin. Behavior and performance of the deep belief net-

works on image classification. CoRR, abs/0912.0717, 2009. 1

[18] Ralph Gross, Iain Matthews, and Simon Baker. Generic vs. person specific active

appearance models. Image and Vision Computing, 23(1):1080–1093, November 2005.

10

[19] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning

an invariant mapping. In Proc. Computer Vision and Pattern Recognition Conference

(CVPR’06). IEEE Press, 2006. 6

[20] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.

Springer, 2001. 4

[21] G. E. Hinton. Training products of experts by minimizing contrastive divergence.

Neural Computation, 14:1771–1800, 2002. 14

64

[22] G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. The wake-sleep algorithm for

unsupervised neural networks. Science, 268(5214):1158–1161, 1995. 27

[23] G. E. Hinton, S. Osindero, and Y. W. Teh. A fast learning algorithm for deep belief

nets. Neural Computation, 18(7):1527–1554, 2006. 1, 14, 24, 27, 28, 32, 35, 37, 41, 42

[24] G. E. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural

networks. Science, 313:504–507, 2006. 1, 20, 24, 28

[25] D. Hubel and T. Wiesel. Receptive fields of single neurons in the cats striate cortex.

Journal of Physiology, 148:574–591, 1959. 4, 35

[26] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-

stage architecture for object recognition? In Proc. Intl. Conf. on Computer Vision

(ICCV’09). IEEE, 2009. 6, 36

[27] J. S. Johnson and B. A. Olshausen. The recognition of partially visible natural objects

in the presence and absence of their occluders. Vision Research, 45(25-26):3262–3276,

Nov. 2005. 52

[28] Niklas Karlsson, Enrico Di Bernardo, James P. Ostrowski, Luis Goncalves, Paolo

Pirjanian, and Mario E. Munich. The vSLAM algorithm for robust localization and

mapping. In ICRA, pages 24–29. IEEE, 2005. 8

[29] V. A. Lamme. The neurophysiology of figure-ground segregation in primary visual cor-

tex. The Journal of neuroscience: the official journal of the Society for Neuroscience,

15:1605–1615, 1995. 46

[30] H. Larochelle, D. Erhan, A. C. Courville, J. Bergstra, and Y. Bengio. An empirical

evaluation of deep architectures on problems with many factors of variation. In Intl.

Conf. on Machine Learning, volume 227, pages 473–480, 2007. xi, 14, 51, 57, 58

[31] Y. LeCun, Y. Bengio, and P. Haffner. Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov. 1998. x, 5, 6, 36, 56

[32] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks

for scalable unsupervised learning of hierarchical representations. In Intl. Conf. on

Machine Learning, pages 609–616, 2009. 20, 36

65

[33] Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Y. Ng. Efficient sparse coding

algorithms. In NIPS, pages 801–808. MIT Press, 2006. 21

[34] Honglak Lee, Chaitanya Ekanadham, and Andrew Y. Ng. Sparse deep belief net model

for visual area V2. In John C. Platt, Daphne Koller, Yoram Singer, and Sam T. Roweis,

editors, NIPS. MIT Press, 2007. 20, 21

[35] T. S. Lee and D. Mumford. Hierarchical bayesian inference in the visual cortex.

Journal of the Optical Society of America, 20:1434–1448, 2003. 36

[36] P. Lennie. The cost of cortical computation. Current biology : CB, 13(6):493–497,

March 2003. 21

[37] David G. Lowe. Distinctive image features from scale-invariant keypoints. Interna-

tional Journal of Computer Vision, 60:91–110, 2004. 8

[38] G. Hinton M. Ranzato, A. Krizhevsky. Factored 3-way restricted boltzmann machines

for modeling natural images. Proc. of the 13-th International Conference on AISTATS,

2010. 1

[39] Ives Macedo, Emilio Vital Brazil, and Luiz Velho. Expression transfer between pho-

tographs through multilinear AAM’s. In SIBGRAPI, pages 239–246. IEEE Computer

Society, 2006. 9

[40] A. Mart́ınez, L. Anllo-Vento, M. I. Sereno, L. R. Frank, R. B. Buxton, D. J. Dubowitz,

E. C. Wong, H. Hinrichs, H. J. Heinze, and S. A. Hillyard. Involvement of striate and

extrastriate visual cortical areas in spatial attention. Natural Neuroscience, 2(4):364–

369, Apr. 1999. 46

[41] Iain Matthews and Simon Baker. Active appearance models revisited. International

Journal of Computer Vision, 60(1):135 – 164, November 2004. 9

[42] Roland Memisevic and Geoffrey E. Hinton. Learning to represent spatial trans-

formations with factored higher-order boltzmann machines. Neural Computation,

22(6):1473–1492, June 2010. 1

[43] Renqiang Min, Laurens van der Maaten, Zineng Yuan, Anthony Bonner, and Zhaolei

Zhang. Deep supervised t-distributed embedding. In International Conference on

Machine Learning, 2010. 1

66

[44] J. Mutch and D. G. Lowe. Multiclass object recognition with sparse, localized features.

