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Abstract

Recent studies on visual tracking have shown significant

improvement in accuracy by handling the appearance vari-

ations of the target object. Whereas most studies present

schemes to extract the time-invariant characteristics of the

target and adaptively update the appearance model, the

present paper concentrates on modeling the probabilistic

dependency between sequential target appearances (Fig. 1-

(a)). To actualize this interest, a new Bayesian tracking

framework is formulated under the autoregressive Hidden

Markov Model (AR-HMM), where the probabilistic depen-

dency between sequential target appearances is implied.

During the learning phase at each time step, the proposed

tracker separates formerly seen target samples into several

clusters based on their visual similarity, and learns cluster-

specific classifiers as multiple appearance models, each of

which represents a certain type of the target appearance.

Then the dependency between these appearance models is

learned. During the searching phase, the target state is es-

timated by inferring the most probable appearance model

under the consideration of its dependency on formerly uti-

lized appearance models. The proposed method is tested

on 12 challenging video sequences containing targets with

abrupt appearance variations, and demonstrates that it out-

performs current state-of-the-art methods in accuracy.

1. Introduction

One of the major challenges in visual tracking comes

from dealing with the appearance variations of the target ob-

ject over time. Since the variations are attributed to various

factors (e.g., pose change, shape deformation, illumination

change, occlusion, camera viewpoint change, etc.) and can-

not be seen beforehand, especially when tracking generic

objects, adopting an appropriate appearance model at each

time step is difficult.

The most basic scheme reported to handle this difficulty,

thus far, is to adaptively update the single appearance model

at each frame: learn a new appearance model with time-

invariant characteristics extracted from formerly observed

target samples, and adopt the model to the current frame.

(a) Sequential target appearances in b-boy sequence.

(b) Autoregressive Hidden Markov Model

Figure 1. (a) Key question the current paper attempts to answer:

how to infer the current target appearance, considering its depen-

dency on formerly observed target appearances. (b) The n th-order

AR-HMM when n = 3. The AR-HMM implies the dependency

between sequential target appearances, which is different from the

standard HMM.

Collins et al. [5] first emphasize this scheme by adaptively

changing the color features that distinguish the target from

the background. Ross et al. [16] utilize the incremental

learning strategy to adaptively update subspaces that com-

pose the target appearance. In [2, 3], a binary classifier is

learned via the Support Vector Machine and AdaBoost al-

gorithm, respectively, to represent the target. In [8], an on-

line Boosting algorithm is proposed to update an appear-

ance model when formerly observed samples are discarded.

Furthermore, [9, 18] combine the semi-supervised learning

with [8] to handle noisy target samples. Babenko et al. [4]

apply the Multiple Instance Learning to the Boosting algo-

rithm to resolve the sample ambiguity problem. However,

due to the lack of time-invariant characteristics that cover

all appearance variations shown beforehand, such methods

update the model with characteristics more representative

of the recent target samples by adjusting the learning rate

[16, 8, 4] or learning from the subset of formerly seen sam-

ples [5, 2, 3, 9, 18]. Therefore, such schemes are intolerant
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of abrupt appearance variations in short time intervals.

Several studies have resolved the limitation of the basic

schemes by constructing the multiple appearance models,

each of which represents a certain type of the appearance.

Kwon et al. [11] decompose features from the previously

observed target samples via SPCA. Then each feature is in-

jected into one of the multiple trackers as an appearance

model. In [10], the MCBoost is used to jointly learn the

target sample clusters and cluster-specific classifiers as ap-

pearance models. In [14, 13], the sparse coding scheme is

used to extract the multiple templates from given training

samples. However, none of the methods considers the de-

pendency between sequential target appearances when se-

lecting an appropriate appearance model at each time step;

thus, they are limited in inferring the most probable appear-

ance model with high accuracy.

Another research effort to cope with abrupt appearance

variations is to model the mapping function between se-

quential target appearances. In [6, 12], a nonlinear mapping

function from the geometrical transformation to the appear-

ance is modeled via the manifold learning. When a target

image patch is given at the searching step, the geometrical

transformation settings of a learned mapping function are

recovered. Hence, an appearance model for the next frame

is determined. However, when all kinds of variational fac-

tors are considered simultaneously, finding an appropriate

mapping function is difficult. Furthermore, because they

select an appearance model for the next frame in a determin-

istic manner, such trackers are robust only when the target

objects experience cyclic appearance variations.

