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Abstract

In this paper, we formulate object tracking in a particle

filter framework as a multi-task sparse learning problem,

which we denote as Multi-Task Tracking (MTT). Since we

model particles as linear combinations of dictionary tem-

plates that are updated dynamically, learning the represen-

tation of each particle is considered a single task in MTT.

By employing popular sparsity-inducing ℓp,q mixed norm-

s (p ∈ {2,∞} and q = 1), we regularize the representa-

tion problem to enforce joint sparsity and learn the parti-

cle representations together. As compared to previous meth-

ods that handle particles independently, our results demon-

strate that mining the interdependencies between particles

improves tracking performance and overall computational

complexity. Interestingly, we show that the popular L1 track-

er [15] is a special case of our MTT formulation (denoted as

the L11 tracker) when p = q = 1. The learning problem can

be efficiently solved using an Accelerated Proximal Gradient

(APG) method that yields a sequence of closed form updates.

As such, MTT is computationally attractive. We test our pro-

posed approach on challenging sequences involving heavy

occlusion, drastic illumination changes, and large pose vari-

ations. Experimental results show that MTT methods consis-

tently outperform state-of-the-art trackers.

1. Introduction

The problem of tracking a target in video arises in

many important applications such as automatic surveillance,

robotics, human computer interaction, etc. For a visual track-

ing algorithm to be useful in real-world scenarios, it should

be designed to handle and overcome cases where the target’s

appearance changes from frame-to-frame. Significant and

rapid appearance variation due to noise, occlusion, varying

viewpoints, background clutter, and illumination and scale

changes pose major challenges to any tracker as shown in

Figure 1. Over the years, a plethora of tracking methods have

been proposed to overcome these challenges. For a survey of

Figure 1. Frames from a shaking sequence. The ground truth track of the

head is designated in green. Due to fast motion, occlusion, and changes in

illumination, scale, and pose, visual object tracking is a difficult problem.

these algorithms, we refer the reader to [20].

Recently, sparse representation [5] has been successfully

applied to visual tracking [15, 14]. In this case, the tracker

represents each target candidate as a sparse linear combina-

tion of dictionary templates that can be dynamically updated

to maintain an up-to-date target appearance model. This rep-

resentation has been shown to be robust against partial occlu-

sions, which leads to improved tracking performance. How-

ever, sparse coding based trackers perform computationally

expensive ℓ1 minimization at each frame. In a particle filter

framework, computational cost grows linearly with the num-

ber of particles sampled. It is this computational bottleneck

that precludes the use of these trackers in real-time scenarios.

Consequently, very recent efforts have been made to speedup

this tracking paradigm [13]. More importantly, these meth-

ods assume that sparse representations of particles are inde-

pendent. Ignoring the relationships that ultimately constrain

particle representations tends to make the tracker more prone

to drift away from the target in cases of significant changes

in appearance.

In this paper, we propose a computationally efficien-

t multi-task sparse learning approach for visual tracking in

a particle filter framework. Here, learning the representa-

tion of each particle is viewed as an individual task. Inspired

by the above work, the next target state is selected to be the

particle that has the highest similarity with a dictionary of
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target templates. Unlike previous methods, we exploit sim-

ilarities between particles and, therefore, seek an accurate,

joint representation of these particles w.r.t. the dictionary. In

our multi-task approach, particle representations are jointly

sparse – only a few (but the same) dictionary templates are

used to represent all the particles at each frame. As opposed

to sparse coding based trackers [15, 14] that handle parti-

cles independently, our use of joint sparsity incorporates the

benefits of a sparse particle representation (e.g. partial occlu-

sion handling), while respecting the underlying relationship

between particles. Therefore, we propose a multi-task for-

mulation (denoted as Multi-Task Tracking or MTT) for the

robust object tracking problem. We exploit interdependen-

cies among different particles to obtain their representations

jointly. Joint sparsity is imposed on particle representations

through an ℓp,q mixed-norm regularizer, which is optimized

using an Accelerated Proximal Gradient (APG) method that

guarantees fast convergence.

