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Abstract. A novel tracking algorithm that can track a highly non-rigid
target robustly is proposed using a new bounding box representation
called the Double Bounding Box (DBB). In the DBB, a target is de-
scribed by the combination of the Inner Bounding Box (IBB) and the
Outer Bounding Box (OBB). Then our objective of visual tracking is
changed to find the IBB and OBB instead of a single bounding box,
where the IBB and OBB can be easily obtained by the Dempster-Shafer
(DS) theory. If the target is highly non-rigid, any single bounding box
cannot include all foreground regions while excluding all background re-
gions. Using the DBB, our method does not directly handle the ambigu-
ous regions, which include both the foreground and background regions.
Hence, it can solve the inherent ambiguity of the single bounding box
representation and thus can track highly non-rigid targets robustly. Our
method finally finds the best state of the target using a new Constrained
Markov Chain Monte Carlo (CMCMC)-based sampling method with the
constraint that the OBB should include the IBB. Experimental results
show that our method tracks non-rigid targets accurately and robustly,
and outperforms state-of-the-art methods.

1 Introduction

Visual tracking has been used in many artificial intelligence applications, includ-
ing surveillance, augmented reality, medical imaging, and other intelligent vision
systems [5,8,16,32,34]. In practical applications, the purpose of visual tracking
is to find the best configuration of a target with a given observation [38]. As
many conventional tracking methods describe the target with a single bounding
box, the configuration at time t is typically represented by a three-dimensional
vector Xt = (Xx

t , X
y
t , X

s
t ), where (Xx

t , X
y
t ), and Xs

t are the center coordinate
and the scale of the target, respectively. This single bounding box representation
is widely used because it allows the easy inference of the best configuration using
a low-dimensional vector [1,4,13,17,20,24]. In addition, with the representation,
tracking methods that use the tracking by detection approach [3,7,14,18,31,35]
easily train a classifier using the rectangular patches described by the bound-
ing box.
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Fig. 1. Example of the different bounding box representations. (a) The IBB
is the bounding box that only includes the target region, but excludes some parts of
it. The OBB is the bounding box that includes whole target region but also includes
some background regions. In our DBB, the bounding box of the target is represented
by the combination of the IBB (red) and OBB (blue). (b) The discriminative tracking
approaches in [2][36] also use two BBs for visual tracking. However only one BB is
used for representing the target configuration. The other BB is required only to get
the background information [2] or to make a search range [36], which is quite different
from our OBB. All of two BBs in our method are designed to represent the non-rigid
target configuration.

However, the single bounding box representation has inherent ambiguity if a
target is highly non-rigid. No single bounding box can cover the whole region of
the target while excluding all the background regions, as shown in Fig.1(a). In
this case, the tracking methods may choose the Inner Bounding Box (IBB), the
Outer Bounding Box (OBB), or between them. The IBB is the largest bounding
box that contains pure object region only. The OBB is the smallest bounding
box that contains the whole object region, where the outside of the OBB is pure
background. However, although the IBB in Fig.1(a) can deliver the pure target
region, the IBB and bounding boxes that are smaller than the IBB lose lots of
useful information about the target by excluding large parts of it. While the OBB
in Fig.1(a) includes the whole target region, the OBB and bounding boxes that
are larger than the OBB inevitably contain unwanted background regions. The
bounding boxes between the IBB and OBB include both the target region and
the background region. Now, the natural question is which box representation can
best describe a general and non-rigid target. The present paper aims to resolve
this ambiguity in the bounding box representation, and to track a non-rigid
target robustly using a new bounding box representation.

In this paper, the bounding box of a target is represented by the combination
of the IBB and OBB. We call this representation the DBB. By describing the
bounding box with this combination, our method solves the inherent ambigu-
ity in the single bounding box representation. In addition, this representation
improves tracking performance because it does not consider the ambiguous re-
gions

(

the black region between the IBB and OBB in Fig.1(a)
)

in determining
the probable configuration of the target, which contains mixed target and back-
ground regions. Instead, our method only considers the maximal pure foreground
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region, inside of the IBB
(

the red region in Fig.1(a)
)

and the pure background

region, outside of the OBB
(

the blue region in Fig.1(a)
)

in determining the prob-
able configuration of the target. Our method finds the IBB and OBB using the
DS theory [9,11] in Section 3.2. Following the DS theory, the IBB is obtained by
maximizing the similarity between the red region and the target model, and the
OBB is obtained by maximizing the dissimilarity between the green region and
the target model. With the IBB and OBB, the method searches the best state of
the target using the proposed Constrained Maximum a Posteriori (CMAP) esti-
mate in Section 4.1. The best state maximizes the posterior probability while it
satisfies the constraint that the OBB has to include the IBB. The best state can
be achieved by the proposed CMCMC-based sampling method in Section 4.2.

