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Robust Watermarking of Facial Images Based on
Salient Geometric Pattern Matching
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Abstract—We introduce a novel method for embedding and de-
tecting a chaotic watermark in the digital spatial domain of color
facial images, based on localizing salient facial features. These fea-
tures define a certain area on which the watermark is embedded
and detected. An assessment of the watermarking robustness is
done experimentally, by testing resistance to several attacks, such
as compression, filtering, noise addition, scaling, cropping and ro-
tation.

Index Terms—Chaos, copyright protection, correlators, feature
extraction, image segmentation.

I. INTRODUCTION

A
FIELD of rapidly increasing interest during the last few

years has been multimedia data protection. It emerges

from the fact that many innovative techniques for digital

data transfer, storage, and processing have been recently

developed and used. Malicious users (attackers/pirates) of the

stored/transferred data intend to present copyrighted material,

such as digital images, audio, and video, as their own prop-

erty. Watermarking provides efficient tools for ensuring that

product ownership of these multimedia is preserved even after

multimedia data processing by such attackers [1].

Many different watermarking methods have been proposed

for still images, that embed a pseudo-random sequence in ei-

ther the spatial or the transform image domain [2]–[7]. Most of

these methods treat the image in a global sense, without taking

into account any local properties that could be useful when the

watermark is to be detected. The results presented in the respec-

tive papers usually display robustness against only some of the

usual attacks, notably either filtering/compression or geometric

distortions. Thus, these methods are customized in such a way

that no care is taken about their resistance against most com-

monly considered attacks. There are also a few methods that at-

tempt to ensure robustness against a wider range of attacks. One

of the techniques that tries to cope with geometric transforms,

while retaining robustness to other kinds of attack, is presented

in [8]. The main concept is to find points in the image that could

be warped according to their distance from specific line seg-

ments that form the watermark. However, it is not quite clear

whether the construction of a theoretically infinite set of dif-

ferent line patterns in the detection stage is computationally fea-
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sible. Also the prominence of the selected points to be warped

is a topic under question. In general, when a watermark is em-

bedded on the entire image, scaling, rotation, or cropping may

result in the destruction of the watermark, because no salient ref-

erence points exist that would lead in detecting the watermark

after some degree of scaling, rotation, or cropping. The use of

an image transform, with the exception of a Fourier transform,

will suffer the same problems. The use of the Fourier transform

provides rotation, translation, and scale invariance [6]. However,

the robustness to filtering or compression depends on the range

of frequencies that are used for watermark embedding. A sig-

nificant step in robust watermarking would be to extract salient

features based on their robustness against most of the frequent

geometric attacks that do not degrade the visual image quality.

This paper presents a technique for watermarking a certain

image class of special interest, namely color frontal face im-

ages with uniform background, based on extracting a finite set

of salient facial features and on applying proper geometric pat-

tern matching in the facial region. This image class has two

important characteristics: 1) it contains several salient features,

notably the eyes and mouth that can be used for matching and

2) it has particular applications related to copyright protection

of digital portrait galleries, as well as digital frontal “head and

shoulder” images or video that can be found in several applica-

tions, notably in broadcasting and in security. In this class of im-

ages, the facial region is the most important one. We shall there-

fore concentrate our study in the use of watermarks for copy-

right protection of facial images. The proposed technique pro-

vides sufficient immunity to the most commonly referenced at-

tacks. Section II gives the outline of the proposed watermarking

system. Section III presents the color face segmentation and re-

gion approximation technique, as well as the pattern matching

process for localizing the salient features. In Section IV, the

general class of chaotic watermarks is presented, together with

adaptations for digital images. Section V explains the connec-

tion between the extracted features and the watermark to be em-

bedded on the image. Section VI presents the watermark detec-

tion procedure. Simulation results for several kinds of manipu-

lations on the watermarked image are presented in Section VII

and, finally, conclusions are drawn and future work is addressed

in Section VIII.

II. TECHNIQUE OUTLINE

This paper aims at providing a watermarking technique for

the copyright protection problem of color frontal facial images

with uniform background based on the selection of certain ro-

bust facial features for watermark embedding. Region-based

image watermarking is introduced for the following reasons.

1520–9210/00$10.00 © 2000 IEEE
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1) This watermarking technique is related to the ob-

ject-based coding/description approach followed in

MPEG4 and MPEG7 (although the proposed method is

described for still images only).

2) In some cases, only certain image regions have to be pro-

tected (e.g., facial regions in portraits).

3) Feature detection can be proven robust to certain geomet-

rical transforms and other image processing operations.

The outline of the developed technique is as follows.

• Feature selection: This stage is concerned with the prepro-

cessing that is necessary to extract the spatial image char-

acteristics needed for the watermark embedding/detection

stage.

– Image segmentation: In this step, a skin-tone color seg-

mentation technique is used that operates on the HSV

color space, by selecting certain value ranges for the

chrominance and luminance components.