Contributions: The contributions of this work are three-

fold. (1) We propose a multi-task sparse learning method

for object tracking, which is a robust sparse coding method

that mines correlations among different tasks to obtain bet-

ter tracking results than learning each task individually. To

the best of our knowledge, this is the first work to exploit

multi-task learning in object tracking. (2) We show that the

popular L1 tracker [15] is a special case of our MTT for-

mulation. (3) Since we learn particle representations joint-

ly, we can solve the MTT problem efficiently using an APG

method. This makes our tracking method computationally

attractive in general and significantly faster than the tradi-

tional L1 tracker in particular.

The paper is organized as follows. In Section 2, we sum-

marize the works most related to our work. The particle filter

algorithm is reviewed in Section 3. Section 4 gives a detailed

description of the proposed tracking approach, with the opti-

mization details presented in Section 5. Experimental results

are reported and analyzed in Section 6.

2. Related Work

There is extensive literature on object tracking. Due to

space limitations, we only briefly review nominal tracking

methods and those that are the most related to our own. For

a more thorough survey of tracking methods, we refer the

readers to [20]. Object tracking methods can be categorized

as either generative or discriminative. In generative tracking

methods, a generative (possibly dynamic) appearance mod-

el is used to represent target observations. Here, the tracker

searches for a potential target location that is most similar

in appearance to the generative model. Popular generative

trackers include eigentracker [4], mean shift tracker [7], and

incremental tracker [19]. Discriminative trackers formulate

the tracking problem as a binary classification problem. In

this case, the tracker finds the target location that best sep-

arates the target from the background. Popular discrimina-

tive methods include on-line boosting [10], ensemble track-

ing [2], and online MIL tracking [3].

Over the last decade, tracking methods using particle fil-

ters (also known as condensation or sequential Monte Carlo

models) have demonstrated noteworthy success in visual ob-

ject tracking [11]. The popularity of these methods stems

from their generality, flexibility, and simple implementation.

Increasing the number of particles sampled at each frame

tends to improve tracking performance, accompanied by a

linear increase in computational complexity. As a result, re-

searchers have devised algorithms to improve the computa-

tional complexity of this tracking paradigm, e.g. the coarse-

to-fine strategy in [8].

Motivated by its popularity in face recognition, sparse

coding techniques have recently migrated over to objec-

t tracking [15, 13, 14]. Sparse coding based trackers use a

sparse linear representation w.r.t. a set of target and occlu-

sion templates to describe particles sampled in each frame.

Particle representations are learned by solving a constrained

ℓ1 minimization problem for each particle independently.

In [14], dynamic group sparsity is integrated into the track-

ing problem and very high dimensional image features are

used to improve tracking robustness. Recent work has fo-

cused on making sparse coding based tracking more efficient

by exploiting compressed sensing principles [13].

Multi-task learning [6] has recently received much atten-

tion in machine learning, and computer vision. It capitalizes

on shared information between related tasks to improve the

performance of each individual task, and it has been success-

fully applied to vision problems such as image classification

[21] and image annotation [18]. The underlying assumption

behind many multi-task learning algorithms is that the tasks

are related. Thus, a key issue lies in how relationships be-

tween tasks are incorporated in the learning framework.

Our proposed method is inspired by the above works. To

improve computational efficiency and to capitalize on the in-

terdependence between particles (for additional robustness

in tracking), we propose a multi-task sparse representation

method for robust object tracking.

3. Particle Filter

The particle filter [9] is a Bayesian sequential importance

sampling technique for estimating the posterior distribution

of state variables characterizing a dynamic system. It pro-

vides a convenient framework for estimating and propagat-

ing the posterior probability density function of state vari-

ables regardless of the underlying distribution through a se-

quence of prediction and update steps. Let ~st and ~yt de-

note the state variable describing the parameters of an object

at time t (e.g. appearance or motion features) and its ob-

servation respectively. In the particle filter framework, the

posterior p(~st|~y1:t) is approximated by a finite set of n sam-

ples
{

~sit
}n

i=1
(called particles) with importance weights wi.