The first contribution of our work is to propose a new bounding box rep-
resentation. A highly non-rigid object cannot be adequately described by any
single bounding box. To solve the ambiguity in the conventional bounding box
representation, the target is represented by the combination of two bounding
boxes, which is called the DBB. The second contribution is to apply the the
DS theory to the bounding box representation problem and to provide a the-
oretical basis for determining the IBB and OBB. The last contribution is to
present an efficient tracking system using the DBB and a new CMCMC-based
sampling method. The DBB explores the complementary connection between
the IBB and OBB to track highly non-rigid targets accurately. In practice, the
IBB is robust to the deformation of the target but sensitive to noise because of
its small size. The OBB is resistant to noise but imprecise on the deformation of
the target because of its large size. Hence, these two representations complement
each other, resulting in a representation that is insensitive to both deformation
and noise. The CMCMC-based sampling method efficiently determines the best
states of the target while maintaining the constraint in which the OBB must
include the IBB.

2 Related Work

In tracking methods for non-rigid targets, the BHT tracker [26] described the
target using multiple rectangular blocks, whose positions within the tracking
window are adaptively determined. The BHMC tracker [22] represented the tar-
get using multiple local patches, in which the topology among local patches con-
tinuously evolves. Using multiple rectangular blocks and multiple local patches,
these methods efficiently track non-rigid objects undergoing large variations in
appearance and shape. Our method and aforementioned part models are similar
in the sense of using multiple bounding boxes. However, the main advantages of
our method over these methods are in how it determines the sizes of the IBB and
OBB and how to calculate their likelihoods efficiently using the DS theory [9,11].
Therefore, our method can improve even the conventional part models by apply-
ing the aforementioned two contributions to them. In addition, compared with
the part models [29], our method describes the target as a low-dimensional vec-
tor using only the IBB and OBB. Hence, the best state of the target is easily
determined with a much smaller computational cost.
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In sampling-based tracking methods, the particle filter [15] determines the
best state by considering the non-Gaussian and the multi-modality of the target
distribution in the tracking problem. Markov Chain Monte Carlo (MCMC) meth-
ods [19,33] efficiently determines the best state in high-dimensional state spaces.
Compared with these methods, the CMCMC-based sampling method finds the
best state while satisfying some constraints. It is a more difficult problem than
the conventional sampling problems.

In tracking methods using the the DS theory [9,11], the method in [10] pre-
sented a face tracking system using a pixel fusion process from three color sources
within the framework of the DS theory. The methods in [23,25] resolved the vi-
sual tracking problem by combining evidences frommultiple sources using the DS
theory. Unlike these methods that used the DS theory only for the observation
fusion, our method employs the theory for the bounding box representation.

3 Design of the Double Bounding Box

3.1 Bounding Box Representation Using DS Theory

In the tracking method, a state Xt represents a bounding box of a rectangular
region at t-th frame. Let us denote R(Xt) as the region enclosed byXt. According
to the Shafer’s framework [9], we can define a mass function m(R(Xt)) for the
region of a bounding box R(Xt), which is bounded by two values, i.e., belief and
plausibility:

bel(R(Xt)) ≤ m(R(Xt)) ≤ pl(R(Xt)), (1)

where bel(R(Xt)) and pl(R(Xt)) denote the belief and the plausibility of R(Xt),
respectively. In this work, the mass function m(R(Xt)) is designed by the like-
lihood of the region of the bounding box:

m(R(Xt)) ≡ p(Yt|R = R(Xt)) =
1

c
e
−dist

(

Mt,Yt(R(Xt))
)

, (2)

where Yt(R(Xt)) denotes the observation inside of the region R(Xt) and dist(·)
returns the distance between the observation Yt(R(Xt)) and the target model
Mt. For the observation and the distance measure, we utilize the HSV color
histogram and the Bhattacharyya similarity coefficient in [28]. c in (2) is a nor-
malization constant.

Now, given an IBB Xi
t and an OBB Xo

t , as shown in Fig.2, the whole region
of interest can be divided by three regions R1

t , R
2
t , and R3

t , making the frame of
discernment to be Ut = {R1

t ,R
2
t ,R

3
t}, where the regions are mutually exclusive

⋂3
i=1 R

i
t = φ and the union of the regions compose a whole region

⋃3
i=1 R

i
t = Ut.