– Feature detection: The resulting facial region is approx-

imated by an ellipse, by means of a properly chosen

neural network. Afterwards, the eyes and the center of

the mouth are being searched for inside this ellipse, by

trying to match them with appropriate simple geomet-

rical templates. These three reference points define a

rectangular area of certain dimensions, center and ori-

entation. These parameters are finally used as input pa-

rameters for watermark embedding and detection.

• Watermark embedding/detection:

– Chaotic watermark embedding: A chaotic watermark

that is constructed by Peano scanning of an one-di-

mensional (1-D) chaotic trajectory is embedded [9] ac-

cording to the geometric parameters produced in the

previous stage. The watermark is embedded on a rec-

tangle corresponding to the facial image region of the

previous stage.

– Chaotic watermark detection: A watermark detector

based on the correlation of a watermark template with

the possibly watermarked and processed image is pro-

posed. This detector acts on a rectangle defined on the

watermarked image in the same way as in the original

one. Consequently, the robustness of the localization

of the spatial features after several attacks on the wa-

termarked image ensures the robustness of the detec-

tion process. In this way, only small local searches in

the geometric parameter space are required to find the

correct position of the embedded watermark.

III. FACE SEGMENTATION AND SALIENT FEATURE

LOCALIZATION

The first stage in the watermark embedding on a selected

image region is to segment the facial region so that the search

for salient features is limited in this area. Thus, this step is very

significant, since the facial features that will be localized (eyes,

mouth) via geometric templates are unique for the facial region.

In the following, we propose a technique for eye and mouth

localization that is rotation, translation, and scale invariant. Any

other technique proposed for this purpose in the literature can

be used as well [10]–[16]. The method followed is based on ex-

ploiting color information in a similar way as in [10]. Our aim

is to discriminate the skin-colored image region, which corre-

sponds to the facial region. The original RGB image is converted

to the HSV domain, because it is easier to perform skin-tone

color segmentation in this color space. More specifically, the pa-

rameter ranges for hue ( ), saturation ( ), and value ( ) that

fulfil our requirements have experimentally been found to be

[11]:

or

(1)

according to tests on the M2VTS database of color frontal

facial images [17]. More sophisticated methods to discriminate

skin-tone color have later been implemented [18]. In our im-

plementation of the segmentation method, the initial image is

subsampled by a factor of two in both dimensions before thresh-

olding. This helps eliminating isolated pixels that do not belong

to the facial region but their color is considered as skin-color

like because they satisfy (2) and, vice versa, pixels that were not

considered as skin-colored ones, though they belong to the facial

region. The skin-colored regions, and only them, are entirely

labeled using (2). The choice of the aforementioned ranges in the

HSV domain ensures that the segmented region of interest will

approximately be the same even after some manipulation, as only

an insignificant number of pixels will exceed these thresholds.

A connected component algorithm follows after binary

thresholding, in order to isolate all the compact skin-colored

regions. In order to get a good approximation of the facial

region that does not contain useless areas, e.g., the neck, as well

as to prevent the facial region areas from getting connected to

the background, we employ an -trimmed mean radial basis

function network to get an elliptical approximation of the

facial region [19]. This network is based on the approach that

a percentage of the data samples pertaining to an object need

to be taken into account in order to approximate the object. An

percentage of each end of the distribution of these samples

can be trimmed away before approximating the object by an

ellipsoid. Each hidden unit of the network corresponds to an

object. If we consider the facial region as an object, this network

can provide an estimate of the center of the RBF (radial basis

function) by considering the marginal data samples [19]:

(2)

where

marginal data samples sorted according to their values;

total number of data samples assigned to the th hidden

unit (equivalently, an object);

percentage of data samples to be trimmed away.

The estimate of the covariance matrix of the RBF is given by

(3)
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Fig. 1. Sample templates for the eye and the mouth.

Fig. 2. Face segmentation and salient feature localization.

where is the th ordered data sample according to the

Mahalanobis distance and is the trimming percentage.

The Mahalanobis distance is defined as

(4)

where

marginal data sample;

center of the th hidden unit (or, equivalently, the th

object);

its covariance matrix.

At this point all the original samples are used to compute the

covariance matrix . The interested reader is referred to [19]

for a detailed description of trimmed RBF’s.

Once the trimmed elliptical approximation is known, its ori-

entation can be computed by [20]

(5)

where are the central moments:

(6)

and is the mass center of the elliptical region . The

input image should be rotated according to the angle given by

(5) before matching.