In the current work, a new Bayesian tracking framework

is formulated under the AR-HMM that implies the proba-

bilistic dependency between sequential target appearances,

as shown in Fig. 1-(b). Under this framework, the proposed

tracker performs the learning and searching in consecutive

order at each time step. During the learning phase, our

tracker jointly separates formerly observed target samples

into several clusters based on their visual similarity, and ap-

proximates the appearances of the target samples included

in each cluster as a cluster-specific classifier (appearance

model). Then the dependency between the multiple appear-

ance models is learned. During the searching phase, the

tracker estimates the target state by inferring the most prob-

able appearance model under the consideration of its depen-

dency on previously utilized appearance models.

The major contribution of the present study is twofold:

1) The AR-HMM is first adopted for the visual tracking

framework. The posterior probability of the target state

is derived under the AR-HMM. The resulting formulation

indicates that considering the dependency between the se-

quential target appearances is equal to modeling the prior of

the target appearance and adopting it to control the degree of

belief in the likelihood term. 2) By slightly modifying the

learning scheme in [17], jointly clustering target samples

and learning cluster-specific appearance models are per-

formed in a fully unsupervised manner. Different from the

previous work [10] related to this topic, which requires the

off-line setups to construct the cluster priors, the learning

scheme adopted in the present paper automatically deter-

mines the number of clusters based on the amount of varia-

tions formerly shown by the target. This property makes the

proposed tracker more practical in tracking generic objects

with different amounts of appearance variations.

2. Tracking Framework under AR-HMM

From hence, the target appearance at time t, yt, is dealt

as a random vector. Note that, under the standard HMM

used by previous studies, yt is a deterministic vector. For

ease of implementation, yt is assumed as discrete, that is,

yt ∈ {ok, k = 1, ...,K}, where ok is an appearance model

by which the target may be represented, and K is the num-

ber of appearance models at time t. However, the proposed

formulation works even when yt is continuous. A goal of

the proposed tracker is to estimate the target state at time

t, xt, under the maximum-a-posteriori (MAP) criterion by

employing the most probable appearance model ok.

2.1. Formulation

The posterior probability of xt is formulated under the

AR-HMM shown in Fig. 1-(b). By initially applying the

Bayesian theorem, the posterior probability is given by

p(xt|y1:t) =
p(yt|y1:t−1, xt)p(xt|y1:t−1)

p(yt|y1:t−1)
, (1)

where yt1:t2 ≡ {yτ , τ = t1, ..., t2} is a set of appear-

ances from time t1 to t2. Under the standard HMM,

p(yt|y1:t−1, xt) = p(yt|xt), because yt and y1:t−1 are mu-

tually independent. In contrast, this independency does

not hold under the AR-HMM. When the n th-order AR-

HMM is assumed, two following properties hold: 1) yt and

yt−n:t−1 are mutually dependent, 2) yt−n:t−1 and xt are

mutually independent. Given that yt is random, the sec-

ond property can be proved using the Bayes ball algorithm.

Based on these two properties, two terms p(yt|y1:t−1) and

p(yt|y1:t−1, xt) in Eq. 1 can be simplified as follows:

p(yt|y1:t−1) = p(yt|yt−n:t−1), (2)

p(yt|y1:t−1, xt) = p(yt|yt−n:t−1, xt)

=
p(yt−n:t−1|xt, yt)p(yt|xt)

p(yt−n:t−1|xt)

=
p(yt−n:t−1|yt)p(yt|xt)

p(yt−n:t−1)
.

(3)
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Figure 2. (a) Distribution of classification scores of the face test

samples. (b) Expected distribution of likelihood values at possible

target states.

By substituting Eqs. 2 and 3 into Eq. 1, a simple and clear

posterior probability is finally achieved as

p(xt|y1:t) =
p(yt−n:t−1|yt)p(yt|xt)p(xt|y1:t−1)

p(yt−n:t−1)p(yt|yt−n:t−1)
(4)

=
1

p(yt)
p(yt|xt)p(xt|y1:t−1). (5)

A remarkable point is that not only p(yt|xt)p(xt|y1:t−1),
but also 1/p(yt) should be considered when calculating

p(xt|y1:t). In addition, the form of the posterior probability

remains equally irrelevant to the order n of the AR-HMM.

