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Abstract Object tracking is the process of determining the

states of a target in consecutive video frames based on prop-

erties of motion and appearance consistency. In this paper,

we propose a consistent low-rank sparse tracker (CLRST)

that builds upon the particle filter framework for tracking.

By exploiting temporal consistency, the proposed CLRST

algorithm adaptively prunes and selects candidate particles.

By using linear sparse combinations of dictionary templates,

the proposed method learns the sparse representations of
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image regions corresponding to candidate particles jointly by

exploiting the underlying low-rank constraints. In addition,

the proposed CLRST algorithm is computationally attractive

since temporal consistency property helps prune particles and

the low-rank minimization problem for learning joint sparse

representations can be efficiently solved by a sequence of

closed form update operations. We evaluate the proposed

CLRST algorithm against 14 state-of-the-art tracking meth-

ods on a set of 25 challenging image sequences. Experimental

results show that the CLRST algorithm performs favorably

against state-of-the-art tracking methods in terms of accuracy

and execution time.

Keywords Visual tracking · Temporal consistency · Sparse

representation · Low-rank representation

1 Introduction

Visual tracking is a well-known problem in computer vision

with numerous applications including surveillance, robotics,

human-computer interaction, and motion analysis, to name

a few. Despite demonstrated success (Yilmaz et al. 2006;

Salti et al. 2012), it remains challenging to design a robust

visual tracking algorithm due to factors such as occlusion,

background clutter, varying viewpoints, and illumination and

scale changes.

Recently, numerous algorithms based on ℓ1 minimization

(Tsaig and Donoho 2006) have been proposed for visual

tracking (Mei and Ling 2011; Mei et al. 2011; Liu et al.

2010; Bao et al. 2012; Li et al. 2011; Zhang et al. 2013c)

where an image observation is sparsely represented by a dic-

tionary of templates with online update. These methods have

demonstrated that the use of sparse representation facilitates

robustness to image corruptions caused by partial occlusions
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Fig. 1 (a) Rank statistics of an image observation matrix X0 corre-

sponding to sampled particles per frame. The rank statistics are com-

puted from 15 videos with about 6,433 frames. The target objects are

initialized with the same size (i.e., 30 × 30 or d = 900 pixels) and the

number of particles at each frame n0 is set to 500, i.e., X0 ∈ R900×500.

For each X0 of each frame, we compute the SVD SVD of X0 and deter-

mine the numerical rank as the number of non-zero singular values

whose sum is more than 0.7 times the sum of all singular values. The

rank of X0 in most frames is about 100, which is much lower than d

and n0. Thus, the image observations corresponding to particles at each

frame tend to be low-rank. After pruning, the candidate particle obser-

vations X is expected to have lower rank. (b) Rank statistics of image

observations corresponding to sampled particles from the background.

The rank in most frames is about 180, which is larger than the rank

of X0. However, it is smaller than no because the background particles

are sampled around, but at a sufficient distance from a target object. If

the background patches are sampled from cluttered images, the rank is

likely to be higher. (c) Particles are sampled at and around target with

a Gaussian distribution. As a result, an image observation matrix X0 is

likely to have low-rank property

or lighting variations. Nevertheless these formulations entail

solving ℓ1 minimization problems, which is known to be

time-consuming. Furthermore, since the target states are usu-

ally estimated in a particle filter framework, the computa-

tional cost grows linearly with the number of sampled parti-

cles. More importantly, these methods learn sparse represen-

tations corresponding to drawn particles independently, and

do not consider the underlying relationship that constrains

them.

To address these problems, we exploit the temporal consis-

tency property as well as the underlying relationship of image

observations. By exploiting temporal consistency, irrelevant

particles can be pruned by using the previous tracking results,

thereby reducing the overall computational cost. After prun-

ing, the linear representations of the candidate particles based

on the current dictionary are constrained to be low-rank and

sparse. In this work, the low-rank1 property captures the

underlying structure of the image observations correspond-

ing to candidate particles. This structure arises because image

observations of candidate particles tend to lie in a low-rank

subspace as motivated by the empirical results shown in

Fig. 1, where some of them also have very similar visual

appearances. Therefore, we exploit sparsity, low-rank con-

straint, and temporal consistency to learn robust linear repre-

sentations corresponding to candidate particles for efficient

and effective object tracking.

1 Generally, the matrix of particle representations is not full-rank. It

tends to have a low rank that is usually larger than one.

The proposed visual tracking algorithm is developed

based on the following observations:

– The optimal particle is the one at which the image obser-

vation has the lowest reconstruction error based on the

current dictionary consisting of target object templates.

– Temporal consistency should be exploited to constrain

the candidate particles and prune irrelevant ones, thereby

making the tracking algorithm more efficient. In addition,

this property facilitates more stable state predictions and

tracking results.

– After pruning, the image observations corresponding

to the remaining candidate particles should be highly

correlated and thus the matrix of corresponding image

observations should have low rank. The relationship

between these image observations corresponding to par-

ticles should be exploited which has not been used in

existing tracking methods based on sparse representa-

tion (Mei and Ling 2011; Mei et al. 2011; Liu et al. 2010;

Li et al. 2011). Figure 1a shows one example where the

image observations X0 of drawn particles at each frame

have low-rank. The rank of candidate image observations

X should be much lower after pruning.

– As occlusion and noise significantly affect tracking per-

formance, the error term of an image representation can

be sparsely modeled.

– During tracking, an image observation of a candidate

particle can be better represented using a dictionary of
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Fig. 2 Enforcing the sparsity, low-rank, and temporal consistency

properties in the proposed CLRST algorithm. (a) The frame at time

t . (b) All particles sampled based on previous particles, and their obser-

vations X0 ∈ Rd×n0 . Here, the number of particle is n0 = 500, and

an observation is defined to be the grayscale values of each normalized

particle in the image. (c) Particles are pruned using the reconstruction

error e0, where the k-th element is the ℓ2 error incurred by linearly rep-

resenting the k-th particle (i.e., k-th column of X0) using the previous

representation z0 and a dictionary D of object and background tem-

plates (25 dictionary elements). Here, we define e0 � ‖X0 − DZ0‖2,

where Z0 = 1z⊤
0 is a rank one matrix, whose columns are equal to z0.

(d) Resulting candidate particles X ∈ Rd×n after the particles with the

large reconstruction error are pruned. Here, 25 candidate particles are

obtained after pruning. Since some of them are similar, they possess a

low-rank property, which constrains their representations. (e) The rep-

resentations of n candidate particles using our CLRST algorithm, which

enforces sparse, low-rank, and consistent properties. Here, the rank of

X (observations of candidate particles) is 2. (f) The tracking result in

frame t and its representation z0

templates from both object and background templates

with online update. This emphasizes the importance of

representing what a target is and what it is not. Gener-

ally, an image observation of a “good” target candidate is

effectively represented by the object templates and not the

background templates, thereby leading to a sparse rep-

resentation. Likewise, an image observation of a “bad”

target candidate can be more sparsely represented by a

dictionary of background templates.

In the proposed algorithm, after pruning, the matrix of

candidate image observation X (where each image observa-

tion corresponding to a particle is stored in a column) in the

current frame is represented as a linear combination Z of

object and background templates that define a dictionary of

templates D. We require that Z be (1). sparse because only a

few templates are required to represent an image observation

well, (2). low-rank because the matrix of image observations

X have a low rank structure2 as observed from the example

in Figs. 1a, and 3. temporally consistent because particles in

the current frame tend to have representations similar to the

representation of the previous tracking result. In addition,

we use sparse error E to account for occlusion and noise

in one representation for an image observation. Therefore,

the representations of the current particles are computed by

solving a low-rank, sparse representation problem. We show

that the solution to this problem is obtained by performing

a sequence of closed form optimization steps by the Inex-

act Augmented Lagrange Multiplier method. To account for

appearance variations and alleviate tracking drift, we update

D progressively via a sequence of template replacement and

2 This follows from the linear representation assumption. Since X =

DZ and D can be designed to be an overcomplete full row or column

rank matrix, then rank(X) = rank(Z). So, if X is low-rank, it follows

that Z is also low-rank.

re-weighting steps. The object templates of D are updated

only when the object undergoes significant changes, while

the background templates are updated at every frame. The

particle at which the image region is most similar to the cur-

rent target is selected as the tracking result. Figure 2 shows

the flowchart and how these three properties are enforced in

the proposed tracking algorithm.

The contributions of this work are three-fold. (1) We for-

mulate object tracking as a consistent, sparse, as well as low-

rank representation problem from a new perspective. This is

carried out by exploiting the relationship between the obser-

vations of particle samples and jointly representing them

using a dictionary of templates with online update. To the best

of our knowledge, this is the first work exploiting the low-

rank nature underlying the image observations correspond-

ing to sampled particles. (2) We take temporal consistency

between the representations of particles into account. It is

used to prune particles and constrain their low-rank represen-

tations. As a result, representations of candidate particles can

be computed jointly and efficiently. The resulting low-rank,

sparse, and temporally consistent representation of candidate

particles facilitates robust performance for visual tracking.

(3) The proposed CLRST algorithm is a generic formulation

that encompasses three special cases: the low-rank sparse

tracker (LRST), low-rank tracker (LRT), and the sparse

tracker (ST). We show how these algorithms are related and

the importance of each property for visual tracking.

