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Robust Wavelet Denoising

Sylvain Sardy, Paul Tseng, and Andrew Bruce

Abstract—For extracting a signal from noisy data, waveshrink cients forf = ®& to have a good mean squared error
and basis pursuit are powerful tools both from an empirical and -

asymptotic point of view. They are especially efficient at estimating A 1 A 9
spatially inhomogeneous signals when the noise is Gaussian. Their MSE(LD = NEHi - i||2
performance is altered when the noise has a long tail distribution,

for instance, when outliers are present. where the expectation is taken ower

We propose a robust wavelet-based estimator using a robustloss  \waveshrink uses orthonormal wavelets. which has two im-

function. This entails solving a nontrivial optimization problem e . L
and appropriately choosing the smoothing and robustness param- portant consequences: First, the least squares estimate is simply

~LS . . . .
eters. We illustrate the advantage of the robust wavelet denoising &~ = ¢'s, where® is the matrix of discretizeg,,, and®’ de-

procedure on simulated and real data. notes the transpose @f; second&™ is an unbiased estimate
Index Terms—Basis pursuit, block coordinate relaxation, inte- ©f & and its covariance matrix is’1 so that the estimated least
rior point, robustness, wavelet, waveshrink. squares coefficients are independent if the noise is Gaussian. For

asmaller mean squared error atthe cost of introducing some bias,
Donoho and Johnstone [1] apply the hard or the soft function

I. INTRODUCTION
UPPOSE we observe a signak (s1, sz, - -, sy ) gener- Y z) =z - 1(|z] > A)
ted from X (x) = sign(z) - (] — A)+ 3)
sn = f(zn) + 020, n=1-- N (1) wherel(x € A) is the identity function om4, and wherer.,

. _ _ is « for z > 0 and zero otherwise. For Gaussian noise, the
where the equally spaced sampling locatians are points shrinkage can be applied %° component-wise because its
on the line for one dimensional (1-D) signals or on a grid fQEomponents are independent.
images. For now, we assume that thes are identically and  The hard and soft estimates are, interestingly, the closed-form
independently distributed Gaussian random variables wi@|ytion to two optimization problems that are, in general, dif-
mean zero and variance one. Our goal is to denoise the sigf@lit to solve unless is orthonormal.

s, i.e., to find a good estimat¢ of the underlying signal . Best Subsenkard(@LS) is “the best subset of siZ& with

f = (f(z), . flen)). The hat on top of a letter is the s e v 1)th smallest element ¢&-5| in the sense
notation used throughout this paper to indicate the estimate of that it minimizes the residual sum of_squares among all
the corresponding parameter. Waveshrink [1] and basis pursuit sets with% nonzero wavelet coefficients
[2] are two nonparametric expansion based estimators. They 1,-Penalized Least Squareg"“(dT‘s) is the closed-form
assume thaf can be well represented by a linear combination solution to the following optimiz_ation problem:
of P> wavelet basis functiong,, namely '
min |s — @al3 + Allall: @
This property leads to the relaxation algorithm of Sec-
N tion 11-A and to the definition of basis pursuit.
where o = (o, --,ap) are the wavelet coefficients. \whend is no longer orthonormal but overcomplete, the least
Waveshrink is defined for orthonormal wavelets only (i.esquares estimate no longer has independent components, and the
P = N), whereas basis pursuit can also use an “overcompletfrinkage idea cannot be applied as such. Basis pursuit general-
basis (i.e.P’ > N). The advantage of an overcompletgzes to that situation using the optimization problem formulation
wavelet dictionary is discussed by Chenal. [2]. The goal of (4), whose solution is not trivial whed is not orthonormal.
Waveshrink and basis pursuit is to estimate the wavelet coeffi- The selection of the smoothing parameteis important.
Several ways of selectiny have been proposed for Gaussian
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where||w||, = Zﬁ;l p(w,). We use the Huber loss function

[10], which is a hybrid betweeh for small residuals anf for
large residuals, namely

X ol = { 42 s ©®)

To|lw|=72/2, |w| > T

wherer > 0is some cutpoint. Using an even loss function,
we implicitly assume that the noise is symmetric around zero.
Note that whemr — 0 andr — oo, it becomes thé, andi,
loss functions, respectively, both of which have the advantage
of being convex.