The particle samples ~sit are drawn from an importance dis-
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tribution q(~st|~s1:t−1, ~y1:t), which for simplicity is set to the

state transitional probability p(~st|~st−1). In this case, the im-

portance weight of particle i is updated by the observation

likelihood as: wi
t = wi

t−1p(~yt|~s
i
t).

Particle filters have been extensively used in object track-

ing [20]. In this paper, we also employ particle filters to track

the target object. Similar to [15], we assume an affine mo-

tion model between consecutive frames. Therefore, the state

variable ~st consists of the six parameters of the affine trans-

formation (2D linear transformation and translation). By ap-

plying an affine transformation using ~st as parameters, we

crop the region of interest ~yt from the image and normalize

it to the same size as the target templates in our dictionary.

The state transition distribution p(~st|~st−1) is modeled to be

Gaussian, with the the dimensions of ~st assumed indepen-

dent. The observation model p(~yt|~st) reflects the similarity

between a target candidate (particle) and target templates in

the dictionary. In this paper, p(~yt|~st) is inversely proportion-

al to the reconstruction error obtained by linearly represent-

ing ~yt using the template dictionary.

4. Multi-Task Tracking (MTT)

In this section, we give a detailed description of our parti-

cle filter based tracking method that makes use of multi-task

learning to represent particle samples.

4.1. MultiTask Representation of a Tracking Target

In the multi-task learning (MTL) framework, tasks that

share dependencies in features or learning parameters are

jointly solved in order to capitalize on their inherent rela-

tionships. Many works in this domain have shown that MTL

can be applied to classical problems (e.g. image annotation

[18] and image classification [21]) and outperform state-of-

the-art methods that resort to independent learning. In this

paper, we formulate the tracking problem as a MTL prob-

lem, where learning the representation of a particle is viewed

as a single task. Usually, particle representations in tracking

are computed independently (e.g. L1 tracker [15]). In this

paper, we show that by representing particles jointly in an

MTL setting, tracking performance and tracking speed can

be significantly improved.

In our particle filter based tracking method, particles are

randomly sampled around the current state of the tracked ob-

ject according to a zero-mean Gaussian distribution. At in-

stance t, we consider n particle samples, whose observations

(pixel color values) in the tth frame are denoted in matrix for-

m as: X = [~x1, ~x2, · · · , ~xn], where each column is a particle

in R
d. In the noiseless case, each particle ~xi is represented

as a linear combination ~zi of templates that form a dictio-

nary Dt =
[

~d1, ~d2, · · · , ~dm

]

, such that X = DtZ. The

dictionary columns comprise the templates that will be used

to represent each particle. These templates include visual

observations of the tracked object (called target templates)

possibly under a variety of appearance changes. Since our

representation is constructed at the pixel level, misalignmen-

t between dictionary templates and particles might lead to

degraded performance. To alleviate this problem, one of t-

wo strategies can be employed. (i) Dt can be constructed

from an overcomplete sampling of the target object, which

includes transformed versions of both. (ii) Columns of X

can be aligned to columns of Dt as in [17]. In this paper,

we employ the first strategy, which leads to a larger m but a

lower overall computational cost.

We denote Dt with a subscript because the dictionary

templates will be progressively updated to incorporate vari-

ations in object appearance due to changes in illumination,

viewpoint, etc. Target appearance remains the same only for

a certain period of time, but eventually the object templates

are no longer an accurate representation of its appearance. A

fixed appearance template is prone to the tracking drift prob-

lem, since it is insufficient to handle changes in appearance.

In this paper, our dictionary update scheme is adopted from

the work in [15]. Each target template in Dt is assigned a

weight that is indicative of how representative the template

is. In fact, the more a template is used to represent tracking

results, the higher is its weight. When Dt cannot represent

some particles well (up to a predefined threshold), the target

template with the smallest weight is replaced by the current

tracking result. To initialize the m target templates, we sam-

ple equal-sized patches at and around the initial position of

the target. All templates are normalized.