2 Related Work

The recent years have witnessed much progress in track-

ing with numerous applications (Yilmaz et al. 2006; Salti et

al. 2012; Wu et al. 2013; Zhang et al. 2012b; Kristan and

Cehovin 2013; Pang and Ling 2013). In this section, we dis-

cuss the most relevant methods to our work.
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Visual tracking methods can be categorized as genera-

tive and discriminative. Generative tracking methods adopt

appearance models to represent target objects and search

for the most similar image regions (Black and Jepson 1998;

Comaniciu et al. 2003; Jepson et al. 2003; Yang et al. 2009;

Ross et al. 2008; Adam et al. 2006; Kwon and Lee 2010). In

Black and Jepson (1998), an algorithm builds on view-based

eigenspace representations, robust estimation techniques,

and parameterized optical flow estimation, is proposed for

object tracking. The mean shift tracking algorithm (Comani-

ciu et al. 2003) models a target with nonparametric distrib-

utions of features (e.g., color pixels) and locates the object

with mode shifts. In Jepson et al. (2003), an adaptive appear-

ance model based on mixture of Gaussians is proposed to

model objects with stable components. An adaptive appear-

ance model that accounts for target appearance variation is

proposed in the incremental visual tracking (IVT) method

(Ross et al. 2008). Although it has been shown to perform

well when the target object undergoes lighting and pose varia-

tion, this method is less effective in handling heavy occlusion

or non-rigid motion as a result of the adopted holistic appear-

ance model. The Frag tracker (Adam et al. 2006) addresses

the partial occlusion problem by modeling object appearance

with histograms of local patches. The tracking task is carried

out by combining votes of matching local patches based on

histograms. As the model is not updated, this method is less

effective for handling large appearance changes. The visual

tracking by decomposition (VTD) method (Kwon and Lee

2010) extends the conventional particle filter framework with

multiple motion and observation models to account for large

appearance variation caused by change of pose, lighting and

scale as well as partial occlusion. As the adopted generative

representation scheme is not designed to distinguish between

target and background patches, it is prone to drift in complex

scenes.

Discriminative methods formulate object tracking as a

binary classification with local search which aims to find the

target image region that best distinguishes from the back-

ground (Avidan 2005; Grabner et al. 2006; Jiang et al. 2011;

Babenko et al. 2009). In Collins and Liu (2003), a target con-

fidence map is constructed by finding the most discrimina-

tive features based on features of color pixels. The ensemble

tracking algorithm (Avidan 2005) formulates the task as a

pixel based binary classification problem with local search.

Although this method is able to differentiate the target and

background, the pixel-based representation is less effective

for handling occlusion and clutters. In Grabner et al. (2006),

a method based on online adaptive boosting (OAB) is pro-

posed to select discriminative features for object tracking. As

each tracking result and model update is based on the object

detection of each frame, tracking errors are likely accumu-

lated and thereby causing drifts. To account for ambiguities

in selecting the best target location, a boosting approach that

extends the multiple instance learning (MIL) framework for

online object tracking is developed (Babenko et al. 2009).

While it is able to reduce tracking drifts, this method does

not handle large nonrigid shape deformation or scale well.

A hybrid approach that combines a generative model and

a discriminative classifier is proposed to handle appearance

changes (Yu et al. 2008).

Sparse linear representation has recently been introduced

to object tracking with demonstrated success (Mei and Ling

2011; Mei et al. 2011; Liu et al. 2010; Li et al. 2011; Zhang

et al. 2012a,d, 2014; Zhong et al. 2012; Bao et al. 2012).

In the ℓ1 tracking method (Mei and Ling 2011), a candi-

date region is represented by a sparse linear combination of

target and trivial templates where the coefficients are com-

puted by solving a constrained ℓ1 minimization problem with

non-negativity constraints. As this method entails solving

one ℓ1 minimization problem for each particle, the com-

putational complexity is significant. An efficient ℓ1 tracker

with minimum error bound as well as occlusion detection is

subsequently developed (Mei et al. 2011. In addition, meth-

ods based on dimensionality reduction as well as orthogo-

nal matching pursuit (Li et al. 2011) and efficient numerical

solver using an accelerated proximal gradient scheme (Bao et

al. 2012) have been developed to make the ℓ1 tracking method

more efficient. In Liu et al. (2010), dynamic group sparsity is

incorporated in the tracking problem and high dimensional

image features are used to improve tracking performance.

Most recently, an algorithm that learns the sparse represen-

tations of all particles jointly (Zhang et al. 2012d, 2013a) is

proposed for object tracking.

Considerable progress has been made in recent years for

solving low rank matrix minimization and completion prob-

lems. Since matrix rank is not a convex function, its convex

surrogate (i.e., the matrix nuclear norm) is used for approx-

imation and efficiently solved (Cai et al. 2010; Ma et al.

2011; Recht et al. 2010; Peng et al. 2011) with numerous

applications including face recognition (Peng et al. 2011),

image retrieval (Liu et al. 2012), subspace clustering (Liu

et al. 2010), image classification (Zhang et al. 2013b), back-

ground subtraction (Candès et al. 2011), and video denoising

(Ji et al. 2010), among others.

3 Consistent Low-Rank Sparse Tracking

In this section, we present the proposed tracking algorithm

based on temporally consistent low-rank sparse representa-

tions of particle samples.

3.1 Consistent Low-Rank Sparse Representation

In this work, particles are sampled around the previous

object locations to predict the state st of the target at time
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t , from which we crop the region of interest yt in the

current image and normalize it to the template size. The

state transition function p(st |st−1) is modeled by an affine

motion model with a diagonal Gaussian distribution. The

observation model p(yt |st ) reflects the similarity between

an observed image region yt corresponding to a particle st

and the templates of the current dictionary. In this paper,

p(yt |st ) is computed as a function of the difference between

the consistent low-rank sparse representation of the tar-

get based on object templates, and its representation based

on background templates. The particle that maximizes this

function is selected to be the tracked target at each time

instance.

At time t , we have n0 sampled particles and the corre-

sponding vectorized gray-scale image observations form a

matrix X0 =
[

x1, x2, . . . , xn0

]

, where the observation with

respect to i-th particle is denoted as xi ∈ R
d . We represent

each observation as a linear combination of templates from a

dictionary Dt = [d1, d2, . . . , dm], such that X0 = Dt Zt .

Here, the columns of Zt =
[

z1, z2, . . . , zn0

]

denote the

representations of particle observations with respect to Dt .

The dictionary columns contain templates that are used

to represent each particle including image observations of

the tracked object and the background. Since our repre-

sentation is constructed on the pixel level, misalignment

between dictionary templates and particle observations may

lead to tracking drifts. To alleviate this problem, the dic-

tionary Dt can be constructed from an overcomplete set

using the transformed templates of the target and back-

ground classes. In addition, this dictionary is progressively

updated.

For efficient and effective tracking, we exploit temporal

consistency to prune particles. A particle is considered tem-

porally inconsistent if its observation is not linearly repre-

sented well by the dictionary Dt and the representation of

the tracked target in the previous frame, denoted as z0. More

specifically, if its ℓ2 reconstruction error ‖xi − Dt z0‖2 is

above a predefined threshold σ , then it is pruned in the cur-

rent frame. Temporal consistency is exploited in this work as

the appearances of the tracked object and its representations

do not vary much in a short time period. Consequently, this

process effectively reduces the number of particles to be rep-

resented from n0 to n, where n0 ≫ n in most cases. In what

follows, we denote the ones after pruning as candidate par-

ticles, their corresponding observations as X ∈ R
d×n , and

their representations as Z ∈ R
m×n .

The representation of each candidate particle is based on

the following observations. (1) After pruning, the candidate

particle observations can be modeled by a low-rank subspace

(i.e., X is low-rank) and therefore Z (i.e., their representations

with respect to Dt ) is expected to be low-rank as discussed in

Sect. 1. (2) The observation xi of a good candidate particle

can be modeled by a small number of nonzero coefficients

in its corresponding representation zi . (3) The aim of object

tracking is to search patches (with respect to particles) which

have a representation similar to previous tracking results. In

other words, a “good” representation should be consistent

over time.

In this work, we formulate the tracking problem by

min
Z,E

λ1 ‖Z‖∗ + λ2 ‖Z‖1,1 + λ3 ‖Z − Z0‖2,1 + λ4 ‖E‖1,1

(1)

such that X = Dt Z + E

where

‖Z‖p,q =

(

∑

j

(

∑

i

∣

∣[Z]i j

∣

∣

p
)

q
p

)
1
q

(2)

and E is the error due to noise as well as occlusion. In this

formulation, λi , i = 1, . . . , 4 are weights that quantify the

trade-off between different terms discussed below. In addi-

tion, [Z]i j denotes the entry at the i-th row and j-th column

of Z. We denote the representation of the previous tracking

result with respect to Dt as z0. The matrix Z0 = 1z⊤
0 is a

rank one matrix, where each column is z0.

3.1.1 Low-Rank Representation: ‖Z‖∗

In our formulation, we minimize the matrix rank of the rep-

resentations of all candidate particles together. Since the

rank minimization problem is known to be computationally

intractable (NP-hard) in general, we resort to minimizing its

convex envelope using its nuclear norm ‖Z‖∗. In contrast

to the ℓ1 tracker, the particles at instance t are represented

jointly rather than independently. The proposed joint repre-

sentation capitalizes on the structure of particle representa-

tions which facilitates a more robust and computationally

efficient solution. Instead of solving n independent ℓ1 min-

imization problems by the interior point method as in the

ℓ1 tracker (Mei and Ling 2011), we consider a single rank

minimization problem solved by a sequence of closed form

update operations.