In summary, Eq. 5 indicates that coping with the depen-

dency between sequential appearances is equal to modeling

1/p(yt) and applying it when calculating the posterior.

2.2. Discussion

Eq. 5 gives a meaningful message about the relation

between the appearance prior p(yt) and the likelihood

p(yt|xt): the degree of belief in p(yt|xt) should be con-

trolled by p(yt). Specifically, if p(yt = ok) is large,

p(yt = ok|xt) should output a correspondingly large value

to insist that the target is at a certain state xt, with the ap-

pearance that can be approximated by ok, and vice versa.

This message is in alignment with a theory of Machine

Learning [15]: the size of the gap between the training error

and the test error of a certain hypothesis is inversely related

to the size of the training set. To verify, two face detectors

are trained via the AdaBoost algorithm [7], using different

sizes of training sets (300 and 1000 face training samples

are given for each detector, respectively, and 1000 nonface

training samples are given for both). Then these detectors

are tested on 1000 face test samples, and the distribution

of their classification scores by each detector is shown in

Fig. 2-(a). Although the classification scores of the face

training samples are mostly around 1 in both detectors (no

training error), more test sample scores shift to smaller val-

ues (larger test error) when the smaller number of face train-

ing samples are given for training.

Reminding the theory, let there exist two appearance

models for tracking, o1 and o2, whose likelihood values

monotonically increase when the classification score in-

creases. In addition, let p(yt = o2) ≫ p(yt = o1). We

can expect that the target appearances, which can be rep-

resented by o2, have been more frequently observed than

that of o1, so that o2 is approximated with more samples

than o1. Then, under an assumption that o1 and o2 are

both unbiased, a likelihood value returned by o2 at its truth

state xTRUE can be expected to be larger than that of o1, as

shown in Fig. 2-(b). Hence, if o1 and o2 return same maxi-

mum likelihood values at different xts, which result should

be believed? If the target is guaranteed to exist in the scene

and its appearance can be represented either by o1 or o2, the

result of o1 should be believed. The appearance model o2

should have returned a larger likelihood value to insist that

its state is the truth state, when o1 insists the same based

on an identical likelihood value. Consequently, the inverse

relation between p(yt) and p(yt|xt) is reasonable.

3. Learning under AR-HMM

During the learning phase, p(yt|xt) and 1/p(yt) are

modeled in consecutive order. To model p(yt|xt), formerly

seen target samples are separated into several clusters and

cluster-specific classifiers are learned to discriminate the

target from the background. These classifiers are used as

the probable appearance models by which the target may

be represented. Then 1/p(yt) is modeled among the clas-

sifiers. The proposed tracker learns those two terms in a

fully incremental manner, that is, it learns using the cur-

rently given samples and updates them when the new sam-

ples arrive at the next time step.

3.1. Learning 1/p(yt)

Since the target appearances observed from the initial

frame to the current are the subset of the whole target ap-

pearances, as shown in Fig. 3, exact modeling of 1/p(yt) is

unrealistic. Under the n th-order AR-HMM, 1/p(yt) can be

approximated as follows (see Eqs. 4 and 5):

1

p(yt)
=

1

p(yt−n:t−1)

p(yt−n:t−1|yt)

p(yt|yt−n:t−1)
. (6)

This approximation provides two advantages: 1)

1/p(yt−n:t−1) can be neglected under the MAP criterion,

1966



Figure 3. Example of observed and unobserved appearance models

at a certain frame.

because it is constant at time t. 2) Since p(yt−n:t−1|yt)
and p(yt|yt−n:t−1) are the probabilities conditioned on

neighbor appearance models in the time domain, each

term can be approximated even when the whole set of

the appearances is not observed. Thus, when the number

of appearance models, K, is fixed and target samples

are allocated to one of the appearance models through

learning p(yt|xt), we can model p(yt−n:t−1|yt) and

p(yt|yt−n:t−1) by the maximum likelihood estimation:

counting the observed number of transitions between the

appearance models and normalizing it with the number of

total transitions. Although appearance models, which may

be dependent on unobserved appearance models (e.g., o3

in Fig. 3), may have an error, it is neglected as the factor

that cannot be handled. Nevertheless, as shown in the

experimental results, the proposed tracker operates well. In

the current implementation, we set n = 1, which allows us

to consider only adjacent neighbor appearance models to

approximate 1/p(yt).