In many visual tracking scenarios, target objects are of-

ten corrupted by noise or partially occluded. As in [15], this

noise can be modeled as sparse additive noise that can take

on large values anywhere in its support. Therefore, in the

presence of noise, we can still represent the particle obser-

vations X as a linear combination of templates, where the

dictionary is augmented with trivial (or occlusion) templates

Id (identity matrix of Rd×d), as shown in Eq (1). The repre-

sentation error ei of particle i using dictionary Dt is the ith

column in E. The nonzero entries of ~ei indicate the pixels in

~xi that are corrupted or occluded. The nonzero support of ~ei
can be different from other particles and is unknown a priori.

X = [Dt Id]

[

Z

E

]

⇒ X = BC (1)

4.2. Imposing Joint Sparsity via ℓp,q MixedNorm

Because particles are densely sampled around the curren-

t target state, their representations with respect to Dt will

be sparse (few templates are required to represent them) and

similar to each other (the support of particle representation-

s is similar) in general. These two properties culminate in

individual particle representations (single tasks) being joint-

ly sparse. In other words, joint sparsity will encourage all

particle representations to be individually sparse and share

the same (few) dictionary templates that reliably represent

them. This yields a more robust representation for the en-

semble of particles. In fact, joint sparsity has been recently
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employed to address MTL problems [18, 21]. A common

technique to explicitly enforce joint sparsity in MTL is the

use of sparsity-inducing norms to regularize the parameters

shared among the individual tasks. In this paper, we inves-

tigate the use of convex ℓp,q mixed norms (i.e. p ≥ 1 and

q ≥ 1) to address the problem of MTL in particle filter based

tracking (denoted as Multi-Task Tracking or MTT). There-

fore, we need to solve the convex optimization problem in

Eq (2), where λ is a tradeoff parameter between reliable re-

construction and joint sparsity regularization. Note that we

define ‖C‖p,q = (
∑m+d

i=1 (‖Ci‖p)
q)1/q , where ‖Ci‖p is the

ℓp norm of Ci, the ith row of matrix C.

min
C

‖X−BC‖2F + λ‖C‖p,q (2)

To encourage a sparse number of dictionary templates to

be selected for all particles, we restrict our choice of mixed

norms to the case of q=1, where ‖C‖p,1 =
∑m+d

i=1 ‖Ci‖p. A-

mong its convex options, we select three popular and widely

studied ℓp,1 norms: p ∈ {1, 2,∞}. The solution to Eq (2)

for these choices of p and q is described in Section 5. Note

that each choice of p yields a different tracker, which we will

denote as the Lp1 tracker. In Figure 2, we present an ex-

ample of how the L21 tracker works. Given all particles X

(sampled around the tracked car) and based on a dictionary

B, we learn the representation matrix C by solving Eq (2).

Note that smaller values are darker in color. Clearly, columns

of C are jointly sparse, i.e. a few (but the same) dictionary

templates are used to represent all the particles together. Par-

ticle ~xi is chosen as the current tracking result ~yt because its

reconstruction error w.r.t. to the target templates is smallest

among all particles. Since particles ~xj and ~xk are misaligned

versions of the car, they are not represented well by Dt (i.e.

~zj and~zk have small values). This precludes the tracker from

drifting into the background.

Here, we note that ‖C‖1,1 =
∑m+d

i=1 ‖Ci‖1 =
∑n

j=1 ‖~cj‖1, where ~ci denotes the ith column in C. This e-

quivalence property between rows and columns (i.e. the sum

of the ℓp norms of rows and that of columns are the same)

only occurs when p=1. In this case, Eq (2) is equivalent to

Eq (3), which is no longer an MTL problem, since the n rep-

resentation tasks are solved independently. Interestingly, Eq

(3) is the same formulation used in the popular L1 tracker

[15], which can be viewed as a special case of our proposed

family of MTT algorithms (specifically the L11 tracker). In

fact, using the optimization technique in Section 5, our L11

implementation leads to a speedup of one order of magnitude

over the L1 tracker.

min
~c1,...,~cn

n
∑

j=1

(

‖~xj −B~cj‖
2
2 + λ‖~cj‖1

)

