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Abstract In this paper, we formulate object tracking in

a particle filter framework as a structured multi-task sparse

learning problem, which we denote as Structured Multi-Task

Tracking (S-MTT). Since we model particles as linear combi-

nations of dictionary templates that are updated dynamically,

learning the representation of each particle is considered a

single task in Multi-Task Tracking (MTT). By employing

popular sparsity-inducing ℓp,q mixed norms (specificallyp ∈

{2,∞} and q = 1), we regularize the representation prob-

lem to enforce joint sparsity and learn the particle representa-

tions together. As compared to previous methods that handle

particles independently, our results demonstrate that mining

the interdependencies between particles improves tracking
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performance and overall computational complexity. Interest-

ingly, we show that the popular L1 tracker (Mei and Ling,

IEEE Trans Pattern Anal Mach Intel 33(11):2259–2272,

2011) is a special case of our MTT formulation (denoted

as the L11 tracker) when p = q = 1. Under the MTT

framework, some of the tasks (particle representations) are

often more closely related and more likely to share common

relevant covariates than other tasks. Therefore, we extend

the MTT framework to take into account pairwise struc-

tural correlations between particles (e.g. spatial smooth-

ness of representation) and denote the novel framework as

S-MTT. The problem of learning the regularized sparse rep-

resentation in MTT and S-MTT can be solved efficiently

using an Accelerated Proximal Gradient (APG) method that

yields a sequence of closed form updates. As such, S-MTT

and MTT are computationally attractive. We test our pro-

posed approach on challenging sequences involving heavy

occlusion, drastic illumination changes, and large pose vari-

ations. Experimental results show that S-MTT is much bet-

ter than MTT, and both methods consistently outperform

state-of-the-art trackers.

Keywords Visual tracking · Particle filter · Graph ·

Structure · Sparse representation · Multi-task learning

1 Introduction

The problem of tracking a target in video arises in many

important applications such as automatic surveillance, robot-

ics, human computer interaction, etc. For a visual tracking

algorithm to be useful in real-world scenarios, it should be

designed to handle and overcome cases where the target’s

appearance changes from frame-to-frame. Significant and

rapid appearance variation due to noise, occlusion, varying
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Fig. 1 (Color online) Frames from a shaking sequence. The ground

truth track of the head is designated in green. Due to fast motion, occlu-

sion, cluttered background, and changes in illumination, scale, and pose,

visual object tracking is a difficult problem

viewpoints, background clutter, and illumination and scale

changes pose major challenges to any tracker as shown in

Fig. 1. Over the years, a plethora of tracking algorithms

have been proposed to overcome these challenges. For a

survey of many of these algorithms, we refer the reader

to Yilmaz et al. (2006).

Recently, sparse representation (Candès et al. 2006) has

been successfully applied to visual tracking (Mei and Ling

2011; Mei et al. 2011; Liu et al. 2010, 2011). In this case,

the tracker represents each target candidate as a sparse linear

combination of dictionary templates that can be dynamically

updated to maintain an up-to-date target appearance model.

This representation has been shown to be robust against par-

tial occlusions, which leads to improved tracking perfor-

mance. However, sparse coding based trackers perform com-

putationally expensive ℓ1 minimization at each frame. In a

particle filter framework, computational cost grows linearly

with the number of sampled particles. It is this computational

bottleneck that precludes the use of these trackers in real-

time scenarios. Consequently, very recent efforts have been

made to speedup this tracking paradigm (Mei et al. 2011; Li

et al. 2011). More importantly, these methods learn sparse

representations of particles separately. Ignoring the relation-

ships that ultimately constrain particle representations tend to

make the tracker more prone to drifting away from the target,

especially in cases of significant changes in appearance.

In this paper, we propose a computationally efficient

multi-task sparse learning approach for visual tracking in

a particle filter framework. Here, learning the representation

of each particle is viewed as an individual task. Inspired by

the above work, the next target state is selected to be the

particle that has the highest similarity with a dictionary of

target templates. Unlike previous methods, we exploit sim-

ilarities among particles and, therefore, seek an accurate,

joint representation of these particles w.r.t. the dictionary. In

our multi-task approach, particle representations are jointly

sparse – only a few (but the same) dictionary templates

should be used to represent all the particles at each frame. As

opposed to sparse coding based trackers (Mei and Ling 2011;

Mei et al. 2011; Liu et al. 2010, 2011) that handle particles

separately, our use of joint sparsity incorporates the benefits

of a sparse particle representation (e.g. partial occlusion han-

dling), while respecting the underlying relationship between

particles, which inherently yields a tracker that is more robust

against various sources of appearance change. Therefore,

we propose a multi-task formulation (denoted as Multi-Task

Tracking or MTT) for the robust object tracking problem.

We exploit interdependencies among the appearances of dif-

ferent particles to obtain their representations jointly. Joint

sparsity is imposed on particle representations through an

ℓp,q mixed-norm regularizer, which is optimized using an

Accelerated Proximal Gradient (APG) method that guaran-

tees fast convergence. In fact, joint sparsity can be viewed as

a global form of structural regularization that influences all

particle representations together. Furthermore, to extend the

MTT framework to enforce local structure, we observe that

some tasks (particle representations) are often more closely

related and more likely to share common relevant covariates

than other tasks. Therefore, we expand the MTT framework

to consider pairwise structural correlations between particles

(e.g. spatial smoothness of representation) and denote the

novel framework as Structured Multi-Task Tracking abbre-

viated as S-MTT. A preliminary conference version of this

work can be referred to in Zhang et al. (2012b).

Contributions: The contributions of this work are three-fold.

1. We propose a multi-task sparse learning method for

object tracking, which is a robust sparse coding method

that mines relationships between different tasks to obtain

better tracking results than learning each task individ-

ually. This is done by exploiting both global and local

structure among tasks. To the best of our knowledge, this

is the first work to exploit multi-task learning in object

tracking.

2. We show that the popular L1 tracker (Mei and Ling 2011)

is a special case of the proposed MTT framework.

3. Since we learn particle representations jointly, we can

solve the S-MTT and MTT problems efficiently using an

APG method. This makes our tracking method computa-

tionally attractive in general and significantly faster than

the traditional L1 tracker in particular.

The rest of the paper is organized as follows. In Sect. 2,

we summarize the works most related to ours. The parti-

cle filter algorithm is reviewed in Sect. 3. Section 4 gives a

detailed description of the proposed tracking approach, with
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the optimization details presented in Sect. 4.3. Experimental

results are reported and analyzed in Sect. 5. We conclude the

paper in Sect. 6.

2 Related Work

Visual tracking is an important topic in computer vision and

it has been studied for several decades. There is extensive

literature on visual object tracking. In what follows, we only

briefly review nominal tracking methods and those that are

the most related to our own. We focus specifically on tracking

methods that use particle filters and sparse representation,

as well as, general multi-task learning methods. For a more

thorough survey of tracking methods, we refer the readers to

Yilmaz et al. (2006).

2.1 Object Tracking

In general, object tracking methods can be categorized as

either generative or discriminative.

2.1.1 Generative Trackers

These methods adopt an appearance model to describe the

target observations. Here, the aim of tracking is to search

for the target location that has the most similar appear-

ance to the generative model. Examples of generative meth-

ods are eigentracker (Black and Jepson 1998), mean shift

tracker (Comaniciu et al. 2003), appearance model based

tracker (Jepson et al. 2003), context-aware tracker (Yang

et al. 2009), fragment-based tracker (Frag) (Adam et al.