3.1.2 Sparse Representation: ‖Z‖1,1

The templates in the dictionary Dt capture possible appear-

ance variations of the target object and background, and only

a small number of these templates is required to reliably rep-

resent the observation of each candidate particle. This sparse

representation scheme has been shown to be robust to occlu-

sion or noise in visual tracking (Mei and Ling 2011; Zhang

et al. 2013a).
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3.1.3 Temporal Consistency: ‖Z − Z0‖2,1

To encourage temporal consistency in the representation

of the tracking result, we compare the representations of

the particles in the current frame Z to that in the previ-

ous frame z0 using the ℓ2,1 matrix norm. This approach

effectively enforces temporal consistency for visual tracking

although more sophisticated methods (e.g., weighted sim-

ilarity function between Z and z0) can be employed. The

use of the ℓ2,1 norm is motivated by its effect on the dif-

ference ∆Z = Z − Z0. This norm encourages sparsity at

the level of the columns of ∆Z (at the particle level). In

other words, the regularization norm encourages the rep-

resentations of most particles (those represented well by

the current object templates in Dt ) in the current frame to

be similar to that of the previous tracking result. Equiv-

alently, it allows only a small number of particles (those

observations not represented well by object templates) to

have representations different from the previous tracking

result.

3.1.4 Reconstruction Error: ‖E‖1,1

For robustness against sparse significant errors (e.g., due to

occlusion), we seek to minimize the ℓ1 norm of each column

of E. This sparse error assumption has been adopted in track-

ing (Mei and Ling 2011) and other applications (Wright et

al. 2009). Unlike the ℓ1 tracker (Mei and Ling 2011) that

incorporates sparse error by augmenting Dt with a large

number (i.e., 2d) of trivial templates and computing the cor-

responding coefficients, we obtain the reconstruction error

E ∈ R
d×n . Furthermore, the values and support of columns

in E are informative since they indicate the presence of occlu-

sion (large values but sparse support) and whether a candidate

particle is sampled from the background (large values with

non-sparse support).

3.1.5 Adaptive Dictionary

The dictionary Dt is initialized by sampling image patches

around the initial target position. For accurate tracking, the

dictionary is updated in successive frames to model appear-

ance change of the target object. To alleviate the problem

of tracking drift, we augment Dt with representative tem-

plates of the background such that Dt = [DO DB] where

DO and DB represent the target object and background tem-

plates respectively. Thus, the representation zk of a particle is

composed of an object representation zO
k and a background

representation zB
k . The tracking result yt at instance t is the

particle xi such that

i = arg max
k=1,...,n

(‖zO
k ‖1 − ‖zB

k ‖1). (3)

This encourages the tracking result to be modeled well

by object templates and not background templates. We also

exploit discriminative information to design a systematic pro-

cedure for updating Dt (see Sect. 3.4).

3.2 Discussion

As shown in (1), we propose a generic formulation for robust

object tracking with consistent low-rank sparse representa-

tion. With different setting of λ1, λ2, and λ3, (1) reduces to

various object tracking algorithms as follows:

– Low Rank Tracker (LRT): When λ2 = λ3 = 0, the pro-

posed algorithm reduces to a low rank tracker. In this case,

only the correlations among candidate particle observa-

tions are considered whereas sparsity and temporal con-

sistency properties are not exploited.

– Sparse Tracker (ST): When λ1 = λ3 = 0, the proposed

algorithm reduces to a sparse tracker. It is similar to the ℓ1

tracker (Mei and Ling 2011) that encourages each particle

observation to be represented well by a small number of

templates.

– Low Rank Sparse Tracker (LRST): When λ1 �= 0,

λ2 �= 0, and λ3 = 0, the resulting tracker reduces to

the LRST method (Zhang et al. 2012c). Compared to the

LRT and ST methods, the LRST algorithm performs well

empirically (Zhang et al. 2012c) as it enforces both the

sparsity and low-rank properties.

– Consistent Low Rank Sparse Tracker (CLRST): When

λ1 �= 0, λ2 �= 0, and λ3 �= 0, the proposed algorithm

generalizes the LRST method with temporal consistency,

thereby generating more stable tracking results.

It is worth emphasizing the difference between the pro-

posed CLRST algorithm and several related tracking meth-

ods (Mei and Ling 2011; Zhang et al. 2012d).

– The ℓ1 tracker (Mei and Ling 2011) can be considered

as a special case of Zhang et al. (2012d) and the pro-

posed CLRST algorithm. In the ℓ1 tracker (Mei and Ling

2011), the sparse representations of particles are learned

for each particle independently. However, in Zhang et al.

(2012d) and CLRST, multi-task learning and low-rank

sparse learning are adopted respectively to consider the

relationship among particle observations.

– Both the MTT (Zhang et al. 2012d) and CLRST algo-

rithms consider the structure among particle observa-

tions. However, the assumptions to model this structure

are different. In the MTT method, the tracking problem

is formulated within the multi-task learning framework

by using L21 norm (‖Z‖2,1) such that particle observa-

tions are modeled by only a few (but the same) dictionary
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Fig. 3 Schematic example of the proposed CLRST algorithm. The

representation Z of sample particles (after pruning) X with respect to

dictionary D (set of object and background templates) is learned by

solving (1). Notice that Z is sparse (i.e., few dictionary templates are

used) and low-rank (i.e., dictionary templates are reused for represen-

tation). Here, the rank of Z is 11. The particle xi is selected among

all other particles as the tracking result, since xi is best represented by

object templates only

elements to make all columns of Z similar to each other,

which indirectly forces the rank of the representation

matrix Z to be one. Different from the MTT tracker,

in the CLRST algorithm, the tracking problem is posed

within the low-rank learning framework which enforces

the target observations to lie in a low dimensional sub-

space without explicitly requiring the same dictionary

elements. Different from the MTT tracker, by design the

CLRST algorithm assumes the rank of the representa-

tion matrix Z low which can be one or greater than one.

In the proposed tracking method, the particles are ran-

domly sampled with a Gaussian distribution near a target

object, and the observations of some particles may be

different to each other. Consequently the rank of the rep-

resentation matrix Z is not necessarily one as assume by

the MTT tracker. Compared with the MTT tracker, the

assumption of the CLRST algorithm is less restricted and

more amenable to outlier particles. Experimental results

in Sect. 5 provide empirical evidence of this crucial algo-

rithmic difference.

– The use of low-rank property facilitates learning effective

sparse representation for object tracking. We use the ℓ1

tracker as one example to show why the low-rank prop-

erty helps object tracking. In the ℓ1 tracker, the represen-

tation of each particle is learned independently. Due to

the low-rank property, our tracker learns the representa-

tions of all particles jointly. Namely, the sparse represen-

tations of observations are learned jointly by considering

all particles and the low-rank property (i.e., solving one

rank minimization problem by a sequence of closed form

update operations). However, in the ℓ1 tracker, each par-

ticle is processed independently without considering the

Algorithm 1: Consistent Low-Rank Sparse Tracking

(CLRST) Algorithm.

Input:

– Current frame at t

– Dictionary template Dt−1 = [DO DB]

– All n particles st−1

– Representation of previous tracking result z0

Output:

– Tracked target yt

– Current states st

– Updated target templates Dt = [DO DB]

– Updated representation z0

1: Generate n0 particles

2: Obtain mapped observations corresponding to all particles st to

get X0

3: Use consistency property to prune and obtain candidate particle

observations X based on the reconstruction error ‖X0 − DZ0‖2,

where Z0 = 1z⊤
0 (see Sect. 3.1 for details).

4: Compute low-rank sparse representation Z for X by solving (1)

with Algorithm 3

5: Calculate difference score ∆zi =‖zO
i ‖1−‖zB

i ‖1, i =1, 2, . . . , n

6: Set p(yt |st ) as the difference score for each particle

7: Select the particle with the highest value of ∆zi as the current

tracking result

8: Update z0 based on the tracking result zi

9: Update dictionary template via Algorithm 2

other particles (i.e., solving n ℓ1 optimization problems

where n is the number of particles). Thus, the learned

sparse representation by our algorithm is more compact

and robust for object tracking.

Algorithm 1 shows the main steps of our CLRST method,

and Fig. 3 illustrates how the candidate particle observations
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are used for tracking. Given observations of all pruned parti-

cles X (e.g., 300 particles sampled around the tracked car are

retained) and the current dictionary D = [DO DB], we learn

the representation matrix Z by solving (1). Note that smaller

values are shown with darker color. Clearly, Z is sparse (i.e.,

small number of templates used) and low-rank (i.e., tem-

plates are reused among particles). The particle observation

xi is selected as the current tracking result yt as its differ-

ence (‖zO
i ‖1 − ‖zB

i ‖1) is largest among all particles. Since

the particle observation x j can be considered as a misaligned

representation of the target, it is not modeled well by the

object dictionary DO (i.e., zO
j has small values). On the other

hand, the particle observation xk is represented well by the

background dictionary DB (i.e., zB
k has large values). As illus-

trated in this example, the tracking drift problem is alleviated

by the proposed formulation.

3.3 Solving (1)

Unlike existing algorithms that only focus on one of the two

convex and non-smooth regularizers (based on ℓ1 or low-

rank constraints) the objective function in (1) consists of both

terms. To solve this complex objective function, we introduce

three equality constraints and slack variables:

min
Z1−4,E

λ1 ‖Z1‖∗+λ2‖Z2‖1,1+λ3 ‖Z3‖2,1 +λ4‖E‖1,1

such that:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

X = DZ4 + E

Z4 = Z1

Z4 = Z2

Z4 = Z3 + Z0.