3.2. Learning p(yt|xt)

To learn p(yt|xt), we adopt the learning scheme in

[17] with slight modifications. Although they propose the

scheme to cluster the object classes that may share the clas-

sification knowledge, we use it to automatically cluster tar-

get samples and learn cluster-specific appearance models,

so that every target samples can be well discriminated from

the nontarget samples by at least one of the multiple appear-

ance models. As mentioned earlier, this scheme is more

practical than that in [10] in solving the multi-modality

problem they tackle, in the sense that the scheme automat-

ically decides the number of clusters based on the amount

of appearance variations formerly shown by the target. In

contrast to [10], none of the off-line setups to construct the

cluster priors is required. Due to the lack of space, a brief

introduction of the learning scheme is provided. Readers

are referred to [17] for a more detailed explanation.

To notate, let m be the instance (image patch) and ℓ be

the corresponding binary label, i.e., ℓ ∈ {0, 1}. At time

t, instances are extracted from the estimated states at pre-

vious frames, and a target training set Dpos ≡ {(mi, ℓi =

Figure 4. Structure of multiple appearance models.

1, si), i = 1, ..., Ipos} is constructed, where Ipos is the num-

ber of target samples and si ∈ {1, ...,K} is the cluster index

of mi. The number of Ineg nontarget samples are randomly

extracted around the estimated state at the most recent frame

t−1, and a nontarget training set Dneg ≡ {(mi, ℓi = 0), i =
1, ..., Ineg} is constructed. A training set for cluster k, Dk,

is composed by unifying Dneg and Dk
pos, where Dk

pos con-

sists of target samples with the cluster index si = k in Dpos.

The size of Dk and Dk
pos are notated as Ik and Ikpos.

An appearance model is modeled as a linear binary clas-

sifier. Thus, the classification score of m by ok is ok(m) =∑J

j=1 β
k
j hj(m), where hj(·) is the classification score by

the j th feature of ok, hj , and βk
j is the corresponding

weight coefficient. (The feature hj is not indexed by k, be-

cause the cluster-specific classifiers are constrained to share

the same features. Based on our experience, this constraint

helps the classifiers to be unbiased when the number of

target samples is small.) By defining mt as the instance

extracted from xt, and ℓt as the corresponding label, the

likelihood can be expressed as p(yt = ok|xt) = p(ℓt =
1|mt, ok). Using the logistic regression model,

p(ℓt = 1|mt, ok) =
1

1 + exp(−ok(mt))
. (7)

The structure of the multiple appearance models is

shown in Fig. 4. Under a global classifier oglob, there exist

multiple cluster-specific classifiers oks. Each target sample

is allocated to one of the cluster-specific classifiers. Differ-

ent from [17], our cluster-specific classifiers do not share

the weight coefficients, but the features selected by a global

classifier oglob from the feature pool P.

A pseudo-code to learn such models is shown in Algo-

rithm 1. A key idea is to alternate between learning the

appearance models {ok, k = 1, ...,K} and determining the

cluster index vector s = [s1, ..., sIpos ]. To begin, the number

of J features are selected from the feature pool P through

oglob, and the cluster index vector s is initialized. The

weight coefficient vectors βk = [βk
1 , ..., β

k
J ], k = 1, ...,K,

are then determined by maximizing

ln p(βk|Dk) ∝
Ik∑

i=1

ln p(ℓi|mi, βk) + ln p(βk). (8)
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Algorithm 1 Learning multiple appearance models

Input: Dpos,Dneg , P, U , J , γ

Output: s, {ok, k = 1, ...,K}
1: Select J features from P by training oglob with Dpos and Dneg , using

AdaBoost.

2: s1 ← 1, K ← 1, si ← 0 for i = 2, ..., Ipos
3: for i = 2 to Ipos do

4: Randomly draw si under Eq. 10.

