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Robust Wavelet Denoising
Sylvain Sardy, Paul Tseng, and Andrew Bruce

Abstract—For extracting a signal from noisy data, waveshrink
and basis pursuit are powerful tools both from an empirical and
asymptotic point of view. They are especially efficient at estimating
spatially inhomogeneous signals when the noise is Gaussian. Their
performance is altered when the noise has a long tail distribution,
for instance, when outliers are present.

We propose a robust wavelet-based estimator using a robust loss
function. This entails solving a nontrivial optimization problem
and appropriately choosing the smoothing and robustness param-
eters. We illustrate the advantage of the robust wavelet denoising
procedure on simulated and real data.

Index Terms—Basis pursuit, block coordinate relaxation, inte-
rior point, robustness, wavelet, waveshrink.

I. INTRODUCTION

SUPPOSE we observe a signal gener-
ated from

(1)

where the equally spaced sampling locations are points
on the line for one dimensional (1-D) signals or on a grid for
images. For now, we assume that thes are identically and
independently distributed Gaussian random variables with
mean zero and variance one. Our goal is to denoise the signal
, i.e., to find a good estimate of the underlying signal

. The hat on top of a letter is the
notation used throughout this paper to indicate the estimate of
the corresponding parameter. Waveshrink [1] and basis pursuit
[2] are two nonparametric expansion based estimators. They
assume that can be well represented by a linear combination
of wavelet basis functions , namely

(2)

where are the wavelet coefficients.
Waveshrink is defined for orthonormal wavelets only (i.e.,

), whereas basis pursuit can also use an “overcomplete”
basis (i.e., ). The advantage of an overcomplete
wavelet dictionary is discussed by Chenet al. [2]. The goal of
Waveshrink and basis pursuit is to estimate the wavelet coeffi-
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cients for to have a good mean squared error

MSE E

where the expectation is taken over.
Waveshrink uses orthonormal wavelets, which has two im-

portant consequences: First, the least squares estimate is simply
, where is the matrix of discretized , and de-

notes the transpose of; second, is an unbiased estimate
of , and its covariance matrix is so that the estimated least
squares coefficients are independent if the noise is Gaussian. For
a smaller mean squared error at the cost of introducing some bias,
Donoho and Johnstone [1] apply the hard or the soft function

sign (3)

where is the identity function on , and where
is for and zero otherwise. For Gaussian noise, the
shrinkage can be applied to component-wise because its
components are independent.

The hard and soft estimates are, interestingly, the closed-form
solution to two optimization problems that are, in general, dif-
ficult to solve unless is orthonormal.

• Best Subset: is “the best subset of size” with
as the th smallest element of in the sense

that it minimizes the residual sum of squares among all
sets with nonzero wavelet coefficients.

• -Penalized Least Squares: is the closed-form
solution to the following optimization problem:

(4)

This property leads to the relaxation algorithm of Sec-
tion II-A and to the definition of basis pursuit.

When is no longer orthonormal but overcomplete, the least
squares estimate no longer has independent components, and the
shrinkage idea cannot be applied as such. Basis pursuit general-
izes to that situation using the optimization problem formulation
(4), whose solution is not trivial when is not orthonormal.

The selection of the smoothing parameteris important.
Several ways of selecting have been proposed for Gaussian
noise. They are based on a minimax argument (see Donoho
and Johnstone [1] for real-valued noise and Sardy [3] for com-
plex-valued noise) or on minimizing the Stein unbiased risk es-
timate (SURE) (see Donoho and Johnstone [4]). Nason [5] se-
lects the smoothing parameter by cross validation.

The predictive performance of waveshrink and basis pursuit
deteriorates when the noise is not Gaussian. It is because of the

loss function in (4). It arises naturally as the log-likelihood
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Fig. 1. Nonrobust estimation ofheavisine.(Top) True signal. (Bottom left)
Noisy signal. (Bottom right) Nonrobust estimate.

when the noise is Gaussian, but it is no longer appropriate when
the departure from Gaussianity is too strong. In such a case, the
quadratic loss function pulls the estimated function toward the
outliers. We illustrate this phenomenon on a 1-D signal in Fig. 1;
the true and noisy signal (90% standard Gaussian noise and 10%
Gaussian noise with a standard deviation of 4) are plotted on the
left side;on the right side,basispursuitgivespoorestimationnear
the outliers. The aim of this paper is to develop a robust wavelet-
based estimator that is less affected by a long-tailed noise.