Note that the IBB Xi
t represents the region R1

t , and the OBB Xo
t covers the

region {R1
t ,R

2
t}, where {R1

t ,R
2
t} denotes a union of regions R1

t and R2
t . The

power set of the universal set, 2Ut , is {φ, R1
t , R

2
t , R

3
t , {R

1
t ,R

2
t}, {R

1
t ,R

3
t},

{R2
t ,R

3
t}, Ut}. According to the DS theory [9,11], the mass function in (2) is

then normalized, such that the masses of the elements of the power set 2Ut add
up to a total of 1. In this paper, the mass corresponds to the likelihood score
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Fig. 2. Notation of the DBB. R1
t indicates the region inside of the IBB Xi

t. R
3
t

indicates the region outside of the OBB Xo
t . R

2
t indicates the region between the IBB

and OBB.

p(Yt|R) and, thus, we make the sum of the likelihood scores of all elements of
2Ut to be 1:

∑

r|r∈2Ut

p(Yt|R = r) = p(Yt|R = R1
t ) + p(Yt|R = R2

t ) + p(Yt|R = R3
t )

+ p(Yt|R = {R1
t ,R

2
t}) + p(Yt|R = {R2

t ,R
3
t}) = 1.

(3)

In (3), p(Yt|R = φ), p(Yt|R = Ut), and p(Yt|R = {R1
t ,R

3
t}) are designed as

zero because φ, Ut, and {R1
t ,R

3
t} make meaningless regions, which are empty

region, entire region, and two separate regions, respectively.

3.2 Inner and Outer Bounding Boxes

According to the DS theory [9,11], the belief in (1) is defined as the sum of all
the masses of subsets of the set of interest. In our problem, the mass corresponds
to the likelihood score p(Yt|R), whereas the set of interest is the IBB, R(Xi

t) =
{R1

t}, or OBB, R(Xo
t ) = {R1

t ,R
2
t}. The belief of the IBB is then modeled by

the sum of the likelihood scores of all subsets of {R1
t}, as follows:

bel(R(Xi
t)) = p(Yt|R = R1

t ). (4)

The belief of the OBB is modeled by the sum of the likelihood scores of all
subsets of {R1

t ,R
2
t}, as follows:

bel(R(Xo
t )) = p(Yt|R = R1

t ) + p(Yt|R = R2
t ) + p(Yt|R = {R1

t ,R
2
t}). (5)

Notably, the belief is the amount of belief that directly supports the bounding
box at least in part, forming a lower bound [9].



382 J. Kwon et al.

The plausibility in (1) is sum of all the masses of subsets that intersect the
set of interest. Thus the plausibility of the IBB is designed as the sum of the
likelihood scores of all subsets of Ut, which intersect R(Xi

t) = {R1
t}.

pl(R(Xi
t)) = p(Yt|R = R1

t ) + p(Yt|R = {R1
t ,R

2
t}), (6)

where p(Yt|R = Ut) = p(Yt|R = {R1
t ,R

3
t}) = 0. Because p(Yt|R = {R1

t ,R
2
t})

is positive and, thus, pl(R(Xi
t)) in (6) is larger than bel(R(Xi

t)) in (4), the IBB
satisfies (1): bel(R(Xi

t)) ≤ m(R(Xi
t)) ≤ pl(R(Xi

t)). The plausibility of the OBB
is designed as the sum of the likelihood scores of all subsets ofUt, which intersect
R(Xo

t ) = {R1
t ,R

2
t}.

pl(R(Xo
t )) = p(Yt|R = R1

t ) + p(Yt|R = R2
t ) + p(Yt|R = {R1

t ,R
2
t})

+ p(Yt|R = {R2
t ,R

3
t}) = 1− p(Yt|R = R3

t ),
(7)

where the last equality holds because of (3). Because p(Yt|R = {R2
t ,R

3
t}) is

positive and, thus, pl(R(Xo
t )) in (7) is larger than bel(R(Xo

t )) in (5), the OBB
satisfies (1): bel(R(Xo

t )) ≤ m(R(Xo
t )) ≤ pl(R(Xo

t )). Note that the plausibility
forms an upper bound because there is only so much evidence which contradicts
that bounding box [9].