5: if si = K + 1 then

6: K ← K + 1
7: end if

8: end for

9: for 1 to U do

10: for k = 1 to K do

11: Learn βk for J features with Dk
pos and Dneg by maximizing

Eq. 8, using AdaBoost.

12: end for

13: for i = 1 to Ipos do

14: Learn βK+1 for J features with (mi, ℓi = 1) and Dneg by

maximizing Eq. 8, using AdaBoost.

15: Decide si by maximizing Eq. 9.

16: if si = K + 1 then

17: K ← K + 1
18: else

19: Delete βK+1.

20: end if

21: end for

22: for k = 1 to K do

23: if Ikpos = 0 then

24: Delete βk , K ← K − 1
25: end if

26: end for

27: Rearrange s, so that they range from 1 to K.

28: end for

Assuming that p(βk) is under the uniform distribution, the

problem is solved by the AdaBoost algorithm [7]. Af-

ter learning the cluster-specific classifiers, the cluster index

vector s = [s1, ..., sIpos ] is determined by maximizing

ln p(si|β, s∼i, ℓi,mi) ∝ ln p(ℓi|βsi , si,mi) + ln p(si|s∼i),
(9)

where s∼i denotes a vector s, but with si omitted. The term

β = [β1, ..., βK+1], where K + 1 is the new cluster index.

The likelihood p(ℓi|βsi , si,mi) is given by Eq. 7. The prior

p(si|s∼i) is given by the Chinese Restaurant Process (CRP),

p(si = k|s∼i) =

{
Ik
pos

Ipos−1+γ
, 1 ≤ k ≤ K

γ
Ipos−1+γ

, k = K + 1
, (10)

where γ is the concentration parameter. These two pro-

cesses are iterated for the prefixed number of U times.

As shown in Eq. 9, a remarkable point is that the num-

ber of clusters is automatically determined considering the

trade-off between the classification error and the cost for

splitting the cluster. The cost is determined by the CRP

shown in Eq. 10 (when k = K + 1). Thus, none of the

naive cluster priors should be given through the off-line se-

tups.

4. Searching under AR-HMM

After the learning phase, a target state x̂t =
argmaxxt p(xt|y1:t) is searched via the Metropolis-

Hastings algorithm, as in [11]. The sampling is composed

of two basic steps: the proposal step and the acceptance

step. In the proposal step, a new sample state x
(r+1)
t is pro-

posed from the current sample state x
(r)
t by the proposal

density function p(x
(r+1)
t |x

(r)
t ), where r is the sample in-

dex. The Normal distribution N (x
(r)
t , σ), with the mean

x
(r)
t and the covariance matrix σ, is used as p(x

(r+1)
t |x

(r)
t ).

After the new state x
(r+1)
t is proposed, the acceptance ratio

η is calculated as follows:

η = min[1,
max

y
(r+1)
t

p(x
(r+1)
t |y1:t−1, y

(r+1)
t )

max
y
(r)
t

p(x
(r)
t |y1:t−1, y

(r)
t )

], (11)

where the posterior of each sample state is given by Eq. 5.

(Under the AR-HMM, the prior p(xt|y1:t−1) = p(xt). We

approximate p(xt) ≈ p(xt|x̂t−1), assuming that p(xt) is

time-varying. The Normal distribution N (x̂t−1, ξ), with the

mean x̂t−1 and the covariance matrix ξ, is used for the state

transition prior p(xt|x̂t−1).) With this η, the tracker decides

whether to accept the new state x
(r+1)
t or not. After iter-

ating these two steps for the prefixed number of times, the

tracker can finally select the most probable state x̂t. No-

tably, the proposed tracker implicitly deals with the depen-

dency between sequential target appearances by calculating

the posterior under the consideration of the appearance prior

of multiple appearance models.

5. Experimental Results

The proposed tracker is tested on 12 video sequences.

Eight videos (girl, david, tiger1, tiger2, faceocc1, faceocc2,

sylvester, and shaking) are collected from the public dataset,

and four videos (b-boy, cheetah, lighting, and horse-race)

are collected for ourselves. For cross-validation, the center

position error is compared with that of current state-of-the-

art methods (VTD [11], MIL [4], IVT [16], and FRAGT

[1]), the executable codes of which are accessible on their

own web pages.