Some work has already been done in this direction. Bruce
et al. [6] preprocess the estimation of the wavelet coefficients
by a “fast and robust smooth/cleaner” at each multiresolution
level to downweight the effect of the outliers in the estimation
of the wavelet coefficients. Kovac and Silverman [7] prepro-
cess the original signal to remove “bad” observations by means
of a rough statistical test involving a running median smoother
with a window of, say, 5; their procedure has the drawback of
losing information by throwing out “bad” observations. For the
situation of aknownsymmetric long tail noise, Averkamp and
Houdré [8] derive minimax rules to select the smoothing pa-
rameter. Krim and Schick [9] derive a robust estimator of the
wavelet coefficients based on minimax description length; their
assumption of independent noise in the wavelet domain is not
realistic, however.

In this paper, we propose a different approach that has the
advantages of having a simple definition, of assuming a re-
alistic independent contamination in the measurements, and
of being able to deal with overcomplete wavelets as well. Its
challenges are in finding an efficient algorithm (see Section II)
and in choosing appropriately two tuning parameters (see Sec-
tion III). Since the nonrobust behavior is due to theloss func-
tion, we simply replace it by a robust loss functionand define
the coefficient estimate of the robust wavelet denoising pro-
cedure as the solution to

(5)

where . We use the Huber loss function
[10], which is a hybrid between for small residuals and for
large residuals, namely

(6)

where is some cutpoint. Using an even loss function,
we implicitly assume that the noise is symmetric around zero.
Note that when and , it becomes the and
loss functions, respectively, both of which have the advantage
of being convex.

Our proposal of a robust wavelet denoising procedure raises
two issues. On the one hand, we must solve the nontrivial opti-
mization problem defined in (5) for a given pair ; on the
other hand, we must select the smoothing parameterand the
cutpoint . In Section II, we propose two algorithms to solve
the robust wavelet denoising optimization problem (5): a block
coordinate relaxation algorithm and an interior point algorithm.
In Section III, we discuss the problem of selecting the cutpoint

and the smoothing parameter. In Section IV, we give the
result of a simulation to compare the efficiency of the two algo-
rithms and to compare the denoising performance of the robust
versus the nonrobust estimators. In Section V, we illustrate ro-
bust basis pursuit on two real data sets. We conclude the paper
in Section VI.

II. TWO OPTIMIZATION ALGORITHMS

A. Block Coordinate Relaxation (BCR) Algorithm

The BCR algorithm relies on the following observation. The
Huber loss function (6) may be rewritten as

(7)

This nontrivial fact can be inferred from results on infimal con-
volution as discussed in Rockafellar [11, ch. 16]. Interestingly,
(5) becomes

(8)

The reformulated problem (8) has a separable structure to which
the BCR algorithm of Sardyet al. [12] can be applied. It solves
exactly a succession of subproblems using the soft shrinkage
function (3).

BCR Algorithm:
1) Choose an initial guess for , e.g., ;
2) Partition into two matrices: of orthonormal

columns; of the remaining columns. Define and
as the corresponding coefficients in;

3) Define the residual vector . Find the improved
by solving the subproblem

arg

using soft shrinkage;
4) If convergence criterion is not met, go to step 1;
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The BCR algorithm assumes that the matrix (here ) is
the union of a finite number of orthonormal matrices . This
assumption is verified for many wavelet dictionaries including
nondecimated wavelets, wavelet packets, local cosine packets,
chirplets [13], and brushlets [14]. Sardyet al. [12] propose two
strategies for choosing in step 2 of the BCR algorithm and
prove convergence for real and complex-valued signals.