In CVPR, pages I: 11–18, 2006. 5

[45] Vinod Nair and Geoffrey E. Hinton. 3-D object recognition with deep belief nets. In

Advances in Neural Information Processing Systems 22, 2009. 21

[46] R. M. Neal. Connectionist learning of belief networks. Artificial Intelligence, 56(1):71–

113, July 1992. 15, 24, 27

[47] R. M. Neal. Annealed importance sampling. Statistics and Computing, 11:125–139,

2001. 16, 18, 39

[48] M. Norouzi, M. Ranjbar, and G. Mori. Stacks of convolutional restricted boltzmann

machines for shift-invariant feature learning. In IEEE Conf. on Computer Vision and

Pattern Recognition, pages 2735–2742, 2009. 1, 36

[49] Bruno A. Olshausen and David J. Field. Emergence of simple-cell receptive field

properties by learning a sparse code for natural images. Nature, 381(6583):607–609,

June 1996. 21, 22

[50] Bruno A. Olshausen and David J. Field. Sparse coding of sensory inputs. Current

opinion in neurobiology, 14(4):481–487, August 2004. 21

[51] R. Osadchy, M. Miller, and Y. LeCun. Synergistic face detection and pose estimation

with energy-based model. In Advances in Neural Information Processing Systems

(NIPS 2004). MIT Press, 2005. 6

[52] S. Osindero and G. E. Hinton. Modeling image patches with a directed hierarchy of

Markov random fields. In Adv. in Neural Information Processing Systems, 2007. 1, 24

[53] M. I. Posner and C. D. Gilbert. Attention and primary visual cortex. Proc. of the

National Academy of Sciences, 96(6), March 1999. 46

[54] Abdel rahman Mohamed, George E. Dahl, and Geoffrey E. Hinton. Deep belief net-

works for phone recognition. In NIPS Workshop on Deep Learning for Speech Recog-

nition and Related Applications, 2009. 1, 24

[55] Marc’Aurelio Ranzato, Y-Lan Boureau, and Yann LeCun. Sparse feature learning for

deep belief networks. In Advances in Neural Information Processing Systems (NIPS

2007), 2007. 1, 21

67

[56] Marc’Aurelio Ranzato, Christopher Poultney, Sumit Chopra, and Yann LeCun. Effi-

cient learning of sparse representations with an energy-based model. In J. Platt et al.,

editor, Advances in Neural Information Processing Systems (NIPS 2006). MIT Press,

2006. 1, 21

[57] Maximilian Riesenhuber and Tomaso Poggio. Hierarchical models of object recognition

in cortex. Nature Neuroscience, 2(11):1019–1025, November 1999. 5

[58] H. Robbins and S. Monro. A stochastic approximation method. Ann. Math. Stat.,

22:400–407, 1951. 15

[59] S. Roth and M. J. Black. Fields of experts: A framework for learning image priors. In

IEEE Conf. on Computer Vision and Pattern Recognition, pages 860–867, 2005. 36

[60] R. Salakhutdinov and G. Hinton. Deep Boltzmann machines. In Proceedings of the

Intl. Conf. on Artificial Intelligence and Statistics, volume 5, pages 448–455, 2009. 1,

20, 32, 33, 36

[61] R. Salakhutdinov and I. Murray. On the quantitative analysis of deep belief networks.

In Proceedings of the Intl. Conf. on Machine Learning, volume 25, 2008. 14, 16, 17,

18, 39, 40, 42

[62] Ruslan Salakhutdinov and Geoffrey Hinton. Learning a nonlinear embedding by pre-

serving class neighbourhood structure. In Proceedings of the International Conference

on Artificial Intelligence and Statistics, volume 11, 2007. 1

[63] Ruslan Salakhutdinov and Hugo Larochelle. Efficient learning of deep boltzmann

machines. Proc. of the 13-th International Conference on AISTATS, 2010. 33

[64] T. Serre, M. Kouh, C. Cadieu, U. Knoblich, G. Kreiman, and T. Poggio. A the-

ory of object recognition: Computations and circuits in the feedforward path of the

ventral stream in primate visual cortex. Technical Report CBCL-259, MIT Artificial