2006), incremental tracker (IVT) (Ross et al. 2008), and

VTD tracker (Kwon and Lee 2010). In Black and Jepson

(1998), a view-based representation is used for tracking

rigid and articulated objects. This approach builds on and

extends work on eigenspace representations, robust estima-

tion techniques, and parameterized optical flow estimation.

The mean shift tracker (Comaniciu et al. 2003) is a popular

mode-finding method, which successfully copes with camera

motion, partial occlusions, clutter, and target scale variations.

In Jepson et al. (2003), a robust and adaptive appearance

model is learned for motion-based tracking of natural objects.

The model adapts to slowly changing object appearance, and

it maintains an acceptable measure of stability in the observed

image structure during tracking. Moreover, the context-aware

tracker (Yang et al. 2009) focuses on an object’s context

for robust visual tracking. Specifically, this method inte-

grates into the tracking process a set of auxiliary objects that

are automatically discovered in the video via data mining

techniques. Furthermore, the tracking method proposed in

Ross et al. (2008) incrementally learns a low-dimensional

subspace representation, and efficiently adapts to online

changes in target appearance. To adapt to variations in

appearance (e.g. due to changes in illumination and pose),

the appearance model can be dynamically updated. The Frag

tracker (Adam et al. 2006) aims to solve partial occlusion

with a representation based on histograms of local patches.

The tracking task is carried out by accumulating votes from

matching local patches using a template. However, this tem-

plate is not updated and, thus, it is not expected to han-

dle changes in object appearance that can be due to scale

and shape variations. In the IVT tracker (Ross et al. 2008),

an adaptive appearance model is constructed to account

for appearance variation due to rigid or limited deformable

motion. Although it has been shown to perform well when

target objects undergo lighting and pose variation, IVT is less

effective in handling heavy occlusion or non-rigid distortion

as a result of the adopted holistic appearance model. Finally,

the VTD tracker (Kwon and Lee 2010) effectively extends the

conventional particle filter framework with multiple motion

and observation models to account for appearance variation

caused by changes in pose, lighting, and scale as well as par-

tial occlusion. Nevertheless, as a result of the adopted gen-

erative representation scheme, this tracker is not equipped to

distinguish between the target and its context (background).

2.1.2 Discriminative Trackers

These methods formulate visual object tracking as a binary

classification problem, which seeks the target location that

can best separate the target from its background. Exam-

ples of discriminative methods are on-line boosting (OAB)

(Grabner et al. 2006), semi-online boosting (Grabner et al.

2008), ensemble tracking (Avidan 2005), co-training track-

ing (Liu et al. 2009), online multi-view forests for tracking

(Leistner et al. 2010), adaptive metric differential tracking

(Jiang et al. 2011) and online multiple instance learning

tracking (Babenko et al. 2009). In the OAB tracker (Grabner

et al. 2006), online AdaBoost is adopted to select useful fea-

tures for object tracking. Its performance is affected by back-

ground clutter, and the tracker can easily drift. The ensemble

tracker (Avidan 2005) formulates the tracking task as a pixel

based binary classification problem. Although this method

is able to differentiate between target and background, the

pixel-based representation is rather limited and thereby con-

strains its ability to handle heavy occlusion and clutter. In

the MIL tracker (Babenko et al. 2009), the multiple instance

learning method is extended to an online setting for object

tracking. While it is capable of reducing tracker drift, this

method is unable to handle large nonrigid shape deforma-

tion. In ensemble tracking (Avidan 2005), a feature vector

is constructed for every pixel in the reference image and an

adaptive ensemble of classifiers is trained to separate pixels

that belong to the object from pixels that belong to the back-

ground. In Collins and Liu (2003), a target confidence map
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is built by finding the most discriminative RGB color combi-

nation in each frame. Moreover, a hybrid approach that com-

bines a generative model and a discriminative classifier is

proposed in Yu et al. (2008) to capture appearance changes

and allow reacquisition of an object after total occlusion.

Global mode seeking can be used to detect and reinitial-

ize the tracked object after total occlusion (Yin and Collins

2008). Yet another approach uses image fusion to determine

the most discriminative appearance model and then a genera-

tive approach for dynamic target updates (Blasch and Kahler

2005).

2.2 Particle Filters for Object Tracking

Particle filters (also known as condensation or sequential

Monte Carlo models) were introduced to visual tracking

(Isard and Blake 1998). Since then and over the last decade,

it has become a popular tracking framework due primarily

to its excellent performance in the presence of nonlinear tar-

get motion and to flexibility to different object representa-

tions (Wu and Huang 2004). In general, when more particles

are sampled and a better target representation is constructed,

particle filter based tracking algorithms are more likely to

perform reliably in cluttered and noisy environments. How-

ever, the computational cost of particle filter trackers tends to

increase linearly with the number of particles. Consequently,

researchers have proposed various means of speeding up

the particle filter framework. In Yang et al. (2005), tracked

objects are described using color and edge orientation his-

togram features, and the observation likelihood is computed

in a coarse-to-fine manner, which allows the computation

to quickly focus on the more promising regions. In Khan

et al. (2004), subspace representations are used in a particle

filter for tracking. This tracker is made efficient by applying

Rao-Blackwellization to the subspace coefficients in the state

vector. In Zhou et al. (2004), the number of particle samples

is adjusted according to an adaptive noise component.

2.3 Sparse Representation for Object Tracking

Recently, sparse representation has been introduced to par-

ticle filter based object tracking and has yielded noteworthy

performance (Mei and Ling 2011; Mei et al. 2011; Liu et al.

2010; Li et al. 2011; Bao et al. 2012; Zhang et al. 2012a). In

Mei and Ling (2011), a tracking candidate is represented as a

sparse linear combination of object templates and trivial tem-

plates. For each particle, sparse representation is computed

by solving a constrained ℓ1 minimization problem with non-

negativity constraints, thus, solving the inverse intensity pat-

tern problem during tracking. Although this method yields

good tracking performance, it comes at the computational

expense of multiple ℓ1 minimization problems that are inde-

pendently solved. In fact, the computational cost grows linear

with the number of particle samples. In Mei et al. (2011), an

efficient L1 tracker with minimum error bound and occlusion

detection is proposed. The minimum error bound is quickly

calculated from a linear least squares equation, and serves

as a guide for particle resampling in a particle filter frame-

work. Without loss of precision during resampling, most of

the irrelevant samples are removed before solving the com-

putationally expensive ℓ1 minimization function. In Liu et al.

(2010), dynamic group sparsity is integrated into the track-

ing problem and high dimensional image features are used to

improve tracking robustness. In Li et al. (2011), dimensional-

ity reduction and a customized orthogonal matching pursuit

algorithm are adopted to accelerate the L1 tracker (Mei and

Ling 2011). In Bao et al. (2012), APG based solution is used

to improve the L1 tracker (Mei and Ling 2011). In Zhang

et al. (2012a), low-rank sparse learning is adopted to consider

the correlations among particles for robust tracking. Inspired

by these works, we should solve two problems, which are

how to consider the correlations among particles and how to

make the tracker be fast. Therefore, we propose the S-MTT

tracking method.