B. Interior Point (IP) Algorithm

The interior point algorithm has the advantage of not re-
quiring to be the union of orthonormal blocks. It does not
apply to complex-valued signals, however, and is computation-
ally less efficient than the BCR algorithm (see Section IV-A).

1) Transformation to Quadratic Programming:First, we
rewrite the optimization problem (5) as

subject to (9)

By attaching Lagrange multipliers to the linear constraints, this,
in turn, can be written as

The dual to this problem, which is obtained by exchanging the
order of “min” and “max,” is

(10)

where is the th column of .
Since the objective function in (9) is convex, defined every-

where, and the constraint is linear, it is known from convex du-
ality theory (see, e.g., Rockaffelar [11, th. 28.2 and 28.4]) that
the duality gap between the primal (9) and the dual (10) prob-
lems is zero. Using (6) and some algebra, the dual problem (10)
is

with (11)

This is a quadratic programming problem. Notice that in the
case of , the dual problem (11) is a linear programming
problem, implying that the primal problem can be transformed
into a linear programming problem. For brevity, we omit the
derivation (see Sardy [15]).

2) Interior Point Algorithm: We solve the quadratic pro-
gramming problem using a primal-dual log-barrier interior
point algorithm inspired by Chenet al. [2]. The log-barrier
subproblem corresponding to (11) is

where is the log-barrier penalty that is chosen identically for
all the penalty terms. Letting be the th canonical basis
vector, the first-order optimality condition for the log-barrier
subproblem is

Letting

and letting

and

the first-order optimality condition is a set of nonlinear equa-
tions

(12)

where diag and diag with and .
The variables , , and are called, respectively, the primal, the
dual, and the dual slack variables. This IP problem could alter-
natively have been derived from (8) and its dual; for instance,

corresponds to , and corresponds to in (7).
In an interior point approach, one typically takes a single

Newton step to solve the nonlinear system (12) inexactly and
then decreases. More precisely, given , , ,
and , one computes the Newton direction ,
which is obtained by solving the following system of linear
equations:

(13)

and then, one updates the variables according to

(14)

(15)

(16)

where , , and are chosen to maintain
and . A popular choice is

(17)

(18)
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and empirically, the choice of has worked well. The
parameter may be updated in many ways. For example, Chen
et al. [2] suggested . Typically,
only a small number of interior-point iterations is required to
obtain a solution of desired accuracy.

3) Conjugate Gradient Solver for the Newton Step:Most of
the computational effort is spent in computing the Newton direc-
tion at each iteration. From (13), we have that is the solution
of

(19)

where is a diagonal matrix. The dual slack and
primal Newton directions are then obtained by
and . We adopt the algorithm of Chen
et al. [2] and use the conjugate gradient method to solve the
dense system (19). Because multiplication byand
are typically fast (on the order of or oper-
ations), the conjugate gradient method is attractive. In practice,
however, the number of conjugate gradient iterations required
to solve (19) accurately can become very large as ap-
proaches a solution, thus degrading the performance of the IP
algorithm.

4) Finding an Initial Point: The IP algorithm requires an ini-
tial point satisfying and , which
ideally would not be too far from the solution. Let the ridge re-
gression estimate (obtained by replacing in
(4) by ) be an initial guess for the coefficients. Let

and . With and
, let and . Then, the

primal variables are positive.
In addition, let sign , and let

. Then, the dual variables
satisfy , , and the dual
slack variables are positive.

5) Convergence:Although there have been many conver-
gence studies of IP algorithms, the algorithms that work well in
practice, including the one described above, often have no guar-
antee of convergence. Specifically, convergence requires the ex-
istence of positive constants, , such that

and , for , at all iterations.
We can enforce convergence by updatingin a more conserva-
tive manner, but this would slow down its convergence in prac-
tice. (See, e.g., Kojimaet al.[16] for discussions of these issues
in linear programming problems.)

A stopping rule for the IP algorithm is when all of the fol-
lowing conditions are satisfied for a small :

Primal feasibility:

Dual feasibility:

Duality gap: (20)

III. SELECTION OF AND

The selection of the smoothing parameterand the cutpoint
is a difficult problem. Two different situations can be distin-

guished.