(4)

This transformed problem can be minimized using the

conventional Inexact Augmented Lagrange Multiplier (IALM)

method that has attractive convergence properties for non-

smooth optimization which has been used in matrix rank

minimization problems (Peng et al. 2011). It is an iter-

ative method that augments the conventional Lagrangian

function with quadratic penalty terms that allow closed

form updates for each unknown variable. The updates

are in closed form from (5) to (7), where Sλ([A]i j ]) =

sign([A]i j ) max(0, |[A]i j |−λ) is the soft-thresholding oper-

ator, Jλ (A) = UASλ (�A) V⊤
A is the singular value soft-

thresholding operator, and Lλ(ai ) = max(0, 1− λ
‖ai ‖2

)ai . We

denote ai as the i-th column of matrix A and A = UA�AV⊤
A

as the singular value decomposition. The technical details of

solving this optimization problem are presented in Sect. 4.

X∗ = arg min
X

[

1

2
‖X − A‖2

F + λ‖X‖1,1

]

= Sλ(A) (5)

X∗ = arg min
X

[

1

2
‖X − A‖2

F + λ‖X‖∗

]

= Jλ(A) (6)

Algorithm 2: Dictionary Template Update

Input:

– Target templates of DO.

– Background templates of DB.

– yt , which is the newly chosen tracking target.

Output:

– Dictionary Dt = [DO DB].

1: Initialize: α = 0 and ǫ are predefined parameters at t = 1.

2: zi is the solution of (1). Set ∆zi = ‖zO
i ‖1 − ‖zB

i ‖1.

3: ω is the current weight vector of templates in DO .

4: Update weights according to the coefficients of the

target templates: ωk ← ωk exp(zO
i (k))∀k = 1, · · · , mO .

5: α ← max(α,∆zi ).

6: if (∆zi < ǫα) then

7: α ← 0; r ← arg mink=1,...,mO
ωk .

8: DO (:, r) ← yt . /*replace template with yt */

9: ωr ← median(ω). /*replace weight*/

10: end if

11: Normalize ω such that ‖ω‖1 = 1.

12: Update DB based on the current tracking result.

X∗ = arg min
X

[

1

2
‖X − A‖2

F + λ‖X‖2,1

]

= Lλ(A) (7)

3.4 Dictionary Update

It is well known that tracking algorithms with a fixed appear-

ance dictionary of templates is not effective to account for

appearance change in complex scenes. However, small errors

are likely to be introduced and accumulated if the templates

are updated too frequently, thereby making the tracker drift

away from the target. Numerous approaches have been pro-

posed for template update to alleviate the tracking drift prob-

lem (Matthews et al. 2004; Kaneko and Hori 2003). In this

work, we address this issue by dynamically updating the tem-

plates in Dt .

To initialize the object and background dictionaries, we

sample equal-sized patches at and around the initial posi-

tion of the target. We shift the initial bounding box by 1 to

3 pixels in each dimension similar to Huang et al. (2009),

Mei and Ling (2011) and thus obtain mO = 13 object tem-

plates for the object dictionary DO . In addition, we initialize

the background dictionary DB , with image patches randomly

sampled at a sufficient distance from the surrounding back-

ground based on the initial tracking result in a way similar

to Grabner et al. (2006), Babenko et al. (2009), Zhong et

al. (2012) and obtain m B = 12 background templates. All

templates are normalized to half the size of the target object

manually initialized.

Each object template in DO is associated with a weight ωi

proportional to the frequency that it is selected for tracking.

The weight of an object template in DO is updated based on

how frequently that template is used in representing the cur-

rent tracking result zi (computed from (3)). If zi is adequately
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represented (based on a predefined threshold) by the current

dictionary, then there is no need to update it. Otherwise, the

object template with the smallest weight is replaced by the

current tracking result, and its weight is set to the median of

the current normalized weight vector ω. The main steps of

the template update for DO are summarized in Algorithm 2.

On the other hand, the background dictionary DB is updated

at every frame by re-sampling patches at a sufficient distance

from the tracking result.

4 Optimization

In this section, we present algorithmic details on how to solve

the optimization problem (4). By introducing augmented

Lagrange multipliers (ALM) to incorporate the equality con-

straints into the objective function, we obtain the Lagrangian

function in (8) that can be optimized through a sequence of

simple closed form update operations in (9) where Y1, Y2,

Y3 and Y4 are Lagrange multipliers, and u1 > 0, u2 > 0,

u3 > 0 and u4 > 0 are four penalty parameters.

L(Z1,...,4, E, Y1,...,4, u1,...,4)

= λ1 ‖Z1‖∗ + λ2‖Z2‖1,1 + λ3‖Z3‖2,1 + λ3‖E‖1,1

+ tr
[

Y⊤
1 (X − DZ4 − E)

]

+
u1

2
‖X − DZ4 − E‖2

F

+ tr
[

Y⊤
2 (Z4 − Z1)

]

+
u2

2
‖Z4 − Z1‖

2
F

+ tr
[

Y⊤
3 (Z4 − Z2)

]

+
u3

2
‖Z4 − Z2‖

2
F

+ tr
[

Y⊤
4 (Z4 − Z3 − Z0)

]

+
u3

2
‖Z4 − Z3 − Z0‖

2
F

(8)

⇒ min
Z1,...,4,E,Y1,...,4,u1,...,4

L(Z1,...,4, E, Y1,...,4, u1,...,4) (9)

The above problem can by solved by either exact or inex-

act ALM algorithms (Glowinski and Marrocco 1975; Gabay

and Mercier 1976; Boyd et al. 2011), and we take an inexact

approach in this work for computational efficiency. The main

steps of this exact approach are summarized in Algorithm 3,

and the convergence properties can be proved similar to those

in Boyd et al. (2011). In (9), the variables can be viewed as

two groups: local variables (Z1, Z2, Z3, E) and global vari-

able Z4. By updating these two group variables iteratively, the

convergence can be guaranteed (Boyd et al. 2011). We note

that an IALM algorithm is an iterative method that solves for

each variable in a coordinate descent manner. That is, each

iteration of IALM involves update of each variable one at a

time, with the other variables fixed to their most recent val-

ues. Consequently, we obtain six update steps corresponding

to all the variables. We note that steps 3-8 of Algorithm 3 all

have closed form solutions.

Step 1. Update Z1: Updating Z1 requires the solution to

the problem (10) which can be computed in closed form

(11), where Jλ (X) = USλ (�) V⊤ is a thresholding operator

with respect to a singular value λ; Sλ

(

Xi j

)

= sign (Xi j )

max
(

0, |Xi j | − λ
)

is the soft-thresholding operator; and X =

U�V⊤ is the singular value decomposition of X.

Z∗
1 = arg min

Z1

λ1

u2

‖Z1‖∗ +
1

2

∥

∥

∥

∥

Z1 − Z4 −
1

u2
Y2

∥

∥

∥

∥

2

F

(10)

⇒ Z∗
1 = J λ1

u2

(

Z4 + 1
u2

Y2

)

(11)

Step 2. Update Z2: Z2 is updated by solving the optimization

problem (12) with the closed form solution (13).

Z∗
2 = arg min

Z2

λ2

u3

‖Z2‖1,1 +
1

2

∥

∥

∥

∥

Z2 − Z4 −
1

u3
Y3

∥

∥

∥

∥

2

F

(12)

⇒ Z∗
2 = S λ2

u3

(

Z4 + 1
u3

Y3

)

(13)

Step 3. Update Z3: Z3 is updated by solving the optimization

problem (14) with the closed form solution (15).

Z∗
3 = arg min

Z3

λ3

u4

‖Z3‖2,1 +
1

2

∥

∥

∥

∥

Z3 − Z4 + Z0 −
1

u4
Y4

∥

∥

∥

∥

2

F

(14)

⇒ Z∗
3 = L λ3

u4

(

Z4 − Z0 + 1
u4

Y4

)

(15)

Step 4. Update E: E is updated by solving the optimization

problem (16) with the closed form solution (17).

E∗ = arg min
E

λ4

u1

‖E‖1,1 +
1

2

∥

∥

∥

∥

E − Dt Z4 + X −
1

u1
Y1

∥

∥

∥

∥

2

F

(16)

⇒ E∗ = S λ4
u1

(

Dt Z4 − X + 1
u1

Y1

)

(17)
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Algorithm 3: Consistent Low-Rank Sparse Representa-

tion (Solving (4))

Input : data matrix X, parameters λ1, λ2, λ3, λ4, and ρ

Output: Z and E

Initialize Z4 = 0, E = 0, Y1 = 0, Y2 = 0, Y3 = 0, Y4 = 01

while not converged do2

Fix other variables and update Z1 (11)3

Fix other variables and update Z2 (13)4

Fix other variables and update Z3 (15)5

Fix other variables and update E (17)6

Fix other variables and update Z4 (19)7

Update multipliers and parameters (20)8

Update final solution Z ← Z49

end10

Step 5. Update Z4: Z4 is updated by solving the optimization

problem (18) with the closed form solution (19).

Z∗
4 = arg min

Z4

tr
[

Y⊤
1 (X − DZ4 − E)

]

+
u1

2
‖X − DZ4 − E‖2

F

+ tr[Y⊤
2 (Z4 − Z1)] +

u2

2
‖Z4 − Z1‖

2
F

+ tr[Y⊤
3 (Z4 − Z2)] +

u3

2
‖Z4 − Z2‖

2
F

+tr[Y⊤
4 (Z4−Z3−Z0)]+

u4

2
‖Z4−Z3−Z0‖

2
F (18)

⇒ Z∗
4 = G1

[

D⊤ (X − E) + G2 + G3

]

(19)

where G2 = u2
u1

Z1 + u3
u1

Z2 + u4
u1

(Z3+Z0), G1

=
(

D⊤D+ u2
u1

I + u3
u1

I + u4
u1

I
)−1

, and G3 = 1
u1

(

D⊤Y1 − Y2 − Y3 − Y4

)

.