2.4 Multi-Task Learning

Multi-task learning (MTL, Chen et al. 2009) has recently

received much attention in machine learning and computer

vision. It capitalizes on shared information between related

tasks to improve the performance of each individual task, and

it has been successfully applied to popular vision problems

such as image classification [(Yuan and Yan 2010) and image

annotation (Quattoni et al. 2009]. The underlying assumption

behind many MTL algorithms is that the tasks are related.

Thus, a key issue lies in how relationships between tasks

are incorporated in the learning framework. Inspired by the

above works, we want to improve computational efficiency

and capitalize on the interdependence among particle appear-

ances (for additional robustness in tracking). To make this

come true, we propose a multi-task sparse representation

method for robust object tracking.

3 Particle Filter

The particle filter (Doucet et al. 2001) is a Bayesian

sequential importance sampling technique, which recur-

sively approximates the posterior distribution using a finite

set of weighted samples for estimating the posterior distrib-

ution of state variables characterizing a dynamic system. It

provides a convenient framework for estimating and prop-

agating the posterior probability density function of state

variables regardless of the underlying distribution through

a sequence of prediction and update steps. Let st and yt

denote the state variable describing the parameters of an
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object at time t (e.g. location or motion parameters) and its

observation respectively. The prediction stage uses the prob-

abilistic system transition model p(st |st−1) to predict the

posterior distribution of st given all available observations

y1:t−1 = {y1, y2, . . . , yt−1} up to time t − 1 is computed in

Eq. (1).

p(st |y1:t−1) =

∫

p(st |st−1)p(st−1|y1:t−1)dst−1 (1)

At time t, the observation yt is available and the state vec-

tor is updated using Bayes rule, as in Eq. (2), where p(yt |st )

denotes the observation likelihood.

p(st |y1:t ) =
p(yt |st )p(st |y1:t−1)

p(yt |y1:t−1)
(2)

In the particle filter framework, the posterior p(st |y1:t ) is

approximated by a finite set of n samples
{

si
t

}n

i=1
(called par-

ticles) with importance weights wi . The particle samples si
t

are drawn from an importance distribution q(st |s1:t−1, y1:t )

and the importance weights are updated according to Eq. (3).

wi
t = wi

t−1

p
(

yt |s
i
t

)

p
(

si
t |s

i
t−1

)

q(st |s1:t−1, y1:t )
(3)

To avoid degeneracy, particles are resampled according

to the importance weights so as to generate a set of equally

weighted particles. For simplicity, in the case of the boot-

strap filter (Doucet et al. 2001), we set q(st |s1:t−1, y1:t ) =

p(st |st−1), so that the weights are updated by the observation

likelihood p(yt |st ).

Particle filters have been used extensively in object track-

ing (Yilmaz et al. 2006). In this paper, we also employ parti-

cle filters to track the target object. Similar to Mei and Ling

(2011), we assume an affine motion model between consecu-

tive frames. Therefore, the state variable st consists of the six

parameters of the affine transformation (2D linear transfor-

mation and a 2D translation). By applying an affine transfor-

mation using st as parameters, we crop the region of interest

yt from the image and normalize it to the size of the target

templates in our dictionary. The state transition distribution

p(st |st−1) is modeled to be Gaussian with the dimensions

of st assumed independent. The observation model p(yt |st )

reflects the similarity between a target candidate (particle)

and dictionary templates. In this paper, p(yt |st ) is inversely

proportional to the reconstruction error obtained by linearly

representing yt using the dictionary of templates.

4 Structured Multi-Task Tracking (S-MTT)

In this section, we give a detailed description of our particle

filter based tracking method that makes use of structured

multi-task learning to represent particle samples.

4.1 Structured Multi-Task Representation of Particles

In the MTL framework, tasks that share dependencies in fea-

tures or learning parameters are jointly solved in order to

capitalize on their inherent relationships. Many works in this

domain have shown that MTL can be applied to classical

problems [(e.g. image annotation (Quattoni et al. 2009) and

image classification (Yuan and Yan 2010)] and outperform

state-of-the-art methods that resort to independent learning.

In this paper, we formulate object tracking as an MTL prob-

lem, where learning the representation of a particle is viewed

as a single task. Usually, particle representations in tracking

are computed separately (e.g. L1 tracker, Mei and Ling 2011).

In this paper, we show that by representing particles jointly

in an MTL setting, tracking performance and tracking speed

can be significantly improved.

In our particle filter based tracking method, particles are

randomly sampled around the current state of the tracked

object according to a zero-mean Gaussian distribution. At

instance t, we consider n particle samples, whose observa-

tions (pixel color values) in the t th frame are denoted in

matrix form as: X = [x1, x2, . . . , xn] , where each column is

a particle in R
d . In the noiseless case, each particle xi is repre-

sented as a linear combination zi of templates that form a dic-

tionary Dt = [d1, d2, . . . , dm] , such that X = Dt Z. The dic-

tionary columns comprise the templates that will be used to

represent each particle. These templates include visual obser-

vations of the tracked object (called target templates) possibly

under a variety of appearance changes. Since our representa-

tion is constructed at the pixel level, misalignment between

dictionary templates and particles might lead to degraded

performance. To alleviate this problem, one of two strategies

can be employed. (i) Dt can be constructed from a dense sam-

pling of the target object, which can also include transformed

versions of these samples. (ii) Columns of X can be aligned

to columns of Dt as in Peng et al. (2012) to solve the geomet-

ric transformation. In this paper, we employ the first strategy,

which leads to a larger m but a lower overall computational

cost. We denote Dt with a subscript because the dictionary

templates will be progressively updated to incorporate vari-

ations in object appearance due to changes in illumination,

viewpoint, etc. Our dictionary update scheme is adopted from

the work in Mei and Ling (2011), but for completeness, we

present its details in Sect. 4.4.

In many visual tracking scenarios, target objects are often

corrupted by noise or partially occluded. As in Mei and Ling

(2011), this noise can be modeled as sparse additive noise that

can take on large values anywhere in its support. Therefore,

in the presence of noise, we can still represent the particle

observations X as a linear combination of templates, where

the dictionary is augmented with trivial (or occlusion) tem-

plates Id (identity matrix of R
d×d), as shown in Eq. (4). The

representation error ei of particle i using dictionary Dt is the
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i th column in E. The nonzero entries of ei indicate the pixels

in xi that are corrupted or occluded. The nonzero support of

ei can be different among particles and is unknown a priori.

X = [Dt Id ]

[

Z

E

]

⇒ X = BC (4)

4.1.1 Imposing Joint Sparsity via ℓp,q Mixed-Norm

Because most particles are densely sampled around the cur-

rent target state, their representations with respect to Dt will

be sparse (few templates are required to represent them) and

similar to each other (the support of particle representations

is similar) in general. These two properties culminate in indi-

vidual particle representations (single tasks) being jointly

sparse. In other words, joint sparsity will encourage all par-

ticle representations to be individually sparse and share the

same (few) dictionary templates that reliably represent them.