(3)

5. Solving Eq (2)

To solve Eq (2), we employ the Accelerated Proximal

Gradient (APG) method, which has been extensively used

to efficiently solve convex optimization problems with non-

smooth terms [6]. In our case, the ℓp,q mixed norm is the

convex non-smooth term. As compared to traditional pro-

jected subgradient methods that have sublinear convergence

properties, APG achieves the global solution with quadratic

convergence, i.e. it achieves an O( 1
k2 ) residual from the op-

timal solution after k iterations [16]. APG iterates between

updating the current representation matrix C(k) and an ag-

gregation matrix V(k). Each APG iteration consists of two

steps: (1) a generalized gradient mapping step that updates

C(k) keeping V(k) fixed, and (2) an aggregation step that

updates V(k) by linearly combining C(k+1) and C(k).

(1) Gradient Mapping: Given the current estimate V(k),

we obtain C(k+1) by solving Eq (4), where H = V(k) −
η∇(k) = V(k) − 2ηBT

(

BV(k) −X
)

, η is a small step pa-

rameter, and λ̃ = ηλ.

C(k+1) = argmin
Y

1

2
‖Y −H‖22 + λ̃‖Y‖p,q (4)

Taking joint sparsity into consideration, we set q = 1,

which decouples Eq (4) into (m + d) disjoint subproblem-

s (one for each row vector Ci), as shown in Eq (5). Each

subproblem is a variant of the projection problem unto the ℓp
ball. The solution to each subproblem and its time complex-

ity depends on p. In Section 5.1, we provide the solution of

this subproblem for popular ℓp norms: p ∈ {1, 2,∞}.

C
(k+1)
i = argmin

Yi

1

2
‖Yi −Hi‖

2
2 + λ̃ ‖Yi‖p (5)

(2) Aggregation: We update V(k) as follows: V(k+1) =
C(k+1)+αk+1(

1
αk

− 1)
(

C(k+1) −C(k)
)

, where αk is con-

ventionally set to 2
k+3 . Our overall APG algorithm is sum-

marized in Algorithm 1. Note that convergence is achieved

when the relative change in solution or objective function

falls below a predefined tolerance.
5.1. Solving Eq (5) for p ∈ {1, 2,∞}

The solution to Eq (5) depends on the value of p. For p ∈
{1, 2,∞}, we show that this solution has a closed form. Note

that these solutions can be extended to ℓp norms beyond the

three that we consider here.

• For p = 1: The solution is computed as C
(k+1)
i =

Sλ̃(Hi), where Sλ̃ is the soft-thresholding operator defined

as Sλ̃(a) = sign(a)max(0, |a| − λ̃).

• For p = 2: Following [6], the solution is computed as

C
(k+1)
i = max(0, 1− λ̃

‖Hi‖2
)Hi.

• For p =∞: The solution is obtained via a projection onto

the ℓ∞ ball that can be done by a simple sorting procedure.
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Figure 2. Schematic example of the L21 tracker. The representation C of all particles X w.r.t. dictionary B (set of target and occlusion templates) is learned

by solving Eq (2) with p = 2 and q = 1. Notice that the columns of C are jointly sparse, i.e. a few (but the same) dictionary templates are used to represent

all the particles together. The particle ~xi is selected among all other particles as the tracking result, since ~xi is represented the best by object templates only.

Algorithm 1: Multi-Task Jointly Sparse Representation

Input : X, B, p, q = 1, λ̃, and η
Output: C

1 Initialize k ← 0, V(k) = 0, C = 0, αk = 1
2 while not converged do

3 Compute H = V(k) − 2ηBT
(

BV(k) −X
)

4 Solve Eq (5) ∀i = 1, . . . , (m+ d) to obtain C(k+1)

5 αk+1 = 2
k+3

6 V(k+1) = C(k+1)+αk+1(
1
αk

−1)
(

C(k+1) −C(k)
)