Step 6. Update Multipliers Y1, Y2, Y3, Y4: We update the

Lagrange multipliers (20), where ρ > 1.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Y1 = Y1 + u1(X − DZ4 − E)

Y2 = Y2 + u2(Z4 − Z1)

Y3 = Y3 + u3(Z4 − Z2)

Y4 = Y4 + u4(Z4 − Z3 − Z0)

u1 = ρu1; u2 = ρu2; u3 = ρu3; u4 = ρu4

(20)

The IALM algorithm that solves (4) is shown in Algo-

rithm 3, where convergence is reached when the change in

the objective function or solution Z is below a pre-defined

threshold (e.g., τ = 10−3 in this work). In addition, we set

u1 = u2 = u3 = u4. Here, we note that other penalty update

rules and stopping criteria can be used for this optimization

problem as discussed in Boyd et al. (2011).

Computational Complexity: At each frame, each of the

n0 particles drawn in the LRST, ST, and LRT methods

requires solving one optimization as no temporal consis-

tency is exploited for pruning. In the proposed CLRST algo-

rithm, the number of particles is pruned from n0 to n can-

didate particles which are represented jointly by solving

(1). The computational bottleneck of the LRT, LRST and

CLRST methods lies in computing singular value decom-

position (SVD) of Z. The time complexity for solving one

SVD of an m × n matrix is O(min{mn2, m2n}) in gen-

eral. Since m < n in this work, the computational com-

plexity of SVD here is O(m2n). This complexity does not

account for the low-rank nature of Z. It is worthwhile not-

ing that more computationally efficient SVD methods exist

for sufficiently low-rank matrices (Brand 2006) which can

be used to reduce the time complexity of the proposed algo-

rithm. For the LRT and LRST methods, the time complex-

ity is O(m2n0). In addition, we do not need to perform a

matrix inverse operation at each iteration to compute G1 in

Step 5. All what it entails is the inversion operation once

with the complexity of O(m3). In this case, (19) reduces to

simple matrix multiplication operations, and its time com-

plexity is O(m2n). As a result, the total computation cost is

O(m3 + m2nǫ−0.5), where the number of IALM iterations

is O(ǫ−0.5). In contrast, the time complexity for LRT and

LRST is O(m3 + m2n0ǫ
−0.5).

The proposed ST tracking method is efficient as the solu-

tion involves soft-thresholding operations. This complexity

is similar to that of the recent ℓ1 tracking algorithms (Bao et

al. 2012; Li et al. 2011). We note that several fast techniques

(Mei et al. 2011; Bao et al. 2012; Li et al. 2011) can also

be applied to the proposed tracking methods for additional

speedup. In contrast, the computational complexity of the ℓ1

tracker (Mei and Ling 2011) is O(n0d2) since the number of

dictionary templates (object and trivial) is (m + 2d) and n0

Lasso problems are solved independently. Empirical results

show that the proposed trackers are at least two orders of

magnitude faster than ℓ1 tracker in general. For example, the

average run-time for the CLRST and ℓ1 methods are 0.63

and 340 seconds respectively, when m = 25, n0 = 400, and

d = 32 × 32. Furthermore, better tracking results can be

achieved with larger values of m and d without increasing

computational overhead significantly. Compared to the ST,

LRT, and LRST methods, the CLRST algorithm is most effi-

cient, since it involves fewer particles (as n ≪ n0 from the

pruning process).

5 Experimental Results

In this section, we present experimental results on evaluation

of the proposed tracking algorithm against several state-of-

the-art methods.
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5.1 Datasets

For thorough evaluations, we use a set of 25 challenging

videos with ground truth object locations including One

Leave Shop Reenter1cor (OLSR), One Shop One Wait2cor

(OSOW), biker, bolt, car11, car4, carchase, coke11, david

indoor (david), faceocc2, faceocc, football, girl, panda, shak-

ing, singer, singer low frame rate (singerlfr), skating, skating

low frame rate (skatinglfr), soccer, surfer, sylv, trellis70, tud-

crossing, and volkswagen.

These videos contain complex scenes with challenging

factors, e.g., cluttered background, moving camera, fast

movement, large variation in pose and scale, occlusion, shape

deformation and distortion.

5.2 Evaluated Algorithms

We compare the proposed tracking methods (CLRST, LRST,

LRT and ST) with 14 state-of-the-art visual trackers includ-

ing visual tracking by decomposition (VTD) (Kwon and

Lee 2010), ℓ1 tracker (Mei and Ling 2011), incremental

visual tracking (IVT) method (Ross et al. 2008), online

multiple instance learning (MIL) (Babenko et al. 2009)

method, fragments-based (Frag) (Adam et al. 2006) track-

ing method online Adabost boosting (OAB) method (Grab-

ner et al. 2006), multi-task tracking (MTT) (Zhang et al.

2012d) method, circulant structure tracking (CST) method

(Henriques et al. 2012), real time compressive tracking

(RTCT) method (Zhang et al. 2012a), tracking by detection

(TLD) method (Kalal et al. 2010), context-sensitive track-

ing (CT) method (Dinh et al. 2011), distribution field track-

ing (DFT) method (Sevilla-Lara and Learned-Miller 2012),

sparse collaborative model (SCM) (Zhong et al. 2012), and

Struck (Hare et al. 2011). For fair comparisons, we use the

publicly available source or binary codes provided by the

authors. In addition, we use the same initialization and para-

meter settings in all experiments.

5.3 Evaluation Criteria

Two metrics are used to evaluate tracking performance.

The first metric is the center location error which is

the Euclidean distance between the central location of a

tracked target and the manually labeled ground truth. The

other is an overlap ratio based on the PASCAL challenge

object detection score (Everingham et al. 2010). Given the

tracked bounding box RO IT and the ground truth bound-

ing box RO IGT , the overlap score is computed as score =
area(RO IT ∩RO IGT )
area(RO IT ∪RO IGT )

. To rank the tracking performance, we

compute the average overlap score across all frames of each

image sequence.

Table 1 Effects of σ on the average number of particles after prun-

ing (average particle number), average computational cost per frame

(seconds), and average overlap score

σ 0.5 0.8 1.0 1.2 1.5

Average particle numbers 17 76 177 369 439

Average computational cost 0.34 0.75 1.78 3.71 3.97

Average overlap score 0.63 0.67 0.70 0.62 0.62

5.4 Implementation Details

All our experiments are carried out in MATLAB on a 2.66

GHz Intel Core2 Duo machine with 6 GB RAM. The tem-

plate size d is set to half the size of the target object manually

initialized in the first frame. We use the affine transformation

where the state transitional probability, p (st |st−1), is mod-

eled by a zero-mean Gaussian distribution and a diagonal

covariance matrix σ0 with values (0.005, 0.0005, 0.0005,

0.005, 4, 4): p (st |st−1) ∼ N (0, σ0). The definition of

p(yt |st ) is p(yt |st ) = ∆zi , i = 1, 2, . . . , n. The representa-

tion threshold ǫ in Algorithm 2 is set to 0.5. The parameter

σ is set to 1.0 in the CLRST method to prune particles. The

number of particles n0 is set to 500 and the total number of

templates m is set to 25.

We first do parameter analysis for our proposed method

and show how the parameters affect the performance and

how to decide their values in Sect. 5.5.3. We present qual-

itative and quantitative results of the tracking methods in

Sects. 5.6 and 5.7. The run-time performance is discussed

in Sect. 5.8. The videos are available at http://faculty.ucmerced.

edu/mhyang/project/clrst, and the MATLAB source code will be

made available soon.

5.5 Parameter Analysis

Several parameters play important roles in the proposed

tracking algorithm. In this section, we show how to deter-

mine their values and their effects on tracking performance.

5.5.1 Effect of σ

As discussed in Sect. 3.1, a particle xi is pruned if the cor-

responding ℓ2 reconstruction error ‖xi − Dt z0‖2 is above

a predefined threshold σ . Thus, σ is closely related to the

number of particles after pruning, the computational cost

per frame, and the tracking performance. To analyze the

effect of σ on tracking performance, we use different σ

on five videos with 1912 frames. To simplify this problem,

we assume that σ can be parameterized by a discrete set

� = {0.5, 0.8, 1.0, 1.2, 1.5}. Experimental results, shown

in Table 1, indicate that it is a good trade-off to set the value

of σ to 1.
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Fig. 4 Effects of λ1, λ2, and λ3 on tracking performance

5.5.2 Effect of λ

There are four parameters λ1, λ2, λ3, and λ4 in the objective

function (1). To demonstrate the effects of these parameters,

we fix one parameter value one at a time and vary the values

of the others. As λ1, λ2, and λ3 are related to the coefficients

Z, and λ4 is related to E, we fix the λ4 = 1 and change other

parameter values.

For sensitivity analysis, all the λi , i = 1, . . . , 3 are para-

meterized by a discrete set Λ, where Λ={1e−4, 1e−3, 0.01,

0.1, 0.5, 1.0, 2.5, 5.0, 10.0}. We evaluate different combina-

tions of these values on five videos with 1912 frames. For

each combination, we compute the average overlap score

from all frames. As a result, for each λ1 ∈ Λ with different

λ2 and λ3, we obtain 9 × 9 average overlap scores. Given

a fixed λ1, the tracking performance is stable for different

λ2 and λ3, we average the 9 × 9 scores. For different λ1, we

obtain the corresponding results as shown in Fig. 4a. Figure 4

shows the sensitivity analysis of λi , i = 1, . . . , 3. Overall,

the proposed algorithm is robust to different settings as long

the value is within reasonable ranges. From on these results,

we can set λ1 = 5, λ2 = 0.1, λ3 = 0.5, and λ4 = 1.0 for the

objective function (1).