Intelligence Laboratory, 2005. x, 6, 7

[65] T. Serre, L. Wolf, and T. Poggio. Object recognition with features inspired by visual

cortex. In IEEE Conf. on Computer Vision and Pattern Recognition, pages 994–1000,

2005. 5, 6, 8, 36

[66] Nicolas Le Roux Nicolas Heess Jamie Shotton and John Winn. Learning a generative

model of images by factoring appearance and shape. Technical report, 2010. 20

68

[67] P. Smolensky. Information processing in dynamical systems: Foundations of har-

mony theory. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed

Processing, volume 1, chapter 6, pages 194–281. MIT Press, Cambridge, 1986. 11

[68] K. Tanaka. Representation of visual features of objects in the inferotemporal cortex.

Neural Networks, 9(8):1459–1475, 1996. 4

[69] Yichuan Tang and Chris Eliasmith. Deep networks for robust visual recognition. In

International Conference on Machine Learning, 2010. 28

[70] Graham W. Taylor, Geoffrey E. Hinton, and Sam Roweis. Modeling human motion

using binary latent variables. In Advances in Neural Information Processing Systems,

page 2007. MIT Press, 2006. 20

[71] Yee Whye Teh, Max Welling, Simon Osindero, Geoffrey E. Hinton, Te won Lee, Jean

franois Cardoso, Erkki Oja, and Shun ichi Amari. Energy-based models for sparse

overcomplete representations. Journal of Machine Learning Research, 4:2003, 2003.

22

[72] T. Tieleman. Training restricted boltzmann machines using approximations to the

likelihood gradient. In Intl. Conf. on Machine Learning, volume 307, pages 1064–

1071, 2008. 15

[73] S. Treue and J. C. Mart́ınez Trujillo. Feature-based attention influences motion pro-

cessing gain in macaque visual cortex. Nature, 399(6736):575–579, Jun. 1999. 46

[74] Paul Viola and Michael Jones. Robust real-time object detection. In International

Journal of Computer Vision, 2001. 4

[75] M. Welling, G. E. Hinton, and S. Osindero. Learning sparse topographic representa-

tions with products of student-t distributions. In Adv. in Neural Information Process-

ing Systems, pages 1359–1366, 2002. 36

[76] M. Welling, M. Rosen-Zvi, and G. E. Hinton. Exponential family harmoniums with

an application to information retrieval. In Adv. in Neural Information Processing

Systems 17, 2005. 18

[77] Jing Xiao, Simon Baker, Iain Matthews, and Takeo Kanade. Real-time combined

2d+3d active appearance models. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, volume 2, pages 535 – 542, June 2004. 9

69

[78] Laurent Younes. On the convergence of markovian stochastic algorithms with rapidly

decreasing ergodicity rates. In Stochastics and Stochastics Models, pages 177–228,

1998. 15

[79] Huiyu Zhou, Yuan Yuan, and Chunmei Shi. Object tracking using SIFT features and

mean shift. Computer Vision and Image Understanding, 113(3):345–352, 2009. 8

70

	List of Tables
	List of Figures
	Introduction
	Contribution of the thesis
	Outline of Thesis

	Visual Recognition Architectures
	Multi-stage Hubel-Weisel models
	Convolutional Neural Networks (CNNs)
	The Standard Model

	Scale Invariant Feature Transforms (SIFT)
	Active Appearance Models (AAMs)

	Restricted Boltzmann Machines
	Restricted Boltzmann Machines
	RBM Learning
	Contrastive Divergence (CD)
	Stochastic Approximation Procedure (SAP)

	RBM Evaluation
	Exponential Family RBMs
	Gaussian Binary RBM

	Sparsity in RBMs

	Deep Belief Networks
	Greedy learning
	Fine-tuning
	Up-down
	Discriminative

	Deep Boltzmann Machines
	Formulation
	Pros and cons

	Sparsely Connected DBN
	Introduction
	Related Work
	sDBN
	Why Sparseness
	Sparse RBM Learning
	Sparse RBM Evaluation
	Sparse DBN

	Probabilistic Denoising
	Denoising via Unclamping
	Determining Which Nodes to Unclamp
	Combining with Visible Layer Inputs
	Denoising Results
	Recognition Results
	MNIST Variations

	Discussion

	Conclusions and Future Work
	APPENDICES
	MNIST Dataset
	MNIST
	MNIST Variations

	Probabilistic Learning
	Supvervised Learning
	Unsupervised Learning

	Bibliography