The most prominent features contained in the elliptical area

are the eyes and the mouth. They can be approximated suffi-

ciently well by proper geometric template functions. These fea-

tures are unique in facial images and can act as robust reference

points under any common geometric distortion. Other similar

approaches use 2-D sinc functions for eye modeling [11]. The

(a) (b) (c)

Fig. 3. (a) The 16� 16 Peano curve. (b) Watermark produced by raster scan.
(c) Watermark produced by Peano scan.

eye can be regarded as a circle (iris) having low, almost con-

stant, intensity centered inside an ellipse of very high intensity,

as can be seen in Fig. 1. According to this approach, we define

the ideal eye detector by finding the image positions where the

two sides of (7) have minimal difference:

(7)

where is the image intensity, , are the sets of points

lying on the circular (iris) and the elliptical disk, respectively,

and and are the weighting functions that

compensate for the luminance differences between the two

areas. Equation (7) expresses the fact that a volume corre-

sponding to the circular area of the eye, should be equal

to a volume corresponding to the elliptical area of the eye,

excluding the circular area. In practice, however, one has to
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Fig. 4. Geometric watermark adaptation.

search for the minimum difference between the two sides of

equation (7) in order to find the best candidate eye position.

The weighting functions cannot be easily estimated. However,

constant values can be used in (7) without significant loss of

accuracy in the estimation of the eye position. These can be

evaluated empirically by observing the average luminance of

the corresponding areas for a few sample images of the facial

image database. In order to define a pattern matching criterion

for eye detection, we discretize (7), use constant weighting

functions and search for the absolute minimal response of the

following difference within the facial region:

(8)

where and are the sets of points that belong to the circle and

the ellipse that are centered at point , respectively.

To obtain a reasonable estimate of the relation between the

magnitude of the circle and ellipse axes and the weighting con-

stants, we have to compute the sums in (8). Since no knowledge

of the precise intensity variation over these areas is available,

we simplify (8) by assuming that the intensity is represented by

its mean value in the circular iris area, and its mean value

outside the iris area and inside the ellipse area. If we let be

the magnitude of the iris radius as well as the minor axis of the

ellipse, and be the magnitude of the major axis of the ellipse,

when taking (8) equal to zero, we obtain

(9)

Considering constant values for , , and , a certain ratio

between and can be established. The search for poten-

tial left and right eye positions is performed over the upper left

and upper right quarter, respectively, of the rotated facial region

that is covered by the elliptical area produced by the -trimmed

MRBF network. The correct eye position is the one for which

the matching response is minimal.

A similar pattern matching technique is used for the localiza-

tion of the mouth, except that the model now consists of two con-

Fig. 5. Watermark embedding stage.

centricellipseshavingmajorsemiaxesof thesamemagnitudeand

minorsemiaxesofconsiderablydifferentmagnitude.Thispattern

is again unique for the mouth, and the search is performed in the

lower half of the elliptical region. The form ofeye and mouth tem-

plates that are used are shown in Fig. 1. A relation similar to (9)

can be derived in order to decide on the length values of the ellipse

axes. A schematic diagram showing the processing steps of this

stage is shown in Fig. 2. The robustness issues of the proposed

technique are presented in Section VII.

IV. WATERMARK CONSTRUCTION

In the previous section we developed a method for locating

salient features, so that they can be used as reference points

to embed our watermark. We should now define the class of

watermarks that will be embedded in the spatial image domain.

In our experiments, we chose to construct a watermark based

on a chaotic trajectory [21], that enables, to a point, control of

the spectral properties compared to a pseudo-random sequence.

In particular, we employed the Renyi map, which is a recursive

function that contains a parameter which controls how finely

structured the binary watermark is, after the thresholding step

that is introduced subsequently. It is a strongly chaotic map,

which means that, for slight changes of the initial value, the re-

sulting trajectories diverge very quickly from each other. These

properties are desirable in order to have both an acceptable

performance against filtering and compression attacks, as well

as cryptographic security against attempts of reconstructing

the generator function based on a finite set of sample values.

Alternatively, the low-passed pseudorandom number generator
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Fig. 6. Watermark detection stage.

output can be used for watermark generation [22], as well

as some other chaotic map, like the piecewise affine Markov

maps, which have tunable spectral shape [23].

The first step to construct such a watermark is to produce a

sequence of real numbers by using a mapping function

of the form

(10)

called the Renyi map [9], denotes the current

iteration and is a parameter that controls the chaotic behavior

of the system. The number of iterations is arbitrary and can be

adapted to our needs. The system theoretically produces trajec-

tories of an infinite period. For any value of the parameter , the

set of real numbers is divided in two subsets: and . The

decision on whether the trajectory presents regular or chaotic

behavior depends on the seed value . If , the

produced sequence proves to be periodic, whereas if

, it is chaotic. The values of the produced trajectory oscil-

late inside an interval that is related to .

Thus, we can define a threshold level in a

way that, after thresholding the sequence numbers, a bipolar se-

quence is produced with approximately equal

number of 1s and 1s. Parameter controls the frequency char-

acteristics of the chaotic sequence, i.e., the frequency of the tran-

sitions and . For and values close to

1, we get a chaotic watermark with low number of transitions

and, thus, lowpass properties, whereas, when is chosen,

the transitions are very frequent, the lowpass properties degrade

and the sequence degrades to a pseudorandom one.