5.5.3 Adaptive Parameter Learning: λ3

Temporal consistency allows for more stable tracking espe-

cially when the appearance of the tracked target is smoothly

varying over time. As shown in (1), λ3 is the weight of tem-

poral consistency and decides how important this property is

for object tracking at each time instance. Here, we denote the

representation of the current tracking result as z and its repre-

sentation in the previous frame as z0. At a time instance when

the object undergoes smooth appearance change (i.e., small

values of ∆z0 = ‖z − z0‖2), temporal consistency is useful

for robust object tracking, so the parameter λ3 should be large

in this case. However, when appearance significant change

Fig. 5 Learning a non-parametric likelihood model p(∆z0|λ3) for a

discrete value set of λ3. When the change in representation is small (i.e.,

∆z0 is small), the choice of λ3 is important and the most likely value of

λ3 is inversely proportional to ∆z0. When the change in representation

is significant (i.e., ∆z0 is large), the temporal consistency constraint is

suppressed (i.e., λ3 = 0.)

(i.e., large values of ∆z0) occurs, temporal consistency is not

helpful and should be suppressed. In this case, λ3 should be

set to a small value. As such, this parameter should be adap-

tively changed for different frames in the same sequence, as

well as, across different sequences. In this section, we fix

the values of the parameters λ1, λ2 and λ4 as obtained in

Sect. 5.5.2, and discuss how λ3 (related to temporal consis-

tency) can be adaptively designed based on target appearance

changes.

The basic idea of adaptive parameter learning is to learn

the distribution of pair pattern (λ3,∆z0) from the training

videos, which are not used for test sequences. At each frame,

our goal is to select the best λ3 and its corresponding ∆z0

with the labeled target position (ground truth) in the training

set. The learning details are as follows. Given one frame, for
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each λ ∈ Λ, we obtain the corresponding tracking result by

solving (1). To simplify the problem, we further assume that

λ3 can be parameterized by a discrete set denoted as Λ. In

this work, we set Λ = {1e−4, 5e−4, 1e−3, 5e−3, 0.01, 0.05,

0.1, 0.5, 1.0, 2.5, 5.0}. We then use the ground truth at that

frame to select the closest one from all the tracking results

and obtain the best pair pattern (λ3,∆z0). Consequently, for

each value λ3 ∈ Λ, we construct its likelihood p(∆z0|λ3)

with non-parametric kernel density estimation, and obtain

a family of distributions, each of which is estimated in a

data-driven manner. A set of these probabilities are shown in

Fig. 5. We note that all the curves have single modes, which

validate our assumption (small values of ∆z0 occur at larger

values ofλ3 and vice versa). We also observe that some curves

(λ3 = 0.0001, 0.001, 0.01) are similar with almost the same

tracking results. Given a test frame with ∆z0, we obtain the

best λ3 by selecting λ3 ∈ Λ that maximizes the likelihood

and use the λ3 for the next unseen video frame.

5.6 Qualitative Comparison

Figures 6 and 7 show the tracking results of 18 trackers on

25 sequences. The tracking results are discussed below based

on the main challenging factors in each video.

Occlusion: In the OLSR sequence shown in Fig. 6a, the tar-

get woman walking down the corridor is partially occluded

by a man. The OAB method loses track of the woman and

starts to follow the man when partial occlusion occurs at

frame 28. Other trackers are able track the woman accurately

except the MIL and TLD methods. Among all trackers, the

MTT, CLRST, and DFT methods perform well. Some track-

ing results on the OSOW sequence are shown in Fig. 6b.

All methods track the target person well where limited par-

tial occlusion occurs. Figure 6c shows some results on the

faceocc sequence where the target face is heavily occluded

by a magazine. Most sparse trackers perform well in this

sequence whereas the OAB, RTCT, MIL and CT methods

drift away from the target when heavy occlusion occurs. Fig-

ure 6d shows some results on the tudcrossing sequence where

the target vehicle is occluded by crossing pedestrians. The

MIL, VTD, OAB, CST, Struck, and CT methods drift away

from the target object when occlusion occurs. On the other

hand, the ℓ1, DFT, TLD, and the proposed CLRST methods

perform well in this sequence.

Illumination: Some tracking results of the car4 sequence are

shown in Fig. 6e. The OAB, Frag, DFT, and VTD methods

start to drift from the target at frame 187 when the vehi-

cle goes underneath the overpass. The MIL algorithm starts

drift away from the target object at frame 200, and the RTCT

and SDG methods start to drift at frame 233, The ST, CT,

TLD, Struck, and ℓ1 methods are able to track the target

although with some errors. On the other hand, the target

object is successfully tracker by the IVT, LRT, LRST and

CLRST algorithms throughout the entire sequence despite

large illumination changes. Figure 6f shows some tracking

results on the car11 sequence. Most trackers (RCT, TLD,

MIL, OAB, CT, ST, and ℓ1) drift away from the target vehi-

cle at different frames. The Struck, IVT, VTD, LRT, LRST

and CLRST methods perform well throughout the whole

sequence. Overall, the CLRST, Struck, and LRST trackers

perform better than the others as shown in Tables 2 and 3.

The singer sequence contains significant illumination, scale,

and viewpoint changes and most trackers drift away from

the target object as shown in Fig. 6g. The VTD and pro-

posed trackers perform well in this sequence. The singerlfr

sequence contains the same scenes as the singer video except

at low frame rate. Similar to the tracking results in the singer

sequence, the proposed tracking algorithms (except the ST

approach) and the VTD method perform well in the singerlfr

sequence.

Background Clutter: The football sequence includes scenes

with cluttered background. The RTCT, OAB, Frag, CT, ℓ1,

and ST trackers drift away from the target at different frames

when similar objects appear in close proximity to the tar-

get object. Overall, the proposed LRT, LRST and CLRST

algorithms successfully track the target object. Some track-

ing results on the soccer sequence are shown in Fig. 6j. The

CLRST and LRST methods accurately track the target object

despite scale and pose changes as well as occlusion by con-

fetti. In contrast, other methods (IVT, Struck, ℓ1, OAB, MIL,

and Frag) fail to track the target object reliably.

Illumination and Pose Variation: Figure 6k shows some

tracking results on the david sequence where the Frag, RTCT,

CT, VTD, Struck, and SDG methods fail at different frames.

The OAB method drifts away from the target object at frame

550. The MIL and ℓ1 trackers adequately track the target, but

with certain drift, especially at frames 690 and 500, respec-

tively. The IVT, MTT, DFT, TLD, CST ST, LRT, LRST

and CLRST algorithms are able to track the target accu-

rately throughout the sequence. The trellis70 sequence is

captured in an outdoor environment where the object appear-

ance changes significantly as a result of cast shadows, motion

and head pose variation. Figure 6l shows some results where

almost all the methods do not perform well in this sequence.

However, the CLRST, LRST, LRT, and MTT methods per-

form better than the others. Some tracking results on the

sequence sylv are shown Fig. 6m. The IVT tracker fails at

frame 613 as a result of a combination of large pose and illu-

mination change. The Struck, ST, LRT, LRST and CLRST

methods are able to track the target in this sequence, whereas

the Frag, MIL, VTD, OAB, DFT, CT, CST, and ℓ1 trackers

slightly drift away from the target.

Occlusion and Pose Variation: The can in the coke11

sequence is frequently occluded and rotated. Figure 7a shows

some tracking results where the CLRST, LRST, LRT, ST,

ℓ1, SDG, MTT, Struck, OAB, and MIL methods perform
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Fig. 6 Tracking results of 18 trackers (denoted in different colors) on 13 image sequences. Frame numbers are displayed red. See text for details.

Results best viewed on high-resolution displays (Color figure online)
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Fig. 7 Tracking results of 18 trackers (denoted in different colors) on 12 image sequences. Frame numbers are displayed in red. See text for details.

Results best viewed on high-resolution displays (Color figure online)
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Table 2 The average center location error of 18 different trackers on 25 different image sequences

Video CLRST LRST LRT ST ℓ1 MTT RTCT IVT MIL OAB Frag VTD CST CT DFT TLD SDG Struck

OLSR 1.8 3.0 1.9 1.9 1.9 1.7 8.3 1.9 9.8 68.3 4.0 2.4 1.9 4.1 1.8 10.9 2.0 5.0

OSOW 2.3 6.8 2.6 2.9 2.8 2.5 15.2 3.0 11.6 4.6 5.6 2.7 4.6 2.7 3.8 11.1 2.4 4.7

Biker 11.8 27.7 59.0 25.3 29.4 14.0 16.0 76.8 29.6 22.0 104.4 17.3 18.4 121.6 122.6 86.9 73.7 48.0

Bolt 8.4 7.3 11.9 39.2 110.2 95.0 22.3 87.4 9.9 108.2 17.9 16.1 9.0 147.6 36.9 105.8 35.9 144.3

Car11 1.3 2.5 2.7 21.5 19.2 1.9 117.8 5.4 53.8 5.7 72.7 3.7 2.1 17.6 8.1 29.0 2.9 1.8

Car4 2.0 2.6 2.1 12.7 8.5 2.2 86.3 6.4 53.8 88.1 127.3 27.0 18.3 9.2 89.6 6.9 59.4 2.3

Carchase 3.3 9.2 44.2 44.2 21.7 10.9 19.1 18.5 20.4 4.2 11.1 44.4 3.7 5.9 46.3 3.9 3.9 2.5

Coke11 3.6 4.7 7.0 6.0 12.1 7.3 11.1 58.5 13.7 11.3 71.0 62.7 5.9 5.8 16.3 11.6 5.2 4.0