Then, with (4),(6),(5), and (7), we obtain

bel(R(Xi
t)) ≤ pl(R(Xi

t)) ≤ bel(R(Xo
t )) ≤ pl(R(Xo

t )),

bel(R(Xi
t)) ≤ m(R(Xi

t)),m(R(Xo
t )) ≤ pl(R(Xo

t )).
(8)

In terms of the DS theory, the best bounding box has the largest belief and
plausibility values. Thus, (8) is maximized to obtain the best IBB and OBB:
max bel(R(Xi

t)) ≤ maxm(R(Xi
t)),maxm(R(Xo

t )) ≤ max pl(R(Xo
t )). Thereafter,

the best IBB X̂i
t is obtained using (4):

X̂i
t = arg

Xi
t

max bel(R(Xi
t)) = arg

Xi
t

max p(Yt|R = R1
t ), (9)

where the best IBB X̂i
t is determined by maximizing the similarity between the

whole region inside the IBB, R1
t , and the target model Mt. Similarly, the best

OBB X̂o
t is obtained using (7):

X̂o
t = arg

Xo
t

max pl(R(Xo
t )) = arg

Xo
t

max
[

1− p(Yt|R = R3
t )
]

, (10)

where the OBB X̂o
t is determined by maximizing the dissimilarity between the

region outside of the OBB, R3
t , and the target model Mt.

4 Visual Tracker Using the Double Bounding Box

4.1 Constrained Maximum a Posteriori

As illustrated in Fig.2, our state XDBB
t = (Xi

t,X
o
t ) is represented as the com-

bination of the sub-states of the IBB and OBB. Xi
t and Xo

t consist of a three-
dimensional vector including the center coordinate and the scale of the IBB and
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OBB, respectively. Thus, the cardinality of the final state XDBB
t is 6. Then, the

objective of our tracking problem is to find the best state X̂DBB
t = (X̂i

t, X̂
o
t )

that maximizes the posterior p(XDBB
t |Y1:t):

X̂DBB
t = arg

Xi
t,X

o
t

max p(Xi
t,X

o
t |Y1:t) subject to R(Xi

t) ⊂ αR(Xo
t ) ⊂ βR(Xi

t),

(11)

where αR(Xo
t ) means that the width and height of the region R(Xo

t ) are multi-
plied by α. α > 1 practically makes (11) to be easily solved by relaxing the strong
constraint, α = 1, although we get the approximated solution. Because α > 1,
a small part of the IBB can be located outside of the OBB in the experimental
results. In (11), p(Xi

t,X
o
t |Y1:t) is reformulated by

p(Xi
t,X

o
t |Y1:t) ∝ p(Yt|X

i
t)p(Yt|X

o
t )×

∫

p(Xi
t,X

o
t |X

i
t−1,X

o
t−1)p(X

i
t−1,X

o
t−1|Y1:t−1)dXt−1,

(12)

where p(Yt|X
i
t) is the likelihood of the IBB and p(Yt|X

o
t ) is the likelihood of

the OBB.
In (12), we design p(Yt|X

i
t) to measure the similarity between the region

inside of the IBB, R1
t , and the target model, Mt, based on (2) and (9) derived

from the DS theory:

p(Yt|X
i
t) ≡ p(Yt|R = R1

t ) =
1

c
e
−dist

(

Mt,Yt(R
1
t )
)

, (13)

where c is a normalization constant. We design p(Yt|X
o
t ) to measure the dissim-

ilarity between the region outside of the OBB, R3
t , and the target model, Mt,

based on (2) and (10) derived from the DS theory:

p(Yt|X
o
t ) ≡ 1− p(Yt|R = R3

t ) = 1−
1

c
e
−dist

(

Mt,Yt(R
3
t )
)

. (14)

Note that the target model, Mt, is updated over time by averaging the initial
model with the most recent model.

In (12), the dynamical part, p(Xi
t,X

o
t |X

i
t−1,X

o
t−1), is realized by proposal

and constraint steps of the CMCMC, explained in the next section, where a
new IBB(OBB) is proposed based on the previous OBB(IBB) and a new IBB is
included by a new OBB.

The first constraint in (11) makes the region described by the OBB, R(Xo
t ),

to include the region described by the IBB, R(Xi
t), while the second constraint

prevents the OBB from becoming infinitely large. Compared with MAP, our
CMAP in (11) is more difficult because it should satisfy the aforementioned
constraints. To obtain the best state, searching all states within the state space
is impractical. Thus, our method adopts the MCMC sampling method [19], which
produces N number of sampled states. Among the sampled states, the sampling
method easily chooses the best one that maximizes the posterior probability
in (11). We modify the MCMC sampling method to satisfy the aforementioned
constraint and present a new CMCMC-based sampling method, which will be
explained in the next section.
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Fig. 3. Example of the DBB constraint