7 k ← k + 1

8 end

In this case, the solution is C
(k+1)
i = max(0, 1 − λ̃

‖Hi‖1
)~a,

where aj = sign(Hij)min(|Hij |, (
∑ĵ

r=1 ur − λ̃)/ĵ), j =

1, . . . , n. The temporary parameters ur and ĵ are obtained

as follows. We set uj = |Cij | ∀j and sort these values in

decreasing order: u1 ≥ u2 ≥ . . . ≥ un. Then, we set ĵ =

max{j :
∑j

r=1 (ur − uj) < λ̃}.
The computational complexity of each iteration in Algo-

rithm 1 is dominated by the gradient computation in Step 3

and the update of C
(k+1)
i in Step 4. Exploiting the struc-

ture of B, the complexity of Step 3 isO(mnd), while that of

Step 4 depends on p. The latter complexity is O(n(m+ d))
for p ∈ {1, 2} and O(n(m + d)(1 + log n)) for p = ∞.

Since d ≫ m, the per-frame complexity of the L11, L21,

and L∞1 trackers is O(mndǫ−
1
2 ), where the number of iter-

ations is O(ǫ−
1
2 ). In comparison, the time complexity of the

L1 tracker (equivalent to our L11 tracker) is at leastO
(

nd2
)

.

In our experiments, we observe that the L11 tracker (that us-

es APG) is two orders of magnitude faster than the L1 track-

er (that solves n Lasso problems independently) in general.

For example, when m = 11, n = 200, and d = 32 × 32,

the average per-frame run-time for L11 and L1 are 1.1 and

179 seconds respectively. This is on par with the accelerated

“real-time” implementation of the L1 tracker in [13].

6. Experimental Results

In this section, we present experimental results that val-

idate the effectiveness and efficiency of our MTT method.

We also conduct a thorough comparison between MTT and

state-of-the-art tracking methods where applicable.

6.1. Datasets and Baselines

To evaluate MTT, we compile a set of 15 challeng-

ing tracking sequences (e.g. car4, david indoor, One-

LeaveShopReenter2cor (denoted as onelsr for simplicity),

and soccer sequences) that are publicly available online1.

Due to space constraints, we will only show results on 10
of these sequences, leaving the rest for the supplementary

material. These videos are recorded in indoor and outdoor

environments and include challenging appearance variations

due to changes in pose, illumination, scale, and the presence

of occlusion. We compare our MTT method (p ∈ {1, 2,∞})
against 6 recent and state-of-the-art visual trackers denoted

as: VTD [12], L1 [15], IVT [19], MIL [3], Frag [1], and

OAB [10]. We implemented these trackers using publicly

available source codes or binaries provided by the authors.

They were initialized using their default parameters.

6.2. Implementation Details

All our experiments are done using MATLAB R2008b

on a 2.66GHZ Intel Core2 Duo PC with 6GB RAM. The

template size d is set to half the size of the target ini-

tialization in the first frame. Usually, d is in the or-

der of several hundreds of pixels. For all experiments,

we model p (~st|~st−1) ∼ N (~0, diag(~σ)), where ~σ =
[0.005, 0.0005, 0.0005, 0.005, 4, 4]T . We set the number of

particles n = 400, the total number of target templates

m = 11 (same as L1 tracker [15]), and the number of oc-

1vision.ucsd.edu/∼bbabenko/project miltrack.shtml;

www.cs.toronto.edu/ dross/ivt/; cv.snu.ac.kr/research/∼vtd/;
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clusion templates to d. In Algorithm 1, we set η = 0.01 and

λ̃ (by cross-validation) to {0.01, 0.005, 0.2} for L21, L11 and

L∞1 respectively. Each tracker uses the same parameters for

all video sequences. In all cases, the initial position of the

target is selected manually. In Sections 6.3 and 6.4, we give

a qualitative and quantitative analysis of the MTT method,

and compare it against the 6 baseline methods. Our exper-

iments show that MTT produces more robust and accurate

tracks, which are all made available in our website.

6.3. Qualitative Comparison

The car4 sequence was captured in an open road scenario.