David 9.1 13.5 13.3 15.8 16.2 16.0 32.4 13.1 30.3 26.4 73.0 64.9 19.7 36.0 15.4 16.6 61.6 46.7

Faceocc2 8.5 6.6 5.8 6.2 15.2 8.1 6.0 6.5 10.2 20.8 48.2 11.8 6.0 8.3 7.2 13.3 10.3 6.5

Faceocc 8.4 9.6 6.0 7.5 7.0 7.7 19.0 9.1 34.3 17.2 17.9 8.7 4.5 31.2 4.7 14.8 4.3 8.4

Football 3.4 4.4 4.3 14.6 15.4 4.7 123.3 5.2 8.0 53.3 6.3 3.7 7.2 41.7 5.2 6.0 4.1 6.9

Girl 3.8 4.0 4.7 3.2 5.0 4.5 17.4 4.2 12.4 11.0 7.4 11.4 38.2 12.7 19.1 8.3 3.3 18.6

Panda 8.3 10.3 7.9 8.5 34.8 9.8 6.2 39.7 6.2 7.5 5.8 30.3 92.4 55.7 33.7 22.2 8.6 5.8

Shaking 2.7 3.9 4.4 3.2 37.8 8.4 86.6 52.2 7.9 100.3 15.3 4.0 13.6 33.9 95.4 21.0 4.0 54.9

Singer 1.5 1.9 1.6 2.1 5.3 1.8 5.9 9.8 11.1 63.0 26.9 1.9 6.9 65.6 6.6 44.1 1.8 4.5

Singerlfr 4.5 1.7 6.3 8.6 20.3 3.7 13.3 15.7 42.3 20.5 51.9 9.8 98.1 93.5 24.2 16.6 39.8 43.0

Skating 4.5 5.0 4.8 4.6 20.1 7.4 84.9 74.9 49.2 39.3 63.3 5.0 5.2 35.7 57.4 99.3 28.0 51.9

Skatinglfr 2.7 3.1 3.4 29.5 31.1 3.4 62.4 57.9 44.0 39.8 53.3 6.2 41.5 61.3 80.8 52.6 128.0 45.7

Soccer 11.8 8.7 15.4 15.1 58.5 14.3 79.6 97.8 46.3 65.3 41.4 10.5 35.9 72.3 62.4 29.8 42.2 41.0

Surfer 10.0 14.0 10.3 10.2 28.0 22.3 29.8 75.1 8.4 8.1 186.1 8.7 78.4 7.9 139.4 12.5 111.4 9.2

Sylv 4.4 5.2 5.4 5.9 14.5 4.8 13.5 39.4 15.3 10.4 6.8 7.4 6.8 6.5 10.9 5.2 5.6 4.4

Trellis70 5.8 6.8 7.4 14.5 31.1 10.3 42.4 54.0 37.3 41.5 55.7 47.8 7.6 26.0 60.1 50.9 23.6 28.3

Tudcrossing 17.3 30.2 35.8 46.2 6.8 14.3 55.1 25.9 51.2 26.2 10.8 43.1 58.0 26.7 10.6 16.7 12.9 17.8

Volkswagen 5.6 4.9 3.5 3.6 181.3 9.3 288.0 130.5 19.4 10.1 241.6 11.0 182.9 10.0 253.5 3.5 4.2 1.7

On average, the proposed trackers (ST, LRT, LRST and CLRST) outperform the other 14 state-of-the-art trackers. For each sequence, the smallest

and second smallest distances are denoted in italic and bold, respectively

well throughout the entire sequence. Tracking results on the

faceocc2 sequence are shown in Fig. 7b where most track-

ers drift away from the target when it is heavily occluded. As

the proposed CLRST algorithm exploits sparse and low-rank

representation as well as temporal consistency to account for

occlusion, it performs well in this sequence. Figure 7c shows

tracking results on the panda sequence where the target

undergoes out-of-plane pose variation and shape deforma-

tion. The Frag, OAB, Struck, and MIL methods perform well

which can be attributed to the local representation schemes

or local discriminative features. While the proposed track-

ing methods perform as well as the above methods, the other

trackers fail to track the target.

Abrupt Motion and Pose Variation: The biker sequence

contains scenes with abrupt motion and large pose variation

as shown in Fig. 7d. Most methods fail to track the target

objects well when the target undergoes out-of-plane rota-

tion and abrupt motion. Nevertheless, both MTT and CLRST

algorithms perform well throughout the entire sequence with

more stable tracking results. Figure 7e shows tracking results

of the surfer sequence where the target person undergoes

acrobat movements with 360 degrees out of plane rotation.

The RTCT, DFT and Frag methods start to drift at frames

402, 415, and 418, respectively. The SDG, CST, and IVT

methods drift at frames 480, 556, and 562 due to the abrupt

motion. On the other hand, the CT, OAB, Struck, MIL and

CLRST methods perform well. In the bolt sequence (Fig. 7f),

several objects appear in the same scenes with rapid appear-

ance change due to shape deformation and fast motion. The

CLRST, LRST, LRT, MIL, and CST are able to track the tar-

get object in most frames. However, the IVT, VTD, ℓ1, DFT,

and MTT methods do not perform well when similar objects

appear near the target.

Abrupt Motion, Pose Variation and Occlusion: Figure 7g

shows tracking results for the girl sequence. The ST, LRT,

LRST, CLRST, SDG, MTT and ℓ1 methods are capable of

tracking the target for the entire sequence. Other trackers

experience drift at different time instances (Struck at frame
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Table 3 The average overlap score of 18 different trackers on 25 different videos

Video CLRST LRST LRT ST ℓ1 MTT RTCT IVT MIL OAB Frag VTD CST CT DFT TLD SDG Struck

OLSR 0.87 0.77 0.86 0.86 0.86 0.88 0.71 0.86 0.67 0.17 0.78 0.81 0.84 0.73 0.86 0.68 0.86 0.77

OSOW 0.88 0.74 0.83 0.83 0.87 0.86 0.56 0.83 0.56 0.71 0.77 0.86 0.81 0.81 0.82 0.65 0.87 0.81

Biker 0.59 0.45 0.30 0.44 0.39 0.68 0.45 0.31 0.43 0.44 0.27 0.49 0.45 0.39 0.27 0.30 0.36 0.38

Bolt 0.60 0.67 0.53 0.36 0.20 0.03 0.31 0.02 0.56 0.02 0.44 0.46 0.63 0.07 0.37 0.16 0.35 0.17

Car11 0.86 0.76 0.73 0.46 0.52 0.80 0.00 0.51 0.22 0.55 0.10 0.66 0.80 0.43 0.52 0.28 0.68 0.83

Car4 0.88 0.86 0.88 0.49 0.62 0.80 0.24 0.74 0.27 0.22 0.23 0.47 0.47 0.64 0.23 0.57 0.30 0.49

Carchase 0.82 0.67 0.46 0.47 0.59 0.58 0.29 0.44 0.53 0.80 0.60 0.38 0.81 0.74 0.40 0.76 0.77 0.85

Coke11 0.73 0.72 0.71 0.72 0.46 0.68 0.47 0.10 0.43 0.41 0.06 0.06 0.61 0.59 0.43 0.45 0.64 0.74

David 0.70 0.50 0.56 0.53 0.50 0.53 0.41 0.36 0.42 0.43 0.23 0.26 0.50 0.39 0.57 0.60 0.30 0.38

Faceocc2 0.71 0.74 0.78 0.77 0.67 0.74 0.54 0.79 0.72 0.59 0.38 0.70 0.77 0.72 0.78 0.57 0.73 0.77

Faceocc 0.84 0.82 0.89 0.86 0.86 0.84 0.73 0.84 0.58 0.77 0.87 0.82 0.92 0.55 0.91 0.57 0.92 0.85

Football 0.74 0.69 0.72 0.64 0.45 0.66 0.02 0.64 0.52 0.23 0.59 0.74 0.57 0.39 0.68 0.60 0.70 0.60

Girl 0.72 0.69 0.68 0.74 0.68 0.71 0.32 0.68 0.45 0.53 0.60 0.55 0.35 0.56 0.38 0.59 0.71 0.41

Panda 0.49 0.41 0.48 0.45 0.27 0.43 0.52 0.14 0.51 0.48 0.53 0.29 0.15 0.35 0.18 0.35 0.47 0.56

Shaking 0.81 0.72 0.72 0.78 0.18 0.55 0.02 0.02 0.58 0.01 0.41 0.72 0.44 0.45 0.15 0.33 0.72 0.15

Singer 0.79 0.76 0.77 0.70 0.70 0.76 0.45 0.48 0.41 0.18 0.26 0.63 0.47 0.24 0.47 0.40 0.65 0.46

Singerlfr 0.61 0.70 0.37 0.32 0.19 0.50 0.20 0.24 0.10 0.12 0.13 0.30 0.11 0.11 0.22 0.16 0.16 0.14

Skating 0.66 0.60 0.62 0.61 0.47 0.51 0.01 0.07 0.23 0.37 0.19 0.61 0.55 0.38 0.20 0.07 0.51 0.29

Skatinglfr 0.78 0.71 0.72 0.40 0.53 0.72 0.12 0.11 0.21 0.26 0.21 0.57 0.35 0.16 0.15 0.29 0.16 0.36

Soccer 0.32 0.38 0.28 0.28 0.14 0.31 0.15 0.14 0.12 0.10 0.19 0.35 0.24 0.10 0.10 0.17 0.16 0.13

Surfer 0.48 0.41 0.51 0.51 0.16 0.27 0.15 0.16 0.57 0.59 0.03 0.56 0.21 0.53 0.03 0.41 0.05 0.56

Sylv 0.82 0.78 0.75 0.76 0.58 0.73 0.59 0.47 0.58 0.67 0.73 0.74 0.72 0.70 0.63 0.70 0.78 0.78

Trellis70 0.78 0.76 0.72 0.57 0.38 0.60 0.22 0.39 0.35 0.46 0.29 0.31 0.72 0.52 0.32 0.21 0.49 0.50

Tudcrossing 0.68 0.51 0.61 0.57 0.84 0.67 0.32 0.56 0.38 0.56 0.68 0.40 0.36 0.61 0.67 0.71 0.67 0.61

Volkswagen 0.51 0.54 0.65 0.64 0.01 0.40 0.01 0.02 0.27 0.37 0.01 0.24 0.01 0.60 0.02 0.66 0.62 0.63

On average, the proposed trackers (ST, LRT, LRST and CLRST) outperform the other 14 state-of-the-art trackers. For each sequence, the best and

the second best scores are denoted in italic and bold, respectively

59, CT at frame 84, TLD at frame 120, RTCT at frame 216,

DFT at frame 240, Frag at frame 248, CST at frame 310, MIL

at frame 430, OAB and IVT at frame 436, and VTD at frame

477). In the volkswagen sequence, the target vehicle under-

goes abrupt object motion, pose variation, and occlusions.