This yields a more robust representation for the ensemble of

particles. In fact, joint sparsity has been recently employed

to address MTL problems (Quattoni et al. 2009; Yuan and

Yan 2010). A common technique to explicitly enforce joint

sparsity in MTL is the use of sparsity-inducing norms to reg-

ularize the parameters shared among the individual tasks. In

this paper, we investigate the use of convex ℓp,q mixed norms

(i.e. p ≥ 1 and q ≥ 1) to address the problem of MTL in

particle filter based tracking (denoted as MTT). Therefore,

we need to solve the convex optimization problem in Eq. (5),

where λ is a tradeoff parameter between reliable reconstruc-

tion and joint sparsity regularization.

min
C

1

2
‖X − BC‖2

F + λ‖C‖p,q (5)

Note that we define ‖C‖p,q as in Eq. (6), where ‖Ci‖p is

the ℓp norm of Ci and Ci is the i th row of matrix C.

‖C‖p,q =

(

m+d
∑

i=1

(‖Ci‖p)
q

)1/q

(6)

As in Eq. (5), given a dictionary B, for the n tasks

X = [x1, x2, . . . , xn] (each column is a particle), we aim

to discover, across these n tasks, a few common templates

that are the most useful for particle representation. In this

setting, the constraint of joint sparsity across different tasks

is valuable since different tasks may favor different sparse

reconstruction coefficients, yet the joint sparsity enforces the

robustness in coefficient estimation. Moreover, joint sparsity

exploits correlations among different tasks to obtain better

generalization performance as compared to learning each

task individually. The goal of joint sparsity is achieved by

imposing an ℓp,q mixed-norm penalty on the reconstruction

coefficients. In fact, joint sparsity can be viewed as a global

form of structural regularization that influences all particle

representations together. In the next section, we extend the

MTT framework to enforce local structure as well.

4.1.2 Imposing Structure via Graph Regularization

Enforcing joint sparsity using the ℓp,q mixed-norm exploits

the global structure inherent to particle representations in any

given frame. However, in particle based MTT, some of the

tasks are often more closely related and more likely to share

common relevant covariates than other tasks. This induces

another layer of structure, which affects particle representa-

tions locally. Therefore, we expand the MTT framework to

consider pairwise structural correlations between particles

(e.g. spatial smoothness of representation) and denote the

novel framework as Structured Multi-Task Tracking abbre-

viated as S-MTT. The S-MTT formulation can be viewed

as a generalization of MTT, since local structural informa-

tion endows MTT with another layer of robustness in track-

ing. In fact, our experiments show that incorporating such

local structural information significantly improves the per-

formance of MTT.

We assume that the learned representations C can be

related through pairwise interactions, which are considered

local structural priors to C. In this paper, we use these struc-

tural priors to enforce spatial smoothness among particle

representations. In other words, particles that are spatially

located near each other in the same frame should have similar

representations. In general, higher order relationships can be

added to the S-MTT framework; however, such relationships

significantly increase the complexity of learning the optimal

C. Therefore, we restrict ourselves to pairwise relationships

that are defined as edges in a graph, whose nodes constitute

the particle representations (i.e. columns of C). As such, we

incorporate these local pairwise relationships into Eq. (5) by

adding a suitable graph regularization term.

To do this, we investigate the use of the well-known

and widely used, normalized graph smoothness regularizer,

which is a weighted sum of pairwise distances between the

normalized representations in C. The weight of each distance

term reflects how strongly the corresponding pairwise rela-

tionship should be enforced. Since the normalized version of

this regularizer has been shown to produce better and more

stable results in many learning problems, we prefer it over

its unnormalized counterpart (Zhu 2008).

In Eq. (7), we formalize the graph regularizer, denoted as

G(C).Here, we define a symmetric weight matrix W ∈ R
n×n
+

that describes the similarity measure between every pair of

particle representations. In fact, W represents the weights

of all edges in the graph. Therefore, Wi j is the similarity

measure between the i th particle ci and the j th particle c j .

Here, we denote d̂i =
∑n

i=1 Wi j , the sum of the elements of

the i th row of W, and D̂ = diag(d̂1, d̂2, . . . , d̂n). In graph
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Fig. 2 (Color online) Schematic example of the L21 tracker. The rep-

resentation C of all particles X w.r.t. dictionary B (set of target and

occlusion templates) is learned by solving Eq. (9) with p = 2 and

q = 1. Notice that the columns of C are jointly sparse, i.e. a few (but

the same) dictionary templates are used to represent all the particles

together. The particle xi is selected among all other particles as the

tracking result, since xi is represented the best by object templates only

theory, D̂ is called the degree of the graph. In the last step,

we denote L = D̂ − W as the Laplacian of the graph and

T r(A) as the trace of matrix A.

G(C) =
1

2

n
∑

i=1

n
∑

j=1

Wi j

∥

∥

∥

∥

∥

∥

ci
√

d̂i

−
c j

√

d̂ j

∥

∥

∥

∥

∥

∥

2

2

= T r
(

CL̂CT
)

where L̂ = D̂− 1
2 LD̂− 1

2 (7)

We define Wi j to decrease exponentially with the distance

between the spatial locations of the i th and j th particles, as

in Eq. (8). Here, we denote li as the 2D location of the center

of the i th particle in the current frame and δ as a smoothing

factor. The δ is the average value of all distances between

li and l j . Note that other similarity measures can be used to

describe Wi j including the PASCAL overlap score.1

Wi j = exp

(

−
‖li − l j‖

2
2

2δ2

)

(8)

Therefore, the particle representations C can be computed

by solving Eq. (9), which simply adds the graph regularizer

G(C) to Eq. (5). Here, L̂ is the normalized Laplacian matrix,

and λ1 and λ2 are two parameters that quantify the tradeoff

between local and global structural regularization.

min
C

1

2
‖X − BC‖2

F +
λ1

2
T r(CL̂CT ) + λ2 ‖C‖p,q (9)

1 The score is the ratio of the intersection to the union of two bounding

boxes. In our case, it would be the ratio of the intersection of the ground

truth and the predicted tracks to their union in each frame.

4.2 Discussion

To encourage a sparse number of dictionary templates to be

selected for all particles, we restrict our choice of ℓp,q mixed

norms to the case of q=1, thus, ‖C‖p,1 =
∑m+d

i=1 ‖Ci‖p.

Among its convex options, we select three popular and widely

studied ℓp,1 norms: p ∈ {1, 2,∞}. The S-MTT objective

in Eq. (9) is composed of a convex2 quadratic term and a

non-smooth regularizer, and thus we conventionally adopt

the APG method (Tseng 2008) for optimization. The solu-

tion to Eq. (9) for these choices of p and q is described

in Sect. 4.3. Note that each choice of p yields a different

S-MTT tracker, which we will denote as the L∗
p1 tracker. To

discriminate between S-MTT and MTT trackers, we denote

the MTT tracker (i.e. when λ1 = 0 in Eq. (9)) using the ℓp,1

mixed norm as the L p1 tracker. In Sect. 5.6, we show that

L∗
p1 trackers can lead to significant improvement in track-

ing performance over L p1 trackers, in general. In Fig. 2, we

present an example of how the L21 tracker works. Given all

particles X (sampled around the tracked car) and based on a

dictionary B, we learn the representation matrix C by solving

Eq. (9). Note that smaller values are darker in color. Clearly,

columns of C are jointly sparse, i.e. a few (but the same)

dictionary templates are used to represent all the particles

together. Particle xi is chosen as the current tracking result

yt because it has the smallest reconstruction error w.r.t. to the

target templates Dt . Since particles x j and xk are misaligned

2 Since the degree matrix D̂ is diagonal and non-negative and since

the Laplacian L of any graph is positive semi-definite, the normalized

Laplacian L̂ is positive semi-definite. Thus, G(C) is convex in C.
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versions of the car, they are not represented well by Dt (i.e.

z j and zk have small values). This precludes the tracker from

drifting into the background.