However, the sequence we produced so far is 1-D. To embed

it on a two-dimensional (2-D) signal, such as a digital image,

we need to scan across the sequence in such a way that the

lowpass properties are preserved. The classic raster scan is not

proper for this task because the number of transitions is not any

more under control in the vertical dimension. To avoid this, we

use Peano scan order, which has the property that every pixel

along the scan is topologically closer to the previous and sub-

sequent pixels than in the case of raster scan. A Peano curve is

a space-filling curve that represents a linear traversal of a mul-

tidimensional grid [24]. Fig. 3(a) shows a Peano curve of size

. An analysis of its locality property can be found in [25].

In addition, it is possible to use cellular smoothing to eliminate

spontaneous transitions that emerge after the Peano scan [21].

An example of a watermark of size constructed using

raster scan order and cellular smoothing for is shown in

Fig. 3(b). A watermark of the same size and for the same value

of for a Peano scan followed by cellular smoothing is shown

in Fig. 3(c). We can notice the lowpass nature of the watermark

produced by the Peano scan. By using this technique, the output

watermark has local neighborhoods of 1s (or 1s) that are more

compact. The main disadvantage of the Peano scan is that it pro-

duces square watermarks only. In the watermark em-

bedding and detection sections, we shall see that this does not

seriously affect the performance of our method.

In order to construct different watermarks, we use a key

that corresponds to the seed value of the chaotic trajectory.

Keys of slightly different value provide sufficiently uncorrelated

trajectories, because the set of possible keys is quite large.

This reduces the possibility of the watermark being tampered.

This also ensures non-invertibility of the watermark. Thus, the

corresponding key cannot be extracted from the 2-D watermark.

V. WATERMARK EMBEDDING

In this stage, we use the extracted salient feature set and el-

liptical region orientation to embed the produced watermark in

a specific image region that will be easy to detect even after in-

tentional or unintentional attacks.

The prototype watermark of size is first scaled to

the size of the facial area where it will be embedded, using

nearest-neighbor interpolation. We choose to construct a proto-

type watermark whose dimensions will be smaller than these of

the embedding area, so that we have both a large set of different

watermarks and an insignificant loss of watermark energy. If

is the embedding area, its size is defined by

(11)

where and are the feature coordinates, are mean

feature coordinates, and are normalizing factors that control
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the size of so that it covers at least the entire facial region.

The scaled watermark is centered in the mass center of the fea-

ture point set :

(12)

In our case . The mass center is also the center of the

region . After centering the watermark in the proper image

region, it is rotated by according to (5) with respect to the

image center. It then covers a new area . The various steps

of the watermark adaptation procedure are depicted in Fig. 4.

Before superimposing it on the original image, a visual masking

stage can be introduced.

If is the prototype watermark, then the scaled, centered,

and rotated watermark of size is embedded to the

region . The watermarked image is defined as

(13)

(14)

where is the watermark power, is the local image

variance, and an appropriate variance threshold that must

be chosen in such a way that a sufficiently large image area

is watermarked. Alternatively, can become a function of the

local variance

(15)

where takes values in the range and is chosen to

increase monotonically with the variance. In our case, the wa-

termark is embedded in the spatial domain and, thus, the water-

mark power must be of integer value. In accordance to masking,

it is quantized to either of two values, zero or , depending

on the value of the variance. Visual masking produces inter-

esting results provided that the local image variance is high

in several image regions, so the threshold is exceeded and the

watermark can be embedded. However, this is not the case for

frontal facial images that contain mostly homogeneous image

regions. Therefore, we used low watermark power to ensure

watermark invisibility and we did not employ visual masking in

our experiments, to ensure increased performance. Larger im-

ages would also provide larger areas for embedding and, thus,

additional watermark energy. The main steps of the embedding

process are depicted in Fig. 5.

VI. WATERMARK DETECTION

When a prototype watermark is to be detected inside a water-

marked and possibly manipulated image, the image has first to

be segmented, so that the feature set and orientation of the ap-

proximated facial region are derived. The prototype watermark

is again scaled, centered, and rotated according to the infor-

mation obtained from the segmentation and feature extraction

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7. (a) Original image. (b) Image corrupted by Gaussian noise. (c)
Original image facial region. (d) Corrupted image facial region. (e) Elliptical
approximation of original face region. (f) Elliptical approximation of corrupted
facial region. (g) Center localization error. (h) Orientation computation error.

stage. For the detection region , the response of a hypoth-

esis testing detector is computed

(16)

where and

. and are the number of pixels

of the sets and , respectively. This detector expresses the

difference of two sample means [26]:

(17)
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Fig. 8. Salient feature extraction results on original images.