Tracking results at frames {20, 186, 235, 305, 466, 641} for

all 9 methods are shown in Figure 3(a). The different track-

ing methods are color-coded. OAB, Frag, and VTD start to

drift from the target at frame 186, while MIL starts to show

some target drifting at frame 200 and finally loses the target

at frame 300. IVT and L1 track the target quite well. The

target is successfully tracked throughout the entire sequence

by our L11, L21, and L∞1 methods.

In the car11 sequence, a car is driven into a very dark en-

vironment, while being videotaped from another moving car.

Tracking results for frames {10, 110, 200, 250, 309, 393} are

presented in Figure 3(b). Frag starts to drift around frame 60.

Due to changes in lighting, MIL starts to undergo target drift

from frame 120. OAB and L1 methods start to fail in frame

284. IVT and VTD can track the target through the whole

video sequence; however, these tracks are not as robust or

accurate as the proposed L21 and L∞1 trackers.

The coke11 sequence contains frequent occlusions and

fast motion, which cause motion blur. The MTT trackers,

L1, OAB, and MIL can track the target almost throughout the

entire sequence. The other trackers fails due to pose change

and occlusion as shown in Figure 3(c).

In the david sequence, a moving face is tracked. The

tracking results at frames {354, 423, 465, 502, 588, 760} are

shown in Figure 3(d). Frag and VTD fail around frames 423

and 465 respectively. OAB starts to drift at frame 550. MIL

and L1 adequately track the face, but experience target drift,

especially at frames 690 and 500, respectively. The IVT and

MTT methods track the moving face accurately.

Figure 3(e) shows tracking results for the girl sequence.

Performance on this sequence exemplifies the robustness of

MTT to occlusion (complete occlusion of the girl’s face as

she swivels in the chair) and large pose change (the face un-

dergoes significant 3D rotation). MTT and L1 are capable of

tracking the target during the entire sequence. Other tracker-

s experience drift at different instances: Frag at frame 248,

OAB and IVT at frame 436, and VTD at frame 477.

In the shaking sequence, the tracked object is subject to

changes in illumination and pose. While the stage lighting

condition is drastically changed, and the pose of the object

is severely varied due to head shaking, our method success-

fully tracks the object (refer to Figure 3(f)). Compared with

L11 and L1, L21 and L∞1 perform better because their joint

particle representation is more robust to rapid changes. Oth-

er methods (OAB, IVT, L1, and Frag) fail to track the object

when these changes occur. VTD and MIL methods can track

the object quite well except for some errors around frame 60.

In the onelsr sequence, the background color is similar to

the color of the woman’s trousers, and the man’s shirt and

pants have a similar color to the woman’s coat. In addition,

the woman undergoes partial occlusion. Some results are

shown in Figure 3(g). While tracking the woman, IVT, MIL,

Frag, OAB, and VTD start tracking the man when the woman

is partially occluded around frame 200, and are unable to

recover from this failure after that. The L1 tracker tracks the

woman quite well. Compared with other trackers, our L21

and L∞1 trackers are more robust to the occlusion.

Results on the soccer sequence are shown in Figure 3(h).

They demonstrate how our proposed method outperforms

most of the state-of-the-art trackers when the target is severe-

ly occluded by other objects. The L21 and L11 method-

s accurately track the player’s face despite scale and pose

changes as well as occlusion/noise from the confetti raining

around him. Other methods (IVT, L1, L∞1, OAB, MIL, and

Frag) fail to track the object reliably. The VTD tracker can

track the target in this sequence quite well.

Results on the sylv sequence are shown in Figure 3(i). In

this sequence, a stuffed animal is being moved around, thus,

leading to challenging pose, lighting, and scale changes. IVT

fails around frame 613 as a result of a combination of pose

and illumination change. The rest of the trackers track the

target throughout the sequence, with Frag, MIL, VTD, OAB,

L11 and L1 veering off the target at certain instances.