Some the tracking results at frames are shown in Fig. 7h.

The CST, IVT, ℓ1, RTCT, MTT, OAB, and Frag methods

fail to track the target around frame 10; the CT and VTD

algorithms start to drift due to occlusions at frame 293 and

331, respectively; and the MIL tracker fails at frame 754.

The other trackers (CLRST, LRST, LRT, ST, Struck, SDB,

and TLD) are able to track the target almost throughout the

entire sequence. Figure 7i shows some tracking results of the

carchase sequence. The DFT method starts to drift at frame

139; the VTD, RTCT, IVT, and CT algorithms drift at frame

169 when occlusion occurs; and the LRT and ST algorithms

fail at frame 233. The CLRST, TLD, CST, Struck, and OAB

trackers perform well throughout this sequence.

Abrupt Motion, Illumination Change, and Occlusion: In

the shaking sequence, the appearance of the target object

changes significantly due to pose and illumination variations

as well as occlusion. The proposed algorithms (ST, LRT,

LRST and CLRST) successfully track the object as shown in

Fig. 7j. The VTD, MIL, SDG, and MTT algorithms track the

object well except for some large errors around frames 60

and 260. Other methods (OAB, IVT, ℓ1, Struck, and Frag)

fail to track the object when the the combined changes of

pose and illumination as well as occlusion occur. The skat-

ing and skatinglfr sequences contain abrupt object motion,

large changes of illumination, scale, and viewpoints, as well

as occlusions. The VTD and proposed methods (ST, LRT,

LRST and CLRST) are able to account for appearance well

as shown in Fig. 7k. In Fig. 7l, the proposed methods (LRT,

LRST and CLRST) track the target reliably despite fast object

motion (as a result of low frame rate). Moreover, our CLRST

performs slightly better than the MTT and VTD algorithms

(e.g., frame 299) in this sequence.

5.7 Quantitative Comparison

Tables 2 and 3 show the center location errors and the overlap

scores of 18 trackers on the 25 challenging image sequences.
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Table 4 Average run-time for each frame (in seconds) of 7 trackers (CLRST, LRST, LRT, ST, ℓ1 Mei and Ling 2011, ℓ∗
1 Bao et al. 2012, and MTT

Zhang et al. 2012d) with varying template sizes d and number of particles n0

d 32 × 32 48 × 48

ℓ1 ℓ∗
1 MTT ST LRT LRST CLRST ℓ1 ℓ∗

1 MTT ST LRT LRST CLRST

n0

100 84.5 0.31 0.41 0.61 0.66 0.79 0.71 601.3 1.42 2.6 1.19 1.51 1.34 0.93

200 178.9 0.56 1.46 1.19 2.04 1.35 0.75 1,238.3 2.23 5.6 2.73 3.11 2.74 1.00

300 256.4 0.65 2.71 1.79 1.95 2.36 0.65 1,969.9 3.51 5.0 4.09 4.50 4.26 0.79

400 340.5 1.20 4.69 2.51 3.03 3.03 0.63 2,665.2 4.66 11.5 5.24 5.78 6.52 0.86

500 422.5 1.37 4.85 3.15 3.32 3.47 0.71 3,158.6 6.26 19.4 6.16 8.19 7.12 0.77

600 497.1 1.38 5.97 3.74 4.29 4.35 0.60 3,915.9 7.93 21.0 7.31 8.33 8.58 0.74

700 572.3 1.81 6.17 4.13 4.72 4.66 0.55 4,429.9 9.33 22.4 9.14 9.32 10.04 0.75

800 659.4 1.94 7.62 4.61 5.41 5.39 0.75 5,080.4 9.54 23.8 10.05 10.85 10.97 0.76

For the proposed CLRST method, n is smaller than n0 after particle pruning

The proposed trackers achieve the best or second best results

(based on both criteria) in most sequences. Compared to the

ST method, the LRT algorithm achieves much better results

which shows merits of exploiting the underlying structure of

candidate particle representations via low-rank constraints.

Furthermore, the LRST algorithm outperforms the ST and

LRT methods, which shows the advantages of jointly exploit-

ing both low-rank and sparsity constraints. The CLRST algo-

rithm performs better than the LRST method, which indicates

that the use of temporal consistency facilitates visual track-

ing. In addition, we note that the CLRST tracking algorithm

is more efficient than the other three trackers (see Sect. 5.8).

Among the sparse trackers, the LRST algorithm outper-

forms both ST and ℓ1 method which can be explained by the

difference of exploiting the underlying constraints among

particle representations jointly. Compared with the MTT

tracker that models the correlations among particle represen-

tations in a multi-task learning framework, the CLRST algo-

rithm is computationally more efficient with better perfor-

mance. The assumption of the MTT method is strict because

it inherently assumes that the learned representations of all

candidate particles should be described with a few but the

same dictionary elements. However, the CLRST algorithm

does not assume these representations to be similar but rather

belong to a low-dimensional subspace (i.e., the matrix con-

sisting of all candidate particle representations is low-rank).

In addition, by exploiting the temporal consistency property,

our CLRST achieves better runtime performance.

5.8 Run-Time Performance

Tracking algorithms based on sparse representations and par-

ticle filters (Mei and Ling 2011; Zhang et al. 2012d; Bao et

al. 2012; Li et al. 2011) have been demonstrated to perform

well in visual tracking against other methods (Kwon and

Lee 2010; Ross et al. 2008; Babenko et al. 2009; Adam et al.

2006; Grabner et al. 2006; Kalal et al. 2010). However, the

run-time of sparse trackers grows proportionally as the num-

ber of particles and templates in the dictionary. Table 4 shows

the run-time performance of state-of-the-art algorithms based

on sparse representation (Mei and Ling 2011; Zhang et al.

2012d; Bao et al. 2012; Li et al. 2011) and the proposed

algorithms (ST, LRT, LRST, CLRST)3. The ℓ∗
1 tracker (Bao

et al. 2012) is more efficient than the ℓ1 tracker by pruning

particles and an approximate gradient descent algorithm. On

the other hand, the MTT tracker (Zhang et al. 2012d) makes

use of the correlation among particles to improve robustness

and reduce computational load.

Table 4 shows that our trackers are more efficient than

the ℓ1 method. For example, when m = 25, n = 400, and

d = 1024, the average run-time for the CLRST and ℓ1 track-

ers are 0.63 and 340 seconds per frame respectively (i.e.,

CLRST is 560 times faster than ℓ1). Note that, most of the

computational gains with respect to the ℓ1 method are due

to the preliminary pruning process. In addition, the CLRST

tracker is also more efficient than the real time ℓ∗
1 method

(Bao et al. 2012). Among all trackers, the CLRST algorithm

is 4 to 5 times faster than the LRST method (n = 400, and

d = 1024). This speedup can be attributed to the use of tem-

poral consistency to prune particles. It is known that tracking

performance tends to be better when m and d are increased.

For the ℓ1 tracker, the computational cost increases signif-

icantly with m and d. However, this increase is much less

significant with the proposed tracking methods as shown

in Table 4. While some trackers, e.g., RTCT (Zhang et al.

2012a) and TLD (Kalal et al. 2010), are faster than the pro-

posed algorithms, the tracking performance results are less

3 The results of Li et al. (2011) are not included in Table 4 since

the source code is not available for evaluation and the implementation

requires technical details as well as parameter settings not discussed.
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accurate (Mei and Ling 2011; Zhang et al. 2012d; Bao et al.

2012; Li et al. 2011). Furthermore, the computational load of

the CLRST algorithm can be further reduced by decreasing

the target template size d (e.g., by projecting the templates

onto a lower dimensional subspace).

6 Conclusion

In this paper, we propose a robust and efficient particle-filter

based tracking algorithm that exploits the consistent, low-

rank, and sparse nature of candidate particle representations

using a dictionary of object and background templates. We

model visual tracking as a low-rank sparse learning prob-

lem that is regularized by temporal consistency at the level

of particles, and present an efficient solution. We exten-

sively analyze the performance of our tracking algorithms

against a number of competing state-of-the-art methods on

25 challenging image sequences. Qualitative and quantitative

experimental results show that the proposed tracking algo-

rithms outperform state-of-the-art methods, especially in the

presence of partial occlusions, pose variations, illumination

changes, and abrupt motion.
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