In the current settings, the instance m is set as the rect-

angular gray-scaled image, and the feature h is set as the

Haar-like feature [19]. The target state is defined as xt ≡
[xt, yt, µt, θt], where [xt, yt] is the 2D center position, µt is

the scale, and θt is the rotation. For the parameters, we set

the order of the AR-HMM, n, to 1, the size of the feature

pool P to 450, the number of features for cluster-specific

classifiers, J , to 150, the concentration parameter γ to 0.2,

and the number of learning iterations, U , to 3. Since the

number of sample clusters, K, can be increased infinitely

overtime under the current framework, the maximum value
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Figure 5. Tracking results in the david sequence. The graph on the left shows the number of learned sample clusters over the frames (blue

line). A red impulse is drawn on frames where the model transition occurs. The estimated states in several frames are depicted on the

image sequences on the right. The frames with the model transition are indicated with a red frame index.

of K is constrained to 20 by forcing the probability of the

CRP for splitting the cluster to zero, when K reaches its

maximum value. Such settings are fixed through all the

experiments shown below. Furthermore, all target samples

extracted from previous frames are utilized in learning the

likelihood. Although the learning time increases linearly

with time t in this setting, it is neglected because the fo-

cus of the present paper is to confirm the significance of the

dependency between sequential target appearances. Learn-

ing time can be bounded simply by discarding old samples,

or adopting the online learning scheme, such as that in [8].

The related issues will be studied for future research.

5.1. Qualitative Evaluation

Fig. 5 shows the tracking results of the proposed tracker

in the david sequence. As shown in the graph on the left, the

number of sample clusters increases when the amount of ap-

pearance variations shown by the target becomes larger over

time. It can also be recognized that the model transition (se-

lecting the most probable appearance model which is dif-

ferent from that of the most recent frame) occurs more fre-

quently than expected. Although the david sequence does

not contain abrupt appearance variations, the model tran-

sition occurs in the frame of 92% of the total 462 frames.

This result indicates that, even when the variations are quite

smooth (e.g., rotating the face, as shown in the right of

Fig. 5), an appropriate appearance model for each frame

may be different from that of the adjacent frames.

5.2. Quantitative Evaluation

For the quantitative evaluation, the mean center position

error per frame is calculated for each tracker. Each tracker

is tested five times per video sequence.

To demonstrate that the inverse relation between the ap-

pearance prior p(yt) and the likelihood p(yt|xt) is reason-

able, the proposed tracker is tested in four cases: 1) when

two terms are in inverse relation, as derived in Eq. 5 (ART),

2) when the prior term is neglected (ARTWOP), 3) when

two terms are in proportional relation (ARTWPR), and 4)

when K is constrained to 1 (ARTSAP). ARTWOP and

ARTSAP can be regarded as tracking under the standard

HMM with multiple appearance models and single appear-

ance model, respectively. In addition to the formerly men-

tioned settings, the size of the nontarget training set, Ineg ,

is set to 300. Such settings are identical for all cases. The

results are shown in the four columns on the right in Table

1. As can be seen, ART shows the best accuracy for all test

videos. When the appearance prior and the likelihood are

forced to have a proportional relation (ARTWPR), the ac-

curacy is even lower than that of the tracker using the single

appearance model (ARTSAP) for most test videos. When

the appearance prior is omitted (ARTWOP), the results are

better than that of ARTWPR and ARTSAP, but ARTWOP

never outperforms ART for any video. In summary, ac-

curacy is improved when multiple appearance models are

used. The accuracy is even better when the dependency be-

tween sequential target appearances is also considered.