4.2 Constrained Markov Chain Monte Carlo

The CMCMC-based sampling method defines a single Markov Chain and obtains
samples over the chain. As we define two sub-states, Xi

t and Xo
t , we get samples

of the sub-states, alternately. For example, we get samples like X
i(n−1)
t , X

o(n)
t ,

X
i(n+1)
t ,. . . , where X

o(n)
t and X

i(n+1)
t are the n-th sample for the OBB and the

(n+1)-th sample for the IBB, respectively.
• Proposal Step of the IBB First, the method obtains a sample of the IBB
Xi

t by three main steps: the proposal, constraint, and acceptance steps. The
proposal step suggests a new sample of the IBB as follows: a new center of the

IBB, c(X
i(n+1)
t ), is proposed through the Gaussian function G (mean: current

center of the OBB, c(X
o(n)
t ), variance: 0.5). A new scale of the IBB, s(X

i(n+1)
t ),

is proposed through G (mean: current scale of the IBB, s(X
i(n−1)
t ), variance:

0.01).
• Constraint Step of the IBB To satisfy the constraint in (11), the bounding

box of the proposed sample X
i(n+1)
t shifts to the bounding box of the sample

X
i(n+1)∗

t , where the shifted bounding box is included by the region αR(X
o(n)
t ),

as shown in Fig.3(a): R(X
i(n+1)∗

t ) ⊂ αR(X
o(n)
t ) = R(U

(n+1)
t ), where U

(n+1)
t is

the (n+1)-th universal set. The region αR(X
o(n)
t ) has the same center as X

o(n)
t

and is α times the scale of X
o(n)
t , where α is empirically set to 1.2.

• Acceptance Step of the IBB After the proposed step, the acceptance step

determines whether the proposed sample X
i(n+1)∗

t is accepted or not with the

probability, min

[

1,
p(Yt|X

i(n+1)∗

t )

p(Yt|X
i(n−1)
t )

]

, where p(Yt|X
i(n+1)∗

t ) and p(Yt|X
i(n−1)
t ) are

the likelihoods of the proposed and current IBB, respectively. The likelihood of
the IBB is defined in (13).
• Proposal Step of the OBB Our method then proposes a sample of the

OBB Xo
t as follows: a new center of the OBB, c(X

o(n+2)
t ), is proposed through

G (mean: current center of the IBB, c(X
i(n+1)
t ), variance: 0.5). A new scale of

the OBB, s(X
o(n+2)
t ), is proposed through G (mean: current scale of the OBB,

s(X
o(n)
t ), variance: 0.01).

•Constraint Step of the OBB To satisfy the constraint in (11), the bounding

box of the proposed sample X
o(n+2)
t shifts to the bounding box of the sample

X
o(n+2)∗

t , where the shifted bounding box is included by the region βR(X
i(n+1)
t ),
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(a) IBB only (b) DBB (c) OBB only (d) DBB

Fig. 4. Performance of the DBB in basketball seq. which has abrupt motions and
pose variations. The red and blue rectangles are the IBB and OBB, respectively.

as shown in Fig.3(b): R(X
o(n+2)∗

t ) ⊂ βR(X
i(n+1)
t ) = R(U

(n+2)
t ), where U

(n+2)
t

is the (n+2)-th universal set. The region βR(X
i(n+1)
t ) has the same center as

X
i(n+1)
t and is β times the scale of X

i(n+1)
t , where β is empirically set to 5.0.

• Acceptance Step of the OBB After the proposal step, the method ac-

cepts the proposed sample X
o(n+2)∗

t with the probability, min

[

1,
p(Yt|X

o(n+2)∗

t )

p(Yt|X
o(n)
t )

]

,

where p(Yt|X
o(n+2)∗

t ) and p(Yt|X
o(n)
t ) are the likelihoods of the proposed and

current OBB, respectively. The likelihood of the OBB is defined in (14). These
steps iteratively continue until the number of iterations reaches the predefined
value.

5 Experimental Results

To initialize the proposed method (DBB), we manually draw the IBB and OBB
at the first frame. The IBB and OBB could have different width/height pro-
portion initially. However, the proportion is fixed for each bounding box during
the tracking process. The number of samples was fixed to 1000 for all sampling-
based methods, including our method. For all experiments, we used the fixed
parameters. Our method approximately takes 0.1 sec per frame.