Fig. 9. Salient feature extraction results on watermarked images.

Fig. 10. Amplified difference of watermarked and original images.

where

(18)

Considering that the pixels of the original, as well as the wa-

termarked image are i.i.d., the mean value and variance of the

detector output are

(19)

In general, both and are not i.i.d. Therefore, the watermark

correlation detector is suboptimal and whitening should be per-

formed to obtain optimal detection [27]. The experimental re-

sults are proven to be in accordance with this simplified model,

though the model is not exact. In general, the detector output

is assumed to follow a normal distribution. If the correct wa-

termark is embedded on the image, the mean value of the de-

tector output is and its variance is

, where is the variance of the initial image

and is the variance of the watermark. Otherwise, if no wa-

termark is present, the mean value of the detector is

and the variance is . This variance

is not significantly different than in the case the watermark is

present, because the factor is very small and

. This is only a suboptimal type of detector and other

techniques (e.g., pre-whitening) could be employed to improve

performance. Still, this is a simple and widely used detector.

For the class of facial images under consideration, the fea-

tures are not expected to be localized at exactly the same po-

sitions in the watermarked and possibly processed image as in

the original image. This can be faced efficiently by testing the

correlation output for small changes in the height, width, orien-

tation, and center of the prototype watermark, compared to those

computed after extracting the new features and the new orienta-

tion of the elliptical approximation. The detection is expected to

give a strong peak for the correct height, width, orientation, and

center coordinates of the originally embedded watermark, be-

cause of the high degree of watermark sensitivity to geometric

operations. The detection output is weak if wrong geometrical

parameters are used. These geometrical parameters can be found

by a local search. This need not be more than 2 pixels in the av-

erage for height, width, and center coordinates and no more than

0.02 radians in the average for the orientation. Therefore, the de-

tection response in the diagrams is always shown for the correct

size, orientation, and center coordinates of the watermark. The

method is expected to perform better for larger images than the

ones used in our experiments.
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(a) (b) (c)

Fig. 11. (a) Original image. (b) Watermarked image using face region. (c) Normalized detector output.

(a) (b) (c)

Fig. 12. (a) Original image. (b) Watermarked image using extended region. (c) Normalized detector output.

(a) (b)

Fig. 13. (a) Watermarked image after distortion by multiplicative Gaussian noise with � = 0:3. (b) Normalized detector output.

We choose not to use masking in the detection stage, even

if masking was employed in the embedding stage, because the

local variance may have changed significantly due to manipu-

lations. The response is thus computed over the entire expected

area of the embedded watermark. The detector output (16) must

be compared against a proper threshold that will inform

us with a satisfying certainty about the presence or the absence

of the watermark. A schematic diagram of the detection stage is

presented in Fig. 6.

In order to decide for an efficient threshold indicating water-

mark existence, we can follow an experimental approach. One

hundred different watermarks are embedded and detected after

an attack on both the original and the respective watermarked

image. The experimental output of the detector for both cases

is approximated by a normal distribution. The pdf of the de-

tector output has zero mean when evaluated on an unwater-

marked image (left-hand distribution) and when evaluated

on a watermarked image (right-hand distribution). We wish to
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(a) (b)

Fig. 14. (a) Watermarked image after 1 : 30 JPEG compression. (b) Normalized detector output.

(a) (b)

Fig. 15. (a) Watermarked image after 3� 3 median filtering. (b) Normalized detector output.

obtain an acceptable compromise between the false acceptance

and the false detection ratio. After each attack, we can eval-

uate the two distributions and choose the optimal threshold. If

they have equal variances, the optimal threshold is given by

, where and are

the two distribution means. The median value of the accept-

able thresholds chosen for each attack is considered as the

common threshold for watermark detection under any attack.

This was the approach that was followed in our experiments.

VII. EXPERIMENTAL RESULTS

In order to test the robustness of the facial feature extraction

method to some usual attacks, we first choose to simulate the

possible distortions by using Gaussian noise. This is done for

all three channels of the initial RGB image. The output is of the

form:

(20)

where follows a Gaussian distribution of zero mean and

unit variance and defines the standard deviation of the multi-

plicative Gaussian noise. We added noise to 37 images of the

M2VTS face database and computed the moment-based fea-

tures, i.e., the mass center and orientation of the resulting el-

lipse before and after noise addition. Fig. 7(a) and (b) show an

original sample image and the same image after noise addition

with . The corresponding facial regions are shown in

Fig. 7(c) and (d). The derived elliptical approximations are de-

picted in Fig. 7(e) and (f). Finally, Fig. 7(g) and (h) show the

relative change of the center position (in pixels) and of the ori-

entation (in rads) of the approximating ellipse, respectively. The
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(a) (b)

Fig. 16. (a) Watermarked image after rotation by 12 . (b) Normalized detector output.