Our proposal of a robust wavelet denoising procedure raises
two issues. On the one hand, we must solve the nontrivial opti-
mization problem defined in (5) for a given pdix, 7); on the

101 other hand, we must select the smoothing parametard the
cutpointr. In Section Il, we propose two algorithms to solve
oy 1 F the robust wavelet denoising optimization problem (5): a block
0 100 200 300 400 500 coordinate relaxation algorithm and an interior point algorithm.

, I . _ In Section I, we discuss the problem of selecting the cutpoint
Fig. 1. Nonrobust estimation dfeavisine(Top) True signal. (Bottom left) . . .
Noisy signal. (Bottom right) Nonrobust estimate. 7 and the gmoothmg parametgr In Sec_tpn IV, we give the
result of a simulation to compare the efficiency of the two algo-

when the noise is Gaussian, but it is no longer appropriate Whrétll‘?ms and to compare thg denoising perf_ormance .Of the robust
rsus the nonrobust estimators. In Section V, we illustrate ro-

the departure from Gaussianity is too strong. In such a case, the . .
quadratic loss function pulls the estimated function toward tttljeUSt ba_5|s pursuit on two real data sets. We conclude the paper
outliers. We illustrate this phenomenon on a 1-D signal in Fig. T Section VI.
the true and noisy signal (90% standard Gaussian noise and 10%
Gaussian noise with a standard deviation of 4) are plotted on the
left side; onthe right side, basis pursuit gives poor estimation near Block Coordinate Relaxation (BCR) Algorithm
the outliers. The aim of this paper is to develop a robust Wavelet-The BCR algorithm relies on the following observation. The
based estimator that is less affected by a long-tailed noise. Huber loss function (6) may be rewritten as

Some work has already been done in this direction. Bruce
et al. [6] preprocess the estimation of the wavelet coefficients p(w)= min w?/2+7|wpl. @

by a “fast and robust smooth/cleaner” at each multiresolution WaFwy =w
level to downweight the effect of the outliers in the estimatiofis nontrivial fact can be inferred from results on infimal con-
of the wavelet coefficients. Kovac and Silverman [7] preprey,ytion as discussed in Rockafellar [11, ch. 16]. Interestingly,

Il. Two OPTIMIZATION ALGORITHMS

cess the original signal to remove “bad” observations by mea@§ becomes

of a rough statistical test involving a running median smoother

with a window of, say, 5; their procedure has the drawback of min %||§ — (o +wb)”§ + 7wy |l + Allr 8)
losing information by throwing out “bad” observations. For the Q.

situation of aknownsymmetric long tail noise, Averkamp andThe reformulated problem (8) has a separable structure to which

Houdré [8] derive minimax rules to select the smoothing P3e BCR algorithm of Sardgt al.[12] can be applied. It solves

rameter. K””.‘ gnd Schick [9] d‘?“."e a robusF estimator of th(?)(actly a succession of subproblems using the soft shrinkage
wavelet coefficients based on minimax description length; th‘?ﬁnction 3)
[ :

assumption of independent noise in the wavelet domain is no
realistic, however.

In this paper, we propose a different approach that has tRER Algorithm:
advantages of having a simple definition, of assuming a ré} Choose an initial guess for = (o, w, ), €.9.,8 = 0;
alistic independent contamination in the measuremengmd 2) PartitionB = [®, I] into two matricesB-+ of NV orthonormal
of being able to deal with overcomplete wavelets as well. Its columns;B of the remaining® — N columns. Defings™ and
challenges are in finding an efficient algorithm (see Section I1) 2 as the corresponding coefficientsn
and in choosing appropriately two tuning parameters (see S8t-Define the residual vectar = s — B. Find the improved
tion 111). Since the nonrobust behavior is due to théoss func- 31 by solving the subproblem
tion, we simply replace it by a robust loss functipand define
the coefficient estimaté , of the robust wavelet denoising pro- QL =arg min 3|lv— BLb|12 + A||b]]1
cedure as the solution to beRy

using soft shrinkage;