5.1 Analysis of the Proposed Method

Analysis of the DBB: The performance difference between the single bound-
ing box representation and the DBB representation were examined. The exper-
iments were performed under the same conditions, differing only in the types
of bounding box representation. As shown in Fig.4, either the IBB alone or the
OBB alone is prone to drift away from the target. Fig.4(a) shows that the IBB
began to drift and to track the background region around the target, as the
appearance of the target became severely deformed. Our method kept tracking
the target because of the constraint provided by the OBB. Thus, the OBB serves
as a weak constraint that gives an estimate of the position of the target to the
IBB, as it began sampling from the position of the IBB of the previous frame.
If the IBB includes some parts of the background, then it will have a tendency
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Table 1. Comparison of tracking results using IMCMC and CMCMC. The num-
bers indicate the average center location errors in pixels. These numbers were obtained
by running each algorithm five times and averaging the results.

basketball lazysong fx diving gymnastics faceocc twinings singer1 skating2 Average

IMCMC 209 42 44 56 109 21 18 84 56 71.0

CMCMC 36 17 25 16 16 6 6 12 28 18.0

0

3

6

Alpha Beta

Std of center location error

0

3

6

9

Std of center location error

(a) Sensitive to initialization (b) Sensitive to parameters

Fig. 5. Stability of our method

to drift because it recognizes the background part as the target. However, in the
DBB, the IBB is sampled at the estimated position from the OBB, pulling the
IBB to the center of the target and reducing the possibility of drifting. The OBB
can estimate the target position better than the IBB, owing to its large region,
which makes the OBB robust to noise. Similarly, the IBB also helps the OBB. In
Fig.4(c), the OBB drifted, despite being insensitive to noise. As in the previous
case, the IBB complemented the OBB, as shown in Fig.4(d). The IBB usually
has a higher probability of only including the target than the OBB. Thus, it also
serves as a weak constraint, pulling the OBB to the target region.

Analysis of the CMCMC: The performances of the Interacting Markov Chain
Monte Carlo (IMCMC) in [20] and CMCMC were also compared to demonstrate
the superiority of the proposed CMCMC. The fundamental problem of IMCMC
is that IMCMC has no mechanism to satisfy the constraint. Hence, we can’t
use IMCMC for our problem. Although we forcibly make IMCMC to satisfy the
constraint, IMCMC is experimentally worse than CMCMC. For this experiment,
IMCMC was applied to incorporate purposely the same capability of pulling one
box to another, similar to CMCMC. IMCMC initially verifies the constraint in
which the IBB must be inside the OBB. If this is verified, it separately samples
each Markov Chain for each bounding box; otherwise, it provides an offset to
one of the bounding boxes and probabilistically determines which one has to
be adjusted. However, it cannot prevent itself from drifting away even if the
two bounding boxes do satisfy the constraint. When the IBB begins to drift, it
forces the OBB to drift as well because of the constraint, rendering the IBB even
worse. As shown in Table 1, IMCMC cannot outperform CMCMC, because the
probability that the IBB will pull the OBB toward it and the vulnerability of
the IBB to noise are high.
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Table 2. Quantitative comparison of tracking results with other methods. In this
experiment, other tracking methods utilize the IBB representation. The numbers
indicate the average center location errors in pixels and the amount of successfully
tracked frames (score > 0.5), where the score is defined by the overlap ratio between the

predicted bounding box Bp and the ground truth bounding box Bgt:
area(Bp

⋂
Bgt)

area(Bp
⋃

Bgt)
. The

best result is shown in red and the second-best in blue. N/W means that a method does
not work at the corresponding dataset. For our method, the mean of center positions
and bounding boxes of the IBB and OBB are reported as the final tracking result.

ABCShiftBHMC BHT MIL IVT VTD VTS MC HT LGT TLD DBB

basketball 80/33 80/34 63/40 133/22 50/49 58/42 38/65110/26197/18160/20178/1836/65

lazysong 71/40 55/50 142/39 38/55 38/55 17/70 26/67 30/62 56/50 42/55 20/68 17/69

fx 59/49 73/39 69/41 56/49 46/54 33/65 29/69144/19 70/41 126/21 30/65 25/70

diving 23/35 41/39 N/W 76/26 68/31 23/34 16/46 20/34 76/26 15/51 N/W 16/46

gymnastics 45/45 29/59 N/W 42/47 62/41 22/62 18/66 17/66 108/23 99/31 13/72 16/68