As for Eq. (6), when p = q = 1, we note that

‖C‖1,1 =

m+d
∑

i=1

‖Ci‖1 =

n
∑

i=1

‖ci‖1, (10)

where ci and Ci represent the i th column and i th row in

C respectively. This equivalence property between rows and

columns (i.e. the sum of the ℓp norms of rows and that of

columns are the same) only occurs when p = 1. In this

case, MTT (Eq. (5)) and S-MTT (Eq. (9) when λ1 = 0)

become equivalent to Eq. (10). This optimization problem is

no longer an MTL problem, since the n representation tasks

are unrelated and are solved separately. Interestingly, Eq.

(10) is the same formulation used in the popular L1 tracker

(Mei and Ling 2011), which can be viewed as a special case

of our proposed family of S-MTT algorithms, namely the

L11 tracker. In fact, using the optimization technique in Sect.

4.3, we observe that our L11 implementation is two orders of

magnitude faster than the traditional L1 tracker.

min
c1,...,cn

n
∑

j=1

(

1

2
‖x j − Bc j‖

2
2 + λ2‖c j‖1

)

(11)

A detailed overview of the proposed S-MTT tracking

method is shown in Algorithm 1. Based on the previous state

st−1, we can use the importance sampling approach (Isard

and Blake 1998) to obtain new particles and crop the cor-

responding image patches to obtain their observations X.

Then, we learn their representations C by solving Eq. (9),

to be shown in Sect. 4.3. The particle that has the smallest

reconstruction error is selected to be the current tracking

result. Finally, the dictionary templates in Dt are updated

adaptively, to be shown in Sect. 4.4.

4.3 Solving Eq. (9)

In S-MTT, we need to solve Eq. (9) when q=1 and p ∈

{1, 2,∞}. Clearly, the overall objective is non-smooth due

to the non-smoothness of the ℓp,1 mixed norm. If straight-

forward first-order subgradient methods were used to solve

the S-MTT problem, only sublinear convergence
(

i.e. con-

vergence to an ǫ-accurate solution in O
(

1
ǫ2

)

iterations
)

is

guaranteed. To obtain a better convergence rate, we exploit

recent developments in non-smooth convex optimization.

The unpublished manuscript by Nesterov (2007) considers

the problem of minimizing a convex objective composed of a

smooth convex term and a “simple” non-smooth convex term.

Here, “simple” means that the proximal mapping3 of the non-

smooth term can be computed efficiently. In this case, an

APG method can be devised to solve the non-smooth convex

program with guaranteed quadratic convergence. Because of

its attractive convergence property, this APG method has

been extensively used to efficiently solve smooth convex

optimization problems with non-smooth norm regularizers

(e.g. MTL problems, Chen et al. 2009). It should be noted

that Beck and Teboulle (2009) independently proposed the

“ISTA” algorithm for solving linear inverse problem with

the same convergence rate. This work was further extended

to convex-concave optimization in Tseng (2008).

In general, APG iterates between updating the current rep-

resentation matrix C(k) and an aggregation matrix V(k). Each

APG iteration consists of two steps: (1) a generalized gradi-

ent mapping step that updates C(k) keeping V(k) fixed, and

(2) an aggregation step that updates V(k) by linearly combin-

ing C(k+1) and C(k). To initialize V(0) and C(0), we set them

to 0.

4.3.1 Gradient Mapping Step

Given the current estimate V(k), we obtain C(k+1) by solv-

ing Eq. (12), which is nothing but the proximal mapping of

λ̃‖Y‖p,1. Here, η is a small step parameter, and λ̃ = ηλ2.

C(k+1) = arg min
Y

1

2
‖Y − H‖2

2 + λ̃‖Y‖p,q , (12)

The temporal parameter H is an η step from the current

estimate V(k) along the negative gradient of the smooth term

in Eq. (9) and is calculated in Eq. (13).

3 The proximal mapping of a non-smooth convex function h(.) is

defined as: proxh(x) = arg minu

(

h(u) + 1
2
‖u − x‖2

2

)

.
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H = V(k) − η∇(k)
s

= V(k) − η

[

BT BV(k) + λ1V(k)L̂ − BT X
]

. (13)

Taking joint sparsity into consideration and since q =

1, Eq. (12) decouples into (m + d) disjoint subproblems

(one for each row vector Ci ), as shown in Eq. (14), where Yi

and Hi denote the i th row of the matrix Y and H, respectively.

C
(k+1)
i = arg min

Yi

1

2
‖Yi − Hi‖

2
2 + λ̃ ‖Yi‖p , (14)

Each subproblem is the proximal mapping of the ℓp vector

norm, which is a variant of the vector projection problem

unto the ℓp ball. The solution to each subproblem and its

time complexity depends on p. In Sect. 4.3.3, we provide the

solution of this subproblem for popular ℓp norms, namely

p ∈ {1, 2,∞}.

4.3.2 Aggregation Step

In this step, we construct a linear combination of C(k) and

C(k+1) to update V(k+1) as follows:

V(k+1) = C(k+1) +
αk+1 (1 − αk)

αk

(

C(k+1) − C(k)
)

, (15)

where αk is conventionally set to 2
k+3

. Our overall APG algo-

rithm is summarized in Algorithm 2. Note that convergence

is achieved when the relative change in solution or objective

function falls below a predefined tolerance.

4.3.3 Solving Eq. (14) for p ∈ {1, 2,∞}

The solution to Eq. (14) depends on the value of p. For p ∈

{1, 2,∞}, we show that this solution has a closed form. Note

that these solutions can be extended to ℓp norms beyond the

three that we consider here.

For p=1: The solution of Eq. (14) is equivalent to the

L1 tracker solution, as shown in Eq. (11). Here, the update

C
(k+1)
i is computed in closed form in Eq. (16), where Sλ̃

is the soft-thresholding operator defined in scalar form as

Sλ̃(a) = sign(a) max(0, |a| − λ̃). This operator is applied

elementwise on Hi .

C
(k+1)
i = arg min

Yi

1

2
‖Yi − Hi‖

2
2 + λ̃ ‖Yi‖1

= Sλ̃(Hi ) (16)

For p=2: Following Chen et al. (2009), the update C
(k+1)
i

is computed in closed form in Eq. (17).

C
(k+1)
i = arg min

Yi

1

2
‖Yi − Hi‖

2
2 + λ̃ ‖Yi‖2

= max

(

0, 1 −
λ̃

‖Hi‖2

)

Hi (17)

For p= The update C
(k+1)
i is computed via a projection

onto the ℓ∞ ball that can be done by a simple sorting proce-

dure (Chen et al. 2009). In this case, the solution is given in

Eq. (18).

C
(k+1)
i = max

(

0, 1 −
λ̃

‖Hi‖1

)

a, (18)

where the j th element of vector a is defined as

a j = sign(Hi j ) min

⎛

⎝|Hi j |,
1

ĵ

⎛

⎝

ĵ
∑

r=1

ur − λ̃

⎞

⎠

⎞

⎠

∀ j = 1, . . . , n.