HRt lls = ®afl, + Alladls ®) 4) If convergence criterion is not met, go to step 1;
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The BCR algorithm assumes that the matrix (higrel]) is wherey is the log-barrier penalty that is chosen identically for
the union of a finite number of orthonormal matricB4. This all the penalty terms. Letting™ be thenth canonical basis
assumption is verified for many wavelet dictionaries includingector, the first-order optimality condition for the log-barrier
nondecimated wavelets, wavelet packets, local cosine packstfproblem is
chirplets [13], and brushlets [14]. Sardyal.[12] propose two
strategies for choosing+ in step 2 of the BCR algorithm and y—s—+ “Z 1 e — Z 1 "
prove convergence for real and complex-valued signals. B T Un T+ yn

1
B. Interior Point (IP) Algorithm + sz: P ng NZ Py <I> =0.
The interior point algorithm has the advantage of not re-
quiring ¢ to be the union of orthonormal blocks. It does notetting
apply to complex-valued signals, however, and is computation-
ally less efficient than the BCR algorithm (see Section 1V-A). bt =71 —yn, = p/(T—yn)
1) Transformation to Quadratic Programmingzirst, we w, =T +Yn, 75, =p/(T+yn)
rewrite the optimization problem (5) as U; N — (I)p% t;; e Qgg)
Ininz plwy) + A|le|l1 subjectto Pa+w=s. (9) v, = A+ Py, b, =p/(A+2y)
and letting
By attaching Lagrange multipliers to the linear constraints, this,
in turn, can be written as z=@tw vt v), z=(0T T t)
mlnmaXZp wy) + )\Z lap| + (s — P — w)'y. A=[l,-1,9,-9] and c¢= (71, \l)

L p B . . . - . .
the first-order optimality condition is a set of nonlinear equa-

The dual to this problem, which is obtained by exchanging thiyns
order of “min” and “max,” is

mﬁ"{le[p<wn>—wnyn1 s-Ar-y=ir,=0
S pl—-XZl=:r,=0 (12)

+ZIE§1[)‘|O‘P| - O‘P@;Q)]} +5'y (10)  wherex = diagz) andZ = diagz) withz > 0 andz > 0.
r The variableg;, i, andz are called, respectively, the primal, the
where@,, is thepth column of®. dual, and the dual slack variables. This IP problem could alter-
Since the objective function in (9) is convex, defined everyiatively have been derived from (8) and its dual; for instance,
where, and the constraint is linear, it is known from convex du — r~ corresponds ta,, andy corresponds ta, in (7).
ality theory (see, e.g., Rockaffelar [11, th. 28.2 and 28.4]) thatIn an interior point approach, one typically takes a single
the duality gap between the primal (9) and the dual (10) problewton step to solve the nonlinear system (12) inexactly and
lems is zero. Using (6) and some algebra, the dual problem (10¢n decreaseg. More precisely, given. > 0,z > 0, y,
is andz > 0, one computes the Newton directitfz, AU,A7)
which is obtained by solving the following system of linear

—7 <y, <
. 1.2 / . TSUYn ST H .
Ir;n En 5Yn — 8y With {_)\p <Py< A, (11) equations:

/ —
This is a quadratic programming problem. Notice that in the Aly+nz=r,

case ofr = 0, the dual problem (11) is a linear programming Adz+Ay =7,

problem, implying that the primal problem can be transformed ZAx+ XAz =7, (13)
into a linear programming problem. For brevity, we omit the

derivation (see Sardy [15]). and then, one updates the variables according to

2) Interior Point Algorithm: We solve the quadratic pro-

gramming problem using a primal-dual log-barrier interior " =z + A (14)

point algorithm inspired by Chent al. [2]. The log-barrier g””" =y+v8:.Ay (15)

subproblem corresponding to (11) is 2 = 4 yB. Az (16)
m;nZ sUn— 'y~ NZ log(7 — yn) wherey € (0,1), 3, > 0,andj3. > 0 are chosen to maintain