faceocc 29/70 50/50 N/W 36/69 61/44 21/75 20/79 20/78 34/70 19/78 25/72 6/88

twinings 18/76 5/91 34/67 15/80 17/77 9/87 8/87 14/81 31/68 22/75 15/80 6/89

tiger1 85/30 33/30 30/45 17/59 80/30 16/61 15/62 30/42 30/42 15/62 9/70 13/65

david 50/21 40/31 17/50 29/47 13/58 13/58 10/60 42/30 10/60 6/71 8/62 6/64

shaking 50/55 47/60 22/72 27/70 107/22 8/88 7/89 99/21 15/76 15/76 5/90 6/90

soccer 199/8 178/9 76/17 51/24 85/16 22/3318/38 60/21 50/25 50/25 33/30 25/29

animal 44/34 42/35 25/75 29/60 19/80 11/90 17/80 28/75 20/77 30/55 20/79 8/92

skating1 99/29 98/29 57/60 80/52 150/13 9/90 12/88 133/22129/22 99/24 19/75 6/93

singer1 51/54 24/71 51/54 17/80 13/83 8/90 13/83 22/72 5/95 5/95 14/83 12/83

skating2 56/46 57/45 N/W 93/19 80/22 42/51 43/50 68/39 97/19 74/26 99/18 28/67

Average 63/41 56/44 53/50 49/50 59/45 20/66 19/68 55/45 61/47 51/51 34/63 15/71

Analysis of the Parameters: Our method is less sensitive to the initialization
of the IBB and OBB, as demonstrated in Fig.5(a). To get the standard deviation,
we changed the initial center positions of the IBB and OBB by adding random
noises, to a maximum of 5 pixels. Then, we obtained 10 center location errors
from 10 different initialization settings.

We also tested the parameter sensitivity of α and β in (11). For this experi-
ment, we obtained the standard deviation of center location errors of 10 tests.
To make 10 tests, we added α and β with 10% noise. As shown in Fig.5(b), our
method is not much sensitive to the parameter settings.

5.2 Comparison with Other Methods

The proposed method (DBB) was compared with 11 different state-of-the-art
tracking methods [27,37]: ABCShift [36], MC [19], IVT [30], MIL [3], BHMC [22],
BHT [26], HT [12], LGT [6], VTD [20], VTS [21], and TLD [18], where VTD
and VTS are state-of-the-art trackers that use color information and BHMC,
BHT, HT, and LGT are trackers that are designed especially for highly non-
rigid targets. We tested 15 sequences1.

1 12 sequences are publicly available. Only 3 sequences (basketball, lazysong, and fx)
were made by us.
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Table 3. Quantitative comparison of tracking results with other methods. In
this experiment, other tracking methods utilize the OBB representation.

ABCShiftBHMC BHT MIL IVT VTD VTS MC HT LGT TLD DBB

basketball 99/28 63/40 157/20101/29237/11177/1562/40133/22169/21170/16116/2636/65

lazysong 60/45 74/43 115/27 48/53 43/55 24/65 29/61 94/31 137/22 71/45 34/57 17/69

fx 63/42 29/65 N/W 75/36 27/69 39/59 28/68 37/61 70/41 70/41 39/59 25/70

diving 26/31 18/45 74/25 88/19 91/16 70/27 98/14 29/39 83/20 29/49 84/20 16/46

gymnastics 20/64 7/87 N/W 22/60 27/51 10/80 92/35 76/40 102/25 98/31 74/41 16/68

faceocc 29/70 30/69 29/71 25/75 27/74 7/88 6/89 31/69 13/81 19/78 19/78 6/88

twinings 20/74 29/69 43/52 10/85 32/64 7/91 7/90 27/70 36/60 24/73 17/79 6/89

tiger1 85/30 34/39 21/58 16/60 90/29 17/59 15/60 32/41 40/39 16/60 10/69 13/65

david 38/37 30/34 15/50 29/47 13/58 11/60 10/60 39/33 9/62 5/72 7/64 6/64

shaking 38/79 50/60 20/85 37/77 130/20 7/87 6/93 100/21 12/79 12/79 5/94 6/90

soccer 71/13 150/11 43/24 43/24 104/16 22/33 17/39 49/26 55/22 49/26 33/30 25/29

animal 30/40 59/30 29/47 29/47 22/51 13/88 15/86 30/46 25/49 35/49 17/81 8/92

skating1 130/20 129/20 77/54 80/52 150/13 11/88 12/88172/19126/21 99/22 22/70 6/93

singer1 22/78 55/52 48/61 24/77 3/99 5/96 5/96 84/39 51/54 4/98 53/52 12/83

skating2 80/31 52/45 49/47 95/29 157/19 30/64 29/66 36/59 174/12160/18 85/31 28/67