(a) (b)

Fig. 17. (a) Watermarked image after rotation by �5 . (b) Normalized detector output.

mean values of center estimation error and orientation estima-

tion error are 1.2974 pixels and 0.0205 rads, respectively. The

results show that the region approximation is quite robust even

under significant distortion.

In order to demonstrate the robustness of the watermarking

method to various attacks, we tested it on 37 color images (of

size ) of the M2VTS frontal facial image database

[17]. The feature extraction success rate was 84% for combined

eye and mouth detection, providing an equal success rate for wa-

termark detection over the images. However, the watermarking

scheme can perform correctly even if some features are not de-

tected at their correct position, provided that all three features

(the eyes and the mouth) are present. This raises the perfor-

mance to about 95% of the images during watermark detection.

It is, anyway, essential to obtain the three feature points (eyes,

mouth locations) in order to define the dimensions, center, and

orientation of the watermarking region. Fig. 8 shows some de-

tection examples. Fig. 9 shows the corresponding results after

watermark embedding. The size of the prototype watermark is

, the watermark strength is , and the chaotic

map parameter is . The value for watermark strength

is a good compromise between watermark robustness and in-

visibility. Larger values would result in visually significant wa-

termarks, whereas smaller ones would result in hardly separated

experimental distributions. Since no masking is employed, three

could be considered an upper bound value. The and parame-

ters for defining the watermark spread over the facial region are

both fixed at value 1.25. The normalized threshold variance for

masking is . Fig. 10 shows the amplified difference

of the watermarked and original images. We can clearly see the

parts of the images that have not been watermarked at all due to

masking. It is also obvious that, although the features have been

distorted by the watermark, the positions of the salient features

in the watermarked image are very close to the original ones
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(a) (b)

Fig. 18. (a) Watermarked image after scaling by a factor of 1.16. (b) Normalized detector output.

(a) (b)

Fig. 19. (a) Watermarked image after scaling by a factor of 1.21. (b) Normalized detector output.

because their geometric models are robust enough. However,

introduced visual masking may drastically reduce the area over

which the watermark is embedded, due to the lowpass spectral

characteristics of the frontal facial images. Thus, in the subse-

quent experiments we did not employ masking.

A sample image after watermarking using a pro-

totype watermark and feature extraction using the previously

mentioned parameter values is shown in Fig. 11(b). The cor-

responding original is shown in Fig. 11(a). Fig. 11(c) shows the

normal distribution of the detector output for 100 different wa-

termarks searched in the original image (on the left) and in the

watermarked image (on the right). The detector output is nor-

malized in both cases. We can notice the rather large variance

of both distributions that may cause problems when having to

decide on a sufficient detection threshold. Fig. 12(b) shows the

result of feature extraction when embedding a pro-

totype watermark on an image region that is extended to the

image boundaries, while keeping the center and aspect ratio of

the embedding area unmodified. As Fig. 12(c) shows, the vari-

ance of both distributions has decreased, thus providing a wider

range of possible threshold values that would result in satisfac-

tory detection ratios. However, this causes problems in the case

of cropping attacks, because the embedding area is extended to

the false boundaries of the cropped image, instead of the water-

marked one. This can only be faced by searching for the cor-

rect cropping factor. We can see that a threshold that separates

completely the two distributions can be found. The common de-

tection threshold is decided after performing a set of attacks,

considered as a training set, on the watermarked image corre-

sponding to Fig. 12(a). The common threshold was decided to

be 0.32, after computing the median of the thresholds obtained

for the following attacks: 1 : 30 ratio JPEG compression,

median filtering, rotation by , scaling by a factor of 1.16,

asymmetric cropping to a size of , and no attack.

All these attacks, as well as any other, are evaluated using this

common threshold.
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(a) (b)

Fig. 20. (a) Watermarked image after cropping to size 188� 248. (b) Normalized detector output.

TABLE I
DETECTOR FRR, FAR FOR SEVERAL ATTACKS (COMMON DETECTION

THRESHOLD = 0.32)

Fig. 13 shows the result after corruption of the watermarked

image by multiplicative Gaussian noise of . In Fig. 14

a result is shown for the same watermarked image after JPEG

compression of ratio 1 : 30. Fig. 15 shows a result after per-

forming median filtering. Figs. 16 and 17 show results

for rotation by and , respectively. Figs. 18 and 19 show

results for scaling by a factor of 1.16 and 1.21, respectively. Fi-

nally, Fig. 20 shows a result for asymmetric cropping to a size

of .

Table I shows the false acceptance ratio (FAR) and the false

rejection ratio (FRR) for each of the attacks on the considered

image using the common detection threshold. We can see that,

in some cases, the FAR is increased in favor of the FRR, and vice

versa. This depends on how much the common threshold differs

from the optimal threshold for the particular attack. The perfor-

mance of the method will become better for larger images. This

is because the facial region would also be larger, thus allowing

the watermark to be embedded on a larger set of points. An-

other point is that the prototype watermark could also be greater,

allowing for smaller cross-correlation between different water-

marks and, thus, providing detector response pdfs of smaller

variance.