The temporary parameters ur and ĵ are obtained as follows.

We set u j = |Ci j | ∀ j and sort these values in decreasing

order: u1 ≥ u2 ≥ · · · ≥ un . Then, we set ĵ = max{ j :
∑ j

r=1 (ur − u j ) < λ̃}. Here, Ci j and Hi j denote the ele-

ment in the i th row and j th column of matrices C and H,

respectively.

4.3.4 Computational Complexity of Algorithm 2

The computational complexity of each iteration in Algorithm

2 is dominated by the gradient computation in Step 3 and the

update of C
(k+1)
i in Step 4. Exploiting the structure of B, the

complexity of Step 3 is O(mnd), while that of Step 4 depends

on p. The latter complexity is O(n(m+d)) for p ∈ {1, 2} and

O(n(m + d)(1 + log n)) for p = ∞. Since d ≫ m, the per-

frame complexity of the proposed S-MTT and MTT trackers

is O(mndǫ− 1
2 ), where the number of iterations is O(ǫ− 1

2 ) for

an ǫ-accurate solution. In comparison, the time complexity of

the L1 tracker (that is equivalent to our L11 tracker) is at least

O
(

nd2
)

. In our experiments, we observe that the L11 tracker

(that uses APG) is two orders of magnitude faster than the

L1 tracker (that solves n Lasso problems independently) in

general. For example, when m = 11, n = 200, and d = 32×

32, the average per-frame run-time for L11 and L1 are 1.1 and
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179 s respectively. This is on par with the accelerated “real-

time” implementation of the L1 tracker in Li et al. (2011).

4.4 Dictionary Update

Target appearance remains the same only for a certain period

of time, but eventually the object templates in Dt are no longer

an accurate representation of the target’s appearance. A fixed

appearance template is prone to the tracking drift problem,

since it is incapable of handling appearance changes over

time. In this paper, our dictionary update scheme is adopted

from the work in Mei and Ling (2011). Each target tem-

plate in Dt is assigned a weight that is indicative of how

representative the template is. In fact, the more a template

is used to represent tracking results, the higher its weight

is. When Dt cannot represent some particles well (up to a

predefined threshold), the target template with the smallest

weight is replaced by the current tracking result. To initialize

the m target templates, we sample equal-sized patches at and

around the initial position of the target. In our experiments,

we shift the initial bounding box by 1–3 pixels in each direc-

tion, thus, resulting in m = 11 object templates as in Mei

and Ling (2011). All dictionary templates are normalized.

5 Experimental Results

In this section, we present extensive experimental results

that validate the effectiveness and efficiency of our proposed

S-MTT and MTT methods. We also conduct a thorough com-

parison between our proposed trackers and state-of-the-art

tracking methods where applicable.

The experimental results are organized as follows. In Sect.

5.1, we give an overview of the video dataset that we test

our S-MTT/MTT trackers. Section 5.2 enumerates the six

state-of-the-art trackers that we compare against. The imple-

mentation details of our proposed trackers are highlighted

in Sect. 5.3. In Sect. 5.4, we report the average runtime of

the S-MTT trackers with varying parameter settings, as well

as, compare it to the runtime of the L1 tracker. Qualitative

and quantitative comparisons between S-MTT/MTT and the

state-of-the-art trackers are made in Sects. 5.5 and 5.6 respec-

tively. The comparative results demonstrate that our method

provides more robust and accurate tracking results than the

state-of-the-art. Several videos for the tracking results can be

found in the supplementary material. The videos and codes

will be made available on our project website.4

4 https://sites.google.com/site/videoadsc/.

5.1 Datasets

To evaluate our proposed trackers, we compile a set of 15

challenging tracking sequences (denoted as car4, car11,

david indoor, sylv, trellis70, girl, coke11, faceocc2, shaking,

football, singer1, singer1(low frame rate), skating1, skat-

ing1(low frame rate), soccer. The video sequences car4,

car11, david indoor, sylv and trellis70 can be downloaded

from an online source.5 The video sequences girl, coke11

and faceocc2 can be downloaded from an online source.6 The

other video sequences shaking, football, singer1, singer1(low

frame rate), skating1, skating1(low frame rate) and soccer

can be downloaded from an online source.7 These videos are

recorded in indoor and outdoor environments and include

most challenging factors in visual tracking: complex back-

ground, moving camera, fast movement, large variation in

pose and scale, occlusion, as well as shape deformation and

distortion (see Figs. 3, 4).

5.2 Baselines

We compared the proposed algorithms (MTT and S-MTT)

with six state-of-the-art visual trackers: VTD tracker (Kwon

and Lee 2010), L1 tracker (Mei and Ling 2011), IVT

tracker (Ross et al. 2008), MIL tracker (Babenko et al. 2009),

Fragments-based tracker (Frag) (Adam et al. 2006), and OAB

tracker (Grabner et al. 2006). We use the publicly available

source codes or binaries provided by the authors themselves

with the same initialization and parameter settings to gen-

erate the comparative results. In our experiments, our pro-

posed tracking methods use the same parameters for all the

test sequences.

5.3 Implementation Details

All our experiments are done using MATLAB R2008b

on a 2.66 GHZ Intel Core2 Duo PC with 6 GB RAM.

The template size d is set to half the size of the tar-

get initialization in the first frame. Usually, d is in the

order of several hundreds of pixels. For all experiments,

we model p (st |st−1) ∼ N (0, diag(σ )), where σ =

[0.005, 0.0005, 0.0005, 0.005, 4, 4]T . We set the number of

particles n = 400, the total number of target templates

m = 11 [The templates are obtained with 1–3 pixels shift

around the target position as the same as the L1 tracker

(Mei and Ling 2011)], and the number of occlusion tem-

plates to d. In Algorithm 2, we set η = 0.01, λ1 = 1, λ̃ (by

cross-validation) to {0.01, 0.005, 0.2} for L21, L11 and L∞1

respectively, and λ̃ to {0.005, 0.001, 0.2} for L∗
21, L∗

11 and

5 http://www.cs.toronto.edu/~dross/ivt/.

6 http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml.

7 http://cv.snu.ac.kr/research/~vtd/.
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Table 1 Average per-frame runtime (in seconds) of 4 trackers (L∗
21, L∗

∞1, L∗
11, and L1) with varying template sizes d and number of particles n

n d

16 × 16 32 × 32 48 × 48 64 × 64

L1 L∗
21 L∗

∞1 L∗
11 L1 L∗

21 L∗
∞1 L∗

11 L1 L∗
21 L∗

∞1 L∗
11 L1 L∗

21 L∗
∞1 L∗

11

100 2.07 0.32 0.15 0.11 84.5 0.41 0.78 0.72 601.3 2.62 2.01 2.36 2230.7 8.88 5.97 9.50

200 3.91 0.33 0.53 0.21 178.9 1.46 1.98 1.55 1238.3 5.56 3.22 3.85 4536.0 18.18 9.37 13.99

300 5.79 0.73 1.10 0.44 256.4 2.71 2.90 2.23 1969.9 5.04 5.95 6.98 6717.2 23.96 37.87 28.99

400 7.90 1.21 1.47 0.55 340.5 4.69 5.39 2.74 2665.2 11.45 15.32 4.99 8881.8 23.26 39.10 31.28

500 11.39 1.61 1.85 0.62 422.5 4.85 7.26 3.19 3158.6 19.38 20.30 8.83 1100.3 32.17 46.53 37.07

600 12.05 2.24 2.71 0.76 497.1 5.97 8.34 4.57 3915.9 21.04 25.32 8.57 1314.7 40.08 53.79 41.71

700 13.58 2.96 3.62 0.99 572.3 6.17 7.45 5.03 4429.9 22.36 35.19 10.96 1533.2 48.86 63.51 49.19

800 15.89 3.58 4.35 1.08 659.4 7.62 10.37 5.77 5080.4 23.82 27.61 13.16 1889.9 55.99 72.11 54.88

L∗
∞1 respectively. Each tracker uses the same parameters for

all video sequences. In all cases, the initial position of the

target is selected manually.