The trellis70 sequence is captured in an outdoor environ-

ment where lighting conditions change drastically. The video

is acquired when a person walks underneath a trellis covered

by vines. As shown in Figure 3(j), the cast shadow changes

the appearance of the target face significantly. Furthermore,

the combined effects of pose and lighting variations along

with a low frame rate make visual tracking extremely diffi-

cult. Nevertheless, the L21 and L∞1 trackers can follow the

target accurately and robustly, while the other tracking meth-

ods perform below par in this case. TD and Frag fail around

frame 185. L1 starts drifting at frame 287, while MIL and

OAB fail at frame 323. IVT starts drifting at frame 330.

6.4. Quantitative Comparison

To give a quantitative comparison between the 9 methods, we

manually label the ground truth for 10 sequences. Tracker

performance is evaluated according to the average per-frame

distance (in pixels) between the center of the tracking re-

sult and that of ground truth. Clearly, this distance should

be small. In Figure 4, we plot the distance of each tracker

over time for 4 sample sequences. We see that MTT trackers

consistently produce a smaller distance than other trackers in

general. This implies that MTT can accurately track the tar-

get despite severe occlusions, pose variations, illumination

changes, and abrupt motions.
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Figure 3. Results of 9 tracking methods. Frame numbers are overlayed in red.

In Figure 5, we plot the average center distance for each

tracker over the 10 sequences. It is clear that the MTT meth-

ods are consistently better than the other trackers in most se-

quences even though there are severe occlusions, pose varia-

tions, illumination changes, and abrupt motions. Among the

MTT methods, L21 outperforms L11 and L∞1 in general. In

fact, except for the girl, shaking and soccer sequences, in

which we obtain similar results as IVT and VTD, the L21

tracker does outperform the other methods. Frag and L1

performs well under partial occlusion but tends to fail un-

der severe illumination and pose changes. The IVT tracker

is hardly affected by changes in appearance except those due

to illumination. OAB is effected by background clutter, and

it is easily drifts from the target. MIL performs well except

when severe illumination changes force the tracker to drift

into the background. VTD tends to be robust against illu-

mination change, but it cannot handle severe occlusions and

viewpoint changes adequately.
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Figure 4. Center distance (in pixels) between tracking result and ground

truth over time for 9 trackers applied to 4 video sequences.

Now, we compare the performance of the four trackers

L21, L∞1, L11 and L1 [15]. Based on the results in Fig-

ure 5, L21 and L∞1 outperform L11 and L1. That is because

L1 and L11 trackers represent particles independently, while

L21 and L∞1 capitalize on the dependencies among different

particles to obtain a more robust joint representation. Our re-

sults demonstrate that it is useful for visual tracking to mine

particle relationships. Moreover, in theory, the L1 tracker is

a special case of our MTT framework (refer to Eq (3)), and

it should produce the same results as L11. However, this is

not reflected in our empirical results due to three reasons.

(a) The L1 tracker is forced to adopt a smaller template size

(d = 12× 15) due to its high computational cost O(nd2). A

larger d leads to a richer representation and improved track-

ing performance. As mentioned earlier, MTT methods set d
to half the size of the initial bounding box, which is general-

ly more than 600 pixels. (b) In the public MATLAB imple-

mentation of L1, the dictionary weights are used not only to

update the target templates but also to multiply the templates

themselves, which leads to an artificially sparser representa-

tion. For L11, the weights are only used to update the target

templates. In addition, MTT uses a more efficient solver (re-

fer to Section 5.1) to learn particle representations, so L11

can reach a better solution than L1 for the same stopping cri-

terion at every frame. (c) Since the L1 and L11 trackers both

adopt the particle filter framework, their tracking results for

the same sequence can be different due to random sampling

of particles in the state space.

7. Conclusion

In this paper, we formulate particle filter based tracking as

a multi-task sparse learning problem, where the represen-

tations of particles, regularized by a sparsity-inducing ℓp,1
mixed norm, are learned jointly using an efficient Acceler-

ated Proximal Gradient (APG) method. We show that the

popular L1 tracker [15] is a special case of our proposed for-

mulation. Also, we extensively analyze the performance of

Figure 5. Average distance of 9 trackers applied to 10 sequences

our tracker on challenging real-world video sequences and

show it outperforming 6 state-of-the-art tracking methods.
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