The results of cross validation are shown in the first five

columns in Table 1. In this case, the number of 1000 non-

target training samples are given to the proposed tracker

to show its fully maximized accuracy (ARTOPT). Notably,

however, ART shows outperforming accuracy, compared

with that of other state-of-the-art methods, except in the

tiger2 and shaking sequences. In the girl, david, tiger1,

tiger2, and sylvester sequences, the targets experience pose

changes under constrained illumination changes. In the

faceocc1 and faceocc2 sequences, the targets are smoothly

occluded by the books. In such videos, ARTOPT shows al-

most perfect tracking accuracy through all trials, whereas

other methods experience drifting and shrinking of the

tracking window. To evaluate for more challenging en-

vironment, the methods are tested on the b-boy, cheetah,

lighting, shaking, and horse-race sequences. The estimated

target states are shown in Fig. 6. In the b-boy sequence,

severe pose changes are shown by a dancing person. Al-

though the scene is challenging, ARTOPT tracks the tar-

get well for most trials, whereas other methods cause drift-

ing. In the cheetah sequence, abrupt shape deformations of
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ARTOPT VTD MIL IVT FRAGT ART ARTWOP ARTWPR ARTSAP

girl 10.6 14.6 33.1 55.6 20.4 12.9 15.8 26.6 16.4

david 3.3 46.9 24.9 42.8 27.5 3.7 4.1 5.8 4.1

tiger1 4.9 44.5 30.3 55.7 24.8 12.6 23.1 27.4 20.6

tiger2 5.4 53.1 11.9 48.9 36.7 16.3 24.2 49.7 27.6

faceocc1 8.1 9.8 35.4 10.9 9.3 8.5 9.4 15.0 12.0

faceocc2 6.0 54.1 15.5 12.8 63.9 12.1 15.9 18.9 18.7

sylvester 5.9 23.1 14.8 120.9 15.7 8.7 10.1 11.2 11.5

shaking 7.7 78.2 42.7 96.5 194.4 50.3 158.9 185.6 199.9

b-boy 34.9 147.1 65.9 244.3 152.3 55.1 64.5 63.4 66.7

cheetah 17.0 31.6 230.8 126.3 132.0 17.4 20.8 49.8 22.1

lighting 5.1 105.0 153.5 52.3 120.8 7.6 27.4 235.9 169.0

horse-race 12.5 121.5 51.8 37.5 81.0 25.4 79.9 136.4 85.9

Table 1. Mean center position errors in pixels. Red and blue indicate the best and second best accuracy, respectively, at each sequence.

a running cheetah occur. Although ARTOPT cannot con-

tain the whole body of the cheetah for several frames in

the last portion, it still can follow the center of the chee-

tah, whereas other trackers lose the target in most trials. In

the lighting and shaking sequences, there are abrupt illu-

mination changes on the guitarists, but the situation is ac-

curately handled by ARTOPT. In the horse-race sequence,

the head of a jockey is occluded frequently and cyclically

by the two horses, but ARTOPT handles this situation well

by choosing the most probable appearance model at each

frame. Through all the test videos, ARTOPT outperforms

other state-of-the-art methods in accuracy.

Lastly, ARTOPT requires around 8 seconds for the mean

processing time per frame on 12 video sequences under the

current test environment (implementation in C codes, In-

tel Q9550 2.83GHz CPU). Most of the time is spent learn-

ing the likelihood term, which may be greatly reduced af-

ter optimizing the current implementation in the code level.

Furthermore, as mentioned in [17], the adopted learning

scheme has the structure where parallel-processing is ap-

plicable. After several optimizations, the proposed tracker

is expected to run in real time.

6. Conclusion

In the current paper, we proposed a new Bayesian track-

ing framework under the AR-HMM, to deal with the de-

pendency between sequential target appearances. A new

form of the posterior probability of the target state was de-

rived. Through the derivation, the importance of modeling

the appearance prior and its inverse relation with the likeli-

hood were shown. Additionally, a new learning scheme to

jointly learn sample clusters and cluster-specific classifiers

was adopted. Since it does not require the off-line setups

to construct the cluster priors, the proposed tracker is more

practical than the existing method in tracking generic ob-

jects. In various test videos, the inverse relation between

the appearance prior and the likelihood was demonstrated,

and the outperforming accuracy of the proposed tracker was

compared with that of existing state-of-the-art methods. Fu-

ture efforts will be focused on reducing the processing time

by optimizing the source code, and adopting online learning

and parallel-processing schemes to the current framework.
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Figure 6. Tracking results in five challenging video sequences. The estimated states are depicted using yellow rectangles for the proposed

method (ARTOPT), and blue rectangles for other state-of-the-art methods (VTD, MIL, IVT, and FRAGT).
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