5.4 Computational Cost

The popular L1 tracker that uses a similar sparse representa-

tion model for particle appearance has shown to achieve bet-

ter tracking performance than state-of-the-art trackers (Mei

and Ling 2011). However, its computational cost grows pro-

portionally as the number of particle samples n and template

size d increase. Due to the inherent similarity between the

L1 tracker and the proposed trackers (MTT and S-MTT),

we compare their average runtimes in Table 1. S-MTT and

MTT has very similar computational costs, so for simplic-

ity, we just report the runtime results of S-MTT (L∗
21, L∗

∞1,

L∗
11) and L1 in Table 1. Based on the results, it is clear that

our trackers are much more efficient than the L1 tracker.

For example, when m = 11, n = 400, and d = 32 × 32,

the average per-frame run-time for L∗
21, L∗

∞1, L∗
11, and L1

trackers are 4.69, 5.39, 2.74, and 340.5 s, respectively. Inter-

estingly, our L∗
11 tracker, which is similar to L1 tracking

but solved using the APG method, is about 120 times faster

than the L1 tracker . As we know, increasing n and d will

improve tracking performance. For L1 tracking, the runtime

cost increases dramatically with both n and d; however, this

increase is much more reasonable with our trackers. Note

that the computational complexity of S-MTT is derived in

Sect. 4.3.4.

5.5 Qualitative Comparison

The car4 sequence is captured in an open road scenario.

Tracking results at frames {20, 186, 235, 305, 466, 641}

for all 12 methods are shown in Fig. 3a. The different track-

ing methods are color-coded. OAB, Frag, and VTD start to

drift from the target at frame 186, while MIL starts to show

some target drifting at frame 200 and finally loses the target

at frame 300. IVT and L1 track the target quite well. The

target is successfully tracked throughout the entire sequence

by our L11, L21, L∞1, L∗
11, L∗

21, and L∗
∞1 methods.

In the car11 sequence, a car is driven into a very dark envi-

ronment, while being videotaped from another moving car.

Tracking results for frames {10, 110, 200, 250, 309, 393} are

presented in Fig. 3b. Frag starts to drift around frame 60. Due

to changes in lighting, MIL starts to undergo target drift from

frame 120. OAB and L1 methods start to fail in frame 284.

IVT and VTD can track the target through the whole video

sequence; however, these tracks are not as robust or accurate

as the proposed L21, L∞1, L∗
21 and L∗

∞1 trackers.

The coke11 sequence contains frequent occlusions and

fast motion, which cause motion blur. The S-MTT, MTT,

L1, OAB, and MIL trackers can track the target accurately

almost throughout the entire sequence. The other trackers

fails due to pose change and occlusion as shown in Fig. 3c.

In the david sequence, a moving face is tracked. The track-

ing results at frames {354, 423, 465, 502, 588, 760} are shown

in Fig. 3d. Frag and VTD fail around frames 423 and 465

respectively. OAB starts to drift at frame 550. MIL and L1

adequately track the face, but experience target drift, espe-

cially at frames 690 and 500, respectively. The IVT, S-MTT

and MTT methods track the moving face accurately.

In the faceocc sequence, a moving face is tracked, which

can evaluate the robustness to occlusions of different meth-

ods. The tracking results at frames {100, 231, 314, 474, 571,

865} are shown in Fig. 3e. Because there is only occlusion

by a book and no changes in illumination and motion, most

of the methods can track the face accurately except OAB and

MIL, which encounter minor drift.

Results on the faceocc2 sequence are shown in Fig. 3f.

Most trackers start drifting from the man’s face when it is

almost fully occluded by the book. Because the L1, MTT

and S-MTT methods explicitly handle partial occlusions, and

update the object dictionary progressively, they handle the
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Fig. 3 (Color online) Tracking results of 12 trackers on 7 video sequences denoted with different colors. Frame numbers are overlayed in red. See

text for details

appearance changes in this sequence very well and continue

tracking the target during and after the occlusion.

The football sequence includes severe background clutter,

which is similar in appearance to the tracked target. For the

other methods, tracking drifts from the intended object (hel-

met) to other similar looking objects in the vicinity. This

is especially the case when the two football players col-

lide at frame 362 (refer to Fig. 3g). The proposed trackers

(such asL21, L∞1 and L∗
21) overcome this problem and suc-

cessfully track the target because they exploit structural rela-

tionships between particle representations.

Figure 4a shows tracking results for the girl sequence.

Performance on this sequence exemplifies the robustness of

MTT to occlusion (complete occlusion of the girl’s face as she

swivels in the chair) and large pose change (the face under-

goes significant 3D rotation). S-MTT, MTT and L1 are capa-

ble of tracking the target during the entire sequence. Other

trackers experience drift at different instances: Frag at frame

248, OAB and IVT at frame 436, and VTD at frame 477.

In the onelsr sequence, the background color is similar to

the color of the woman’s trousers, and the man’s shirt and

pants have a similar color to the woman’s coat. In addition,

the woman undergoes partial occlusion when the man in the

scene walks behind her. Some results are shown in Fig. 4b.

While tracking the woman, IVT, MIL, Frag, OAB, and VTD

start tracking the man when the woman is partially occluded
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Fig. 4 (Color online) Tracking results of 12 trackers on 8 video sequences delineated by different colors. Frame numbers are overlayed in red. See

text for details

around frame 200, and are unable to recover from this fail-

ure after that. The L1 tracker tracks the woman quite well.

Compared with other trackers, our L∗
21, L∗

∞1, L21 and L∞1

trackers are more robust to the occlusion. In addition, our

L∗
21, L∗

∞1, L21 and L∞1 trackers are much better than L1,

L11, and L∗
11, which demonstrate that imposing joint sparsity

between particle representations is helpful for robust object

tracking.

In the shaking sequence, the tracked object is subject to

changes in illumination and pose. While the stage lighting

condition is drastically changed, and the pose of the object is

severely varied due to head shaking, our method successfully

tracks the object (refer to Fig. 4c). Compared with L11, L∗
11

and L1, L21, L∞1, L∗
21 and L∗

∞1 perform better because

their joint sparse particle representation is more robust to

rapid changes. Other methods (OAB, IVT, L1, and Frag) fail
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to track the object when these changes occur. VTD and MIL

methods can track the object quite well except for some errors

around frame 60.

The singer1(l) sequence contains abrupt object motion

with significant illumination and scale changes, which cause

most of the trackers to drift as shown in Fig. 4d. S-MTT, MTT

and VTD handle these changes well. Compared with MTT

(L21, L∞1 and L11), S-MTT (L∗
21, L∗

∞1 and L∗
11) obtains

much better performance, which shows that harnessing local

structure between particle representations is useful for object

tracking.