VIII. CONLUSIONS AND FUTURE WORK

In this paper, we developed a method for embedding and de-

tecting watermarks in color frontal facial images. Color infor-

mation was exploited in order to obtain a good approximation

of the skin-colored facial region, in which we search for salient

features like the eyes and the mouth, using a geometric model

matching method. The prototype watermark used for embed-

ding was chosen to be a chaotic one, modified in such a way

as to retain certain lowpass properties. The watermark is geo-

metrically adapted before embedding, using the extracted fea-

ture positions and facial region orientation. A correlation de-

tector is employed in order to decide on the possible presence

of a watermark. The color segmentation and feature localiza-

tion technique precedes both embedding and detection stages.

Experimental results display the robustness of the method. Fu-

ture directions of the current work include development of more

robust techniques for salient feature extraction, improvement of

the watermark detection stage performance, as well as exami-

nation of alternative chaotic generators that may perform better

than the one employed in this work.

REFERENCES

[1] G. Voyatzis and I. Pitas, “The use of watermarks in the protection of
digital multimedia products,” Proc. IEEE, vol. 87, pp. 1197–1207, July
1999.

[2] N. Nikolaidis and I. Pitas, “Copyright protection of images using robust
digital signatures,” in Proc. IEEE ICASSP’96 Atlanta, GA, May 1996,
vol. 4, pp. 2168–2171.

[3] W. Bender, D. Gruhl, N. Morimoto, and A. Lu, “Techniques for data
hiding,” IBM Syst. J., vol. 25, pp. 313–335, 1996.



184 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 2, NO. 3, SEPTEMBER 2000

[4] I. J. Cox, J. Killian, T. Leighton, and T. Shamoon, “Secure spread spec-
trum watermarking for multimedia,” IEEE Trans. Image Processing, vol.
6, pp. 1673–1687, Dec. 1997.

[5] A. Piva, M. Barni, F. Bartolini, and V. Capellini, “DCT-based watermark
recovering without resorting to the uncorrupted original image,” in Proc.

IEEE ICIP’97 Santa Barbara, CA, Oct. 1997, vol. 1, pp. 520–523.
[6] J. O’Ruanaidh and T. Pun, “Rotation, scale and translation invariant dig-

ital image watermarking,” in Proc. ICIP ’97 Santa Barbara, CA, Oct.
1997, vol. 1, pp. 536–539.

[7] X.-G. Xia, C. G. Boncelet, and G. R. Arce, “A multiresolution water-
mark for digital images,” in Proc. ICIP ’97 Santa Barbara, CA, Oct.
1997, vol. 1, pp. 548–551.

[8] M. J. J. J. B. Maes and C. W. A. M. van Overveld, “Digital watermarking
by geometric warping,” in Proc. ICIP ’98 Chicago, IL, Oct. 1998, vol.
2, pp. 424–426.

[9] R. L. Devaney, An Introduction to Dynamical Systems: Penjamine/Cum-
mings, 1986.

[10] K. Sobottka and I. Pitas, “A novel method for automatic face segmen-
tation, facial feature extraction and tracking,” Signal Processing: Image

Communication, vol. 12, no. 3, pp. 263–281, 1998.
[11] S. Tsekeridou and I. Pitas, “Facial feature extraction in frontal views

using biometric analogies,” in Proc. of EUSIPCO ’98 Rhodes, Greece,
September 1998, vol. 1, pp. 315–318.

[12] G. Yang and T. S. Huang, “Human face detection in a complex back-
ground,” Pattern Recognition, vol. 27, no. 1, pp. 53–63, 1994.

[13] R. Chellapa, C. L. Wilson, and S. Sirohey, “Human and machine recog-
nition of faces: A survey,” Proceedings of the IEEE, vol. 83, no. 5, pp.
705–740, 1995.

[14] R. Brunelli and T. Poggio, “Face recognition: Features versus tem-
plates,” IEEE Trans. Pattern Analysis Mach. Intell., vol. 15, no. 10, pp.
1042–1052, 1993.

[15] X. Li and N. Roeder, “Face contour extraction from front-view images,”
Pattern Recognition, vol. 28, no. 8, pp. 1167–1179, 1995.

[16] M. J. T. Reinders, P. J. L. van Beek, B. Sankur, and J. C. A. van der
Lubbe, “Facial feature localization and adaptation of a generic face
model for model-based coding,” Signal Processing: Image Communi-

cation, vol. 7, no. 1, pp. 57–74, 1995.
[17] S. Pigeon and L. Vandendorpe, “The M2VTS multimodal face data-

base,” in Lecture Notes in Computer Science: Audio- and Video-Based

Biometric Person Authentication, J. Bigun, C. Chollet, and G. Borge-
fors, Eds., 1997, vol. 1206, pp. 403–409.