) z™* > 0andz"** > 0. A popular choice is
—p Y _log(r +ya) —p y_ log(A— 21y)
n p

Be= min {—x,/Az,} a7
‘ ) p:Ax, <0

- Z log(A + @,y) B, = min {—z,/Az,} (18)
P Pz, <0
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and empirically, the choice ef = .99 has worked well. The In one situation, the paifr, \) can be tuned “by eye.” For
parametef. may be updated in many ways. For example, Chenstance, in the first application of Section V, the noise is non-
et al.[2] suggested:™* = (1 — min(v, 3,, 3.))p. Typically, Gaussian, the signal to recover is known to be an aircraft. and
only a small number of interior-point iterations is required tthe signal-to-noise ratio (SNR) is inherent to the infrared sensor
obtain a solution of desired accuracy. used. In that situation, the smoothing parametand the cut-
3) Conjugate Gradient Solver for the Newton Stéyiost of  point+ can be tuned on a training set of images and then used
the computational effortis spentin computing the Newton direon future images.
tion at each iteration. From (13), we have that is the solution In the other situation, the underlying signal is not known,
of a and neither is the SNR; therefore, an automatic selection
of the pair (v, A) is needed. Our radar application of Sec-
(I+ ADA)Ay = (r,— A(Z 'r, — Dr,)) (19) tion V is an example of this situation. Several procedures
have been developed to select the smoothing parameter
whereD = Z~!X is a diagonal matrix. The dual slack andor non-Gaussian noise. Nason [5] observes, on a simulation
primal Newton directions are then obtaineddy = r_,— A’ Ay using i.i.d., Students noise, that thé,-based cross validation
andAz = Z7(r, — XAz). We adopt the algorithm of Chengives a better prediction than the minimax or SURE rules
et al. [2] and use the conjugate gradient method to solve tlderived for Gaussian noise. With smoothing splines, Xiang and
denseN x N system (19). Because multiplication Byand A’ Wahba [17] develop a generalized cross validation criterion
are typically fast (on the order df log V or N(log N)? oper- for a differentiable smoothness penalty and for a known noise
ations), the conjugate gradient method is attractive. In practicistribution in the exponential family. The knowledge of a
however, the number of conjugate gradient iterations requirsgecific noise distribution is also required by Averkamp and
to solve (19) accurately can become very largéaa, z) ap- Houdré [8], who develop a minimax rule for specific long tail
proaches a solution, thus degrading the performance of thenidise distributions; their selection can only do so much to cope
algorithm. with the problem of using the unnatufalloss function. Crouse
4) Finding an Initial Point: The IP algorithm requires an ini- et al. [18] propose wavelet-Markov models for the dependence
tial point (20,4, 2°) satisfyingz® > 0 andz’ > 0, which between scales, and they employ an EM algorithm to estimate
ideally would not be too far from the solution. Let the ridge retheir parameters by maximum likelihood. EM is typically

gression estimate = Qr;‘lge (obtained by replacing«||; in  slow and gets trapped into local maxima, however [this cannot
(4) by ||a||3) be an initial guess for the coefficients. Let = happen with our convex cost function (5)].

max({a,0) anda_ = max(—gq,0). With 3 = da andr = In this paper, we propose a pragmatic approach that does not
s — 35, letr, = max(r,0) andr_ = max(—r,0). Then, the require the specific knowledge of the noise distribution. First,
primal variablesz® = (ry,r_,a,,a_) + .11 are positive. an estimate of scal is required. We use the median absolute
In addition, lety = A -sign((r,,r_,a,,«_)), and letu = deviation of the high-frequency wavelet coefficients of Donoho

1.1]|(®"y, y)||oo- Then, the dual variableg’ = min(\,7)y/u and Johnstone [4]. This estimate of scale is robust to features of
satisfy—A1 < ®4° < A, —71 < 3° < 71, and the dual the underlying signal and to outliers especially if, as suggested
slack variableg® = ¢ — A’y/° are positive. by Kovac and Silverman [7], the Haar wavelet (which support
5) Convergence:Although there have been many converhas length two) is used. For the cutpoinin (6), we follow
gence studies of IP algorithms, the algorithms that work well iduber [10] and choosé = c¢5. The default in software pack-
practice, including the one described above, often have no guages is ofter: = 1.345 based on the following statistical con-
antee of convergence. Specifically, convergence requires the gideration: Suppose you observe i.i.d. data with meafhen,
istence of positive constants, 72, 73 such thaf|r,, [[>+(|r, |l2 <  the asymptotic relative efficiency of the Huber estimatey.of
mspandrp < 2,2, < op, forp=1,--- 2P, atalliterations. is asymptotically 95% efficient with respect to the sample av-
We can enforce convergence by updaiinip a more conserva- erage when the noise is Gaussian (G). We can read this value
tive manner, but this would slow down its convergence in praon the continuous curve (G) of Fig. 2. The relative efficiency is
tice. (See, e.g., Kojimat al.[16] for discussions of these issuesalso plotted as a function effor the distributions used in the

in linear programming problems.) simulation. Fig. 2 gives a guideline for the selectiorcdf our