In the skatingl sequence, there are abrupt object motion,

severe illumination and scale changes, viewpoint changes

and occlusions, which lead most of the trackers to fail. Our

proposed trackers (MTT and S-MTT) and VTD handle these

changes well as shown in Fig. 4e. Note that, in the 353th

frame in the Fig. 4e, our proposed trackers are slightly better

than the VTD method, which is the most recent state-of-the-

art tracking method that can cope with abrupt motion and

appearance changes.

Results on the soccer sequence are shown in Fig. 4f. They

demonstrate how our proposed method outperforms most

of the state-of-the-art trackers when the target is severely

occluded by other objects. The L∗
21, L∗

∞1, L∗
11, L21 and L11

methods accurately track the player’s face despite scale and

pose changes as well as occlusion/noise from the confetti

raining around him. Other methods (IVT, L1, L∞1, OAB,

MIL, and Frag) fail to track the object reliably. The VTD

tracker can track the target in this sequence quite well.

Results on the sylv sequence are shown in Fig. 4g. In this

sequence, a stuffed animal is being moved around, thus, lead-

ing to challenging pose, lighting, and scale changes. IVT fails

around frame 623 as a result of a combination of pose and

illumination change. The rest of the trackers are able to track

the target throughout the sequence, although the Frag, MIL,

VTD, OAB, L11 and L1 encounter minor drift from the target.

The trellis70 sequence is captured in an outdoor environ-

ment where lighting conditions change drastically. The video

is acquired when a person walks underneath a trellis covered

in vines. As shown in Fig. 4h, the cast shadow changes the

appearance of the target face significantly. Furthermore, the

combined effects of pose and lighting variations along with a

low frame rate make visual tracking extremely difficult. Nev-

ertheless, the L21, L∞1, L∗
21 and L∗

∞1 trackers can follow

the target accurately and robustly, while the other tracking

methods perform below par in this case. VTD and Frag fail

around frame 185. L1 starts drifting at frame 287, while MIL

and OAB fail at frame 323. IVT starts drifting at frame 330.

5.6 Quantitative Comparison

To give a quantitative comparison between the 12 trackers,

we obtain ground truth for all 15 sequences. Here, we note

that ground truth for some of the video sequences is readily

available. We manually label the other sequences. Tracker

performance is evaluated according to the average per-frame

distance (in pixels) between the center of the tracking result

and that of ground truth as used in Babenko et al. (2009) and

Mei and Ling (2011). Clearly, this distance8 should be small.

In Fig. 5, we plot the distance of each tracker over time

on 2 sequences for simplicity. From this figure, we see that

MTT and S-MTT trackers consistently produce a smaller

distance than other trackers in general. This implies that MTT

and S-MTT can accurately track the target despite severe

occlusions, pose variations, illumination changes, and abrupt

motions.

In Table 2, we show the average center distance for each

tracker over the 15 sequences. It is clear that the S-MTT and

MTT methods are consistently better than the other trackers

in most sequences. Among the MTT methods, L21 outper-

forms L11 and L∞1 in general. For S-MTT method, L∗
21 are

much better than L∗
11 and L∗

∞1. In fact, except for the faceocc,

football, shaking and skatingl sequences, in which we obtain

similar results as IVT and VTD, the L21 and L∗
21 trackers

do outperform the other methods. Frag and L1 perform well

under partial occlusion but tend to fail under severe illumina-

tion and pose changes. The IVT tracker is hardly affected by

changes in appearance except those due to illumination. OAB

is effected by background clutter and easily drifts from the

target. MIL performs well except when severe illumination

changes force the tracker to drift into the background. VTD

tends to be robust against illumination change, but it cannot

handle severe occlusions and viewpoint changes adequately.

Now, we compare the performance of S-MTT and MTT

methods. Based on the results in Table 2, L21 and L∞1 out-

perform L11. This is due to the fact that the L11 tracker

learns particle representations separately, while L21 and

L∞1 capitalize on dependencies between different particles

to obtain more robust jointly sparse representations. These

results demonstrate that it is useful for visual tracking to

impose joint sparsity among particle representations. For

S-MTT, the performance of the corresponding three trackers

(L∗
21, L∗

∞1 and L∗
11) has similar tendencies as MTT. How-

ever, S-MTT is reasonably better than MTT. This validates

the impact of using local graph structure to regularize particle

representations and yield more robust object tracking.

In addition, we compare MTT and S-MTT with the L1

tracker, which is the most related tracker to ours and has

shown state-of-the-art performance (Mei and Ling 2011).

Based on the results in Table 2, MTT (L21 and L∞1) and

S-MTT (L∗
21 and L∗

∞1) outperform the L1 tracker. That is

because L1 tracking represents particles separately, while the

8 This dissimilarity measure is used often to compare tracking perfor-

mance. Other measures can be used, including the PASCAL overlap

score.
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Fig. 5 (Color online) Center distance (in pixels) between tracking result and ground truth over time for 12 trackers applied to 15 video sequences

proposed trackers capitalize on dependencies between dif-

ferent particle representations to obtain a more robust jointly

sparse representation. Our results demonstrate that it is useful

for visual tracking to mine particle relationships. L∗
11 outper-

forms the L11 and L1 trackers, since the L∗
11 tracker makes

use of the local graph structure. Moreover, in theory, the L1
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Table 2 (Color online) The mean distances of 12 different trackers on 15 different video sequences

On average, the proposed trackers (L∗
21, L∗

∞1, L∗
11, L21, L∞1, and L11 ) outperform the other 6 state-of-the-art trackers. For each sequence, the

smallest and second smallest distances are denoted in red and blue respectively

tracker is a special case of our MTT framework (refer to

Eq. (11)), and it should produce the same results as L11.

However, this is not reflected in our empirical results due to

three reasons. (a) The L1 tracker is forced to adopt a smaller

template size (d = 12 × 15) due to its high computational

cost O(nd2). A larger d leads to a richer representation and

improved tracking performance. As mentioned earlier, MTT

methods set d to half the size of the initial bounding box,

which is generally more than 600 pixels. (b) In the public

MATLAB implementation of L1, the dictionary weights are

used not only to update the target templates but also to mul-

tiply the templates themselves, which leads to an artificially

sparser representation. For L11, the weights are only used to

update the target templates. In addition, MTT uses a more

efficient solver (refer to Sect. 4.3.3) to learn particle repre-

sentations, so L11 can reach a better solution than L1 for

the same stopping criterion at every frame. (c) Since the L1

and L11 trackers both adopt the particle filter framework,

their tracking results for the same sequence can be differ-

ent because the particles that are randomly sampled at each

frame tend to be different.

6 Conclusion

In this paper, we formulate particle filter based tracking as

a structured multi-task sparse learning problem, where par-

ticle representations, regularized by a sparsity-inducing ℓp,1

mixed norm and a local graph term, are learned jointly using

an efficient APG method. We show that the popular L1

tracker (Mei and Ling 2011) is a special case of our pro-

posed formulation. Also, we extensively analyze the perfor-

mance of our tracking paradigm on challenging real-world

video sequences and show it outperforming six state-of-the-

art tracking methods.
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