[18] J. C. Terrillon and S. Akamatsu, “Comparative performance of different
chrominance spaces for color segmentation and detection of human
faces in complex scene images,” in Vision Interface, Canada, 1999.

[19] A. G. Bors and I. Pitas, “Object classification in 3-D images using alpha-
trimmed mean radial basis function network,” IEEE Trans. on Image

Processing, vol. 8, no. 12, pp. 1744–1756, 1999.
[20] A. K. Jain, Fundamentals of Digital Image Processing, NJ: Prentice-

Hall, 1989.
[21] G. Voyatzis and I. Pitas, “Chaotic watermarks for embedding in the spa-

tial digital image domain,” in Proc. ICIP ’98 Chicago, IL, Oct. 1998,
vol. 2, pp. 432–436.

[22] T. Kalker, J. P. Linnartz, G. Depovere, and M. Maes, “On the relia-
bility of detecting electronic watermarks in digital images,” in Proc. EU-

SIPCO ’98 Rhodes, Greece, September 1998, vol. 1, pp. 13–16.
[23] S. H. Isabelle and G. W. Wornell, “Statistical analysis and spectral es-

timation techniques for one-dimensional chaotic signals,” IEEE Trans.

Signal Processing, vol. 45, pp. 1495–1506, June 1997.
[24] D. Coltuc and I. Pitas, “Memory mappings for fast Peano scan,” in Proc.

ECCT 1995 Eur. Conf. Circuits Theory and Design, Istanbul, Turkey,
Aug. 1995, pp. 817–821.

[25] C. Gotsman and M. Lindenbaum, “On the metric properties of
discrete space filling curves,” in Proc. Int. Conf. Pattern Recogni-

tion Jerusalem, Israel, Oct. 1994, vol. 3, pp. 98–102.
[26] A. Papoulis, Probability and Statistics. Englewood Cliffs, NJ: Pren-

tice-Hall, 1990.
[27] G. Depovere, T. Kalker, and J.-P. Linnartz, “Improved watermark detec-

tion reliability using filtering before correlation,” in ICIP ’98 Chicago,
IL, Oct. 1998, vol. 1, pp. 430–434.

Athanasios Nikolaidis was born in Serres, Greece,
in 1973. He received the Diploma in computer
engineering from the University of Patras, Greece, in
1996. He is currently a Research and Teaching As-
sistant pursuing the Ph.D. degree in the Department
of Informatics, Aristotle University of Thessaloniki,
Greece. His research interests include nonlinear
image and signal processing and analysis, face
detection and recognition, and copyright protection
of multimedia.

Mr. Nikolaidis is a member of the Technical
Chamber of Greece.

Ioannis Pitas (S’83–M’84–SM’94) received the
Diploma of electrical engineering in 1980 and the
Ph.D. degree in electrical engineering in 1985, both
from the University of Thessaloniki, Greece.

Since 1994, he has been a Professor at the De-
partment of Informatics, University of Thessaloniki.
From 1980 to 1993, he served as Scientific Assistant,
Lecturer, Assistant Professor, and Associate Pro-
fessor in the Department of Electrical and Computer
Engineering at the same University. He served as
a Visiting Research Associate at the University of

Toronto, Toronto, ON, Canada, University of Erlangen–Nuernberg, Germany,
Tampere University of Technology, Finland, and as Visiting Assistant Professor
at the University of Toronto. He was Lecturer in short courses for continuing
education. His current interests are in the areas of digital image processing,
multidimensional signal processing and computer vision. He has published
over 300 papers and contributed to eight books in his area of interest. He is the
co-author of the book Nonlinear Digital Filters: Principles and Applications

(Norwell, MA: Kluwer, 1990) and author of Digital Image Processing

Algorithms (Englewood Cliffs, NJ: Prentice-Hall, 1993). He is the editor of
the book Parallel Algorithms and Architectures for Digital Image Processing,

Computer Vision and Neural Networks (New York: Wiley, 1993). He was
Co-Editor of Multidimensional Systems and Signal Processing.

Dr. Pitas has been member of the European Community ESPRIT Parallel Ac-
tion Committee. He has also been an Invited Speaker and/or member of the pro-
gram committee of several scientific conferences and workshops. He was Asso-
ciate Editor of the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS and is cur-
rently an Associate Editor of the IEEE TRANSACTIONS ON NEURAL NETWORKS.
He was Chair of the 1995 IEEE Workshop on Nonlinear Signal and Image Pro-
cessing (NSIP’95). He was Technical Chair of the 1998 European Signal Pro-
cessing Conference. He is General Chair of IEEE ICIP 2001.