A stopping rule for the IP algorithm is when all of the fol-nonparametric regression problem: We see that a valudef
lowing conditions are satisfied for a smajl > 0: tween one and three gives overall a good efficiency. Based on
the simulation of Section IV, we recommend using a cutpoint

Primal feasibility: ||z, [[2/(1 + ||z[[2) < e of at leastc = 2.0. Finally, for the smoothing parametr we

use the minimax\%, developed by Donoho and Johnstone [1]
since the residuals withitt74 do not depart dramatically from
Gaussian residuals.

Dual feasibility: ||r,.[]2/(1+[|yll2) < «
Duality gap: 2'z/(1 + [|z]l2|lyll2) < e1. (20)

I1l. SELECTION OF A AND 7 IV. SIMULATIONS

The selection of the smoothing parameteand the cutpoint A. Computational Efficiency
7 is a difficult problem. Two different situations can be distin- Empirically, Sardyet al. [12] found the BCR algorithm to
guished. be more efficient than the IP algorithm at solving basis pursuit.
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Fig. 2. Asymptotic relative efficiency as a function©bf the Huber estimate '

with respect to the sample average of an i.i.d. sample generated from the 21
distributions used in the simulation: Gaussian (G), Gaussian mixture (C), and r T T T . — y . . . :
Studentts with three degrees of freedom (T). 0 100 200 300 400 S0

Fig. 4. Robust estimation dfeavisine(Top) True signal. (Bottom left) Noisy
signal. (Bottom right) Robust estimate to compare with Fig. 1.
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Fig. 3. Decrease in the robust basis pursuit objective function as a function of ‘ Y

the CPU time (in seconds) for the BCR algorithm and the IP algorithm.
Fig. 5. Four signals used in the Monte Carlo experiment.
We observe the same advantage for solving its robust version

(5). The reason is that the matii, /] now used only has to goryes the two discontinuities and downweights the influence of
be augmented by th columns of the identity matrix. Fig. 3 {1 qutliers.

illustrates, on four contaminated signals, the superiority of theWe perform a Monte Carlo experiment to evaluate the relative

.BCR qlgqrithm that i.s upto 10. ti_mes faster t_han the IP algorithB}en‘ormance of the nonrobust and robust wavelet-based estima-
in achieving the desired precisioa [= 0.02 in (20)]. tors with three noise scenarios:

* (G) standard Gaussian noise;

 (C) amixture of 90% Gaussian(0, 1) and 10% Gaussian(0,
To illustrate graphically on a 1-D signal the advantage of ~ 16) atrandom locations;

using a robust procedure, Fig. 4 shows the robust estimation of* (T) Student: noise with three degrees of freedom.

heavisinefor the same contaminated data as in Fig. 1. The rive use the four test functions plotted in Fig. 5 and defined in

bust procedure gives a better reconstruction; in particular, it pi@enoho and Johnstone [1, Tab. fifocks, bumps, heavisiremd

B. Predictive Performance
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TABLE |
RELATIVE PREDICTIVE PERFORMANCE OFBASIS PURSUIT (¢ = c0) AND ROBUSTBASIS PURSUIT (¢ = 2.0, ¢ = 1.345). ESTIMATED MEAN SQUARED ERROR
(x100) WITH A STANDARD ERROR OFROUGHLY 3%. (G: GAUSSIAN; C: CONTAMINATED; T: STUDENT ¢35

blocks bumps heavisine Doppler

N c G C T G c T G ¢ T & ¢ T

1024 o 46 100 137 | 47 103 130 17 71 91| 33 8 109
2.0 77 103 114 | 190 220 240 | 17 27 33| 34 49 58

1345 141 167 179 | 80 884 913 | 20 26 30| 47 59 67

4096 oo 21 69 o1| 18 62 8| 7 5 e8| 11 55 76
2.0 33 44 49| 24 35 38| 7 11 13| 11 17 20

1345 58 67 72| 104 114  100| 9 11 12| 15 19 22

Doppler. We normalize them such that their “standard devia- Noisy aircraft image Median filter 3x3

tion” is equal to 7

1 1
/ (f(z) — T)2dz =49, where T = / f@)de. (1)
0 0

We choose two sample sizes &f = 1024 and N = 4096,
and the “s8” wavelet packet dictionary with all but four levels.
The minimax smoothing parametex$ are\j,,, =2.232 and :
Aigge = 2.594. Following the discussion of Section lll, the 0 20 40 60 80 100 120 0 20 40 60 80 100 120
smoothing parameter is set fo = A%¢ and the cutpoint of

the Huber loss function t6 = c6 with ¢ = 1.345 andc = 2.0. . . . .