Average 54/45 53/47 55/47 48/51 76/43 30/66 28/65 64/41 73/40 57/50 41/56 15/71

For sufficient comparison, we used 2 different settings of the bounding box like
Tables 2 and 3. Tables 2 and 3 show the quantitative evaluation of the tracking
results. Our method always used the DBB representation whereas other methods
used the inner and outer bounding box representations to produce results in
Tables 2 and 3, respectively. These tracking results indicate that our method is
robust to track deformable target objects, as the drifting problem is effectively
resolved using the DBB representation. In terms of the center location error, our
method outperformed the recent state-of-the-art tracking methods especially for
highly non-rigid objects, which are BHMC, BHT, HT, and LGT. Our method
was also better than the other tracking methods in terms of the sucess rate,
because our method successfully tracked the targets to the last frame although
it produces slightly inaccurate OBB. On the other hand, other tracking methods
fail to track the target and drift into the background, which make the low success
rate. The tracking results demonstrate that a single bounding box representation
is not adequate to represent highly non-rigid objects. In addition, our method
produced better results than color-based tracking methods (BHMC, VTD, VTS,
and MC) because our method did not consider the ambiguous regions while
calculating color histograms. Our method only calculates color histograms for the
region inside the IBB and the region outside of the OBB. Notably, conventional
tracking methods using a single bounding box yielded very different tracking
results depending on the representation type of a single bounding box (i.e., IBB
representation in Table 2 and OBB representation in Table 3). Conversely, our
method does not depend on the representation type of a single bounding box
because it uses both the IBB and OBB.

Fig.7(e) shows the tracking results in the gymnastics seq. In the sequence,
VTD showed the best result, but its distance from the target became wider
when the gymnast turned and changed her pose fast. Fig.6 shows the results
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BHMC method BHMC method BHT method BHT method

HT method HT method HT method HT method

Fig. 6. Tracking results of the methods especially for highly non-rigid objects

Proposed method Other methods Proposed method Other methods
(a) Tracking results in lazysong seq.

Proposed method Other methods Proposed method Other methods
(b) Tracking results in fx seq.

Proposed method Other methods Proposed method Other methods
(c) Tracking results in diving seq.

Proposed method Other methods Proposed method Other methods
(d) Tracking results in basketball seq.

Proposed method Other methods Proposed method Other methods
(e) Tracking results in gymnastics seq.

Fig. 7. Qualitative comparison of the tracking results with other state-of-

the-art tracking methods. The red and blue boxes give the results of the proposed
method (Combination of the IBB and OBB). The yellow, white, orange, green, and
pink boxes give the results of MCMC method using the IBB representation, VTD,
VTS, IVT, and MIL using the OBB representation, respectively.
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of BHMC, BHT, and HT, which are designed especially for highly non-rigid
objects, and demonstrates that these methods also frequently failed to track the
targets when there was severe deformation of the targets.

In Fig.7(a), the lazysong seq., which includes some objects similar in appear-
ance to the target object, is tested. In the case of other methods, their bounding
boxes expanded and included some background objects. However, our method
showed the most accurate tracking performance among these methods. Fig.7(b)
shows the tracking results of the fx seq. The target person was severely occluded
by another person who wore clothes of the same color as that of the target.
Whereas some trajectories were hijacked by the other person, our method suc-
cessfully tracked the target. Fig.7(c) shows the tracking results of the diving seq.
When the woman started spinning, our method continued to track the woman
while the other methods failed to track it. Fig.7(d) shows the tracking results
in the basketball seq. Our method maintained the trajectory of the target. How-
ever, the other methods experienced drifting problems, as they had a larger
background part than the target part in their bounding boxes in frame #187
and frame #636.

6 Conclusion and Discussion

In this paper, we propose a new bounding box representation called the double
bounding box representation. The proposed bounding box represents the target
as the combination of the inner and outer bounding boxes and does not need to
deal with the ambiguous regions, which include both the target and the back-
ground, at the same time. Hence, the method greatly improves tracking accuracy
without additional computational cost.

IBB and OBB can be exactly same for a rigid object. Hence equations of
the belief and plausibility in (1) and (8) include the equality. In this case, our
tracking performance is similar to the single BB based tracking methods.

Although the color feature is applied to our method, other features can be
also used in the method. For example, histogram of gradient (HOG) can be used
in the faceocc sequence, where a region inside the IBB is represented by HOG
of eyes, nose, and mouse, but a region outside the OBB by HOG of the book.

The basic idea behind our method is intuitive and can be implemented without
any theories. However, there are few works that try to find a theoretical basis of
the idea. As the theoretical basis, in this paper, we present the DS theory and
prove that our approach is optimal in terms of the DS theory.
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