For each combination of noise (G, C, T) of underlying func- Basis Pursuit Robust Basis Pursut
tion (blocks, bumps, heavisine, Doppleof sample size{yf =
1024, N = 4096), and of procedure (nonrobust, robust), we es-
timate the MSE by averaging (40)(102%)/model errors (i.e.,

40 for N = 1024 and 10 forN = 4096 to get the same number

of points is generated for the two sample sizes). Table | reports
the estimated MSEs of the competing estimators for the 24 sce-
narios.

In light of Table I, a cutpoint of at least = 2 is advisable
for robust basis pursuit; the standard value ef 1.345 derived 0 20 40 60 80 100 120 0 20 40 60 &0 100 120
in the parametric context from asymptotic considerations is nﬁ& 6. Top: (Left) Noisy infrared sensor data and (Righ) 3 robust median
large enough. With a cutpoint of= 2, the gainin efficiency can filter denoised image. Bottom: (Left) Nonrobust and (Right) robust wavelet
be dramatic for non-Gaussian noise using robust basis pursgiged denoised images.

Its counterperformance on thmimpssignal is due to the na-

ture of the signal whose features are difficult to distinguish witte 2-D nondecimated wavelet transform with the “s8” wavelet.
noise in the upper tail when the sampling is light & 1024); In this application, we know the underlying image we want to
with an heavier Samp"ngj\( — 4096), robust basis pursuit recover, therefore, we tried several values ahdr (Wh|Ch was
again beats the nonrobust estimator for non-Gaussian noisefeasible in a finite time thanks to the BCR algorithm) and chose
A = 7 = 0.4 for the best visually appealing reconstruction
of the aircraft. Using this parameter settiﬁag: 7 = 04, the
robust procedure can be used to clean future images.

The first datais an image taken by a long-wavelength infraredThe second data are radar glint observations and consist of
sensor. Just visible above the center of the image is an A-87 = 512 angles of a target in degrees. The signal contains a
trainer aircraft flying above the Sierra Nevada at some distaneember of glint spikes, causing the apparent signal to behave
from the sensor platform. The 128 by 128 original image plottestratically. From physical considerations, a good model for the
in the top left of Fig. 6 clearly shows some “outlier pixels.” Atrue signal is a low-frequency oscillation abdift. The esti-
standard median filter (with & x 3 window) gets rid of the bad mated standard deviation & = 8.4. To get a nice “noise-
pixels but does not preserve the aircraft well (top right). The twfoee” visual display, we choose the universal threshbld=
bottom plots of Fig. 6 show the denoised image using (left) bagis/2log N = 29.6, and for the robust version, we choase-
pursuit and (right) robust basis pursuit. The robust denoisigg)é = 11.3. Fig. 7 shows the (top) original signal and (left:
procedure has the definite advantage of cleaning the imagenohrobust; right: robust) the denoised estimates at the bottom.
the bad pixels while preserving the outline of the airplane. Tohe robust estimate is a low-frequency oscillation, as expected,
clean the image with the two wavelet-based techniques, we ugdtkereas the nonrobust estimate remains jagged. Note that the

0 20 40 60 80100
0 20 40 60 80100

0O 20 40 60 80100
O 20 40 60 80100

V. APPLICATIONS
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loss function. We solved the corresponding nontrivial optimiza-
tion problem for a given smoothing paramefer> 0 and a
given cutpointr > 0 with an efficient and converging block
coordinate relaxation method that is empirically faster than i
interior point competitor. The two techniques are available
the wavelet module of th8plus statistical software; the BCR
algorithm can otherwise be easily implemented. We propose
rule to choose the smoothing parameteand the cutpoint of
the Huber loss function. We showed on a particular simula-
tion that robust basis pursuit has a good predictive performar _
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the Huber loss function. As illustrated with two applications, ro-
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