In one situation, the pair can be tuned “by eye.” For
instance, in the first application of Section V, the noise is non-
Gaussian, the signal to recover is known to be an aircraft. and
the signal-to-noise ratio (SNR) is inherent to the infrared sensor
used. In that situation, the smoothing parameterand the cut-
point can be tuned on a training set of images and then used
on future images.

In the other situation, the underlying signal is not known,
and neither is the SNR; therefore, an automatic selection
of the pair is needed. Our radar application of Sec-
tion V is an example of this situation. Several procedures
have been developed to select the smoothing parameter
for non-Gaussian noise. Nason [5] observes, on a simulation
using i.i.d., Student noise, that the -based cross validation
gives a better prediction than the minimax or SURE rules
derived for Gaussian noise. With smoothing splines, Xiang and
Wahba [17] develop a generalized cross validation criterion
for a differentiable smoothness penalty and for a known noise
distribution in the exponential family. The knowledge of a
specific noise distribution is also required by Averkamp and
Houdré [8], who develop a minimax rule for specific long tail
noise distributions; their selection can only do so much to cope
with the problem of using the unnaturalloss function. Crouse
et al. [18] propose wavelet-Markov models for the dependence
between scales, and they employ an EM algorithm to estimate
their parameters by maximum likelihood. EM is typically
slow and gets trapped into local maxima, however [this cannot
happen with our convex cost function (5)].

In this paper, we propose a pragmatic approach that does not
require the specific knowledge of the noise distribution. First,
an estimate of scale is required. We use the median absolute
deviation of the high-frequency wavelet coefficients of Donoho
and Johnstone [4]. This estimate of scale is robust to features of
the underlying signal and to outliers especially if, as suggested
by Kovac and Silverman [7], the Haar wavelet (which support
has length two) is used. For the cutpointin (6), we follow
Huber [10] and choose . The default in software pack-
ages is often based on the following statistical con-
sideration: Suppose you observe i.i.d. data with mean. Then,
the asymptotic relative efficiency of the Huber estimate of
is asymptotically 95% efficient with respect to the sample av-
erage when the noise is Gaussian (G). We can read this value
on the continuous curve (G) of Fig. 2. The relative efficiency is
also plotted as a function of for the distributions used in the
simulation. Fig. 2 gives a guideline for the selection ofin our
nonparametric regression problem: We see that a value ofbe-
tween one and three gives overall a good efficiency. Based on
the simulation of Section IV, we recommend using a cutpoint
of at least . Finally, for the smoothing parameter, we
use the minimax developed by Donoho and Johnstone [1]
since the residuals within do not depart dramatically from
Gaussian residuals.

IV. SIMULATIONS

A. Computational Efficiency

Empirically, Sardyet al. [12] found the BCR algorithm to
be more efficient than the IP algorithm at solving basis pursuit.
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Fig. 2. Asymptotic relative efficiency as a function ofc of the Huber estimate
with respect to the sample average of an i.i.d. sample generated from the
distributions used in the simulation: Gaussian (G), Gaussian mixture (C), and
Studentt with three degrees of freedom (T).

Fig. 3. Decrease in the robust basis pursuit objective function as a function of
the CPU time (in seconds) for the BCR algorithm and the IP algorithm.

We observe the same advantage for solving its robust version
(5). The reason is that the matrix now used only has to
be augmented by the columns of the identity matrix. Fig. 3
illustrates, on four contaminated signals, the superiority of the
BCR algorithm that is up to 10 times faster than the IP algorithm
in achieving the desired precision [ in (20)].

B. Predictive Performance

To illustrate graphically on a 1-D signal the advantage of
using a robust procedure, Fig. 4 shows the robust estimation of
heavisinefor the same contaminated data as in Fig. 1. The ro-
bust procedure gives a better reconstruction; in particular, it pre-

Fig. 4. Robust estimation ofheavisine.(Top) True signal. (Bottom left) Noisy
signal. (Bottom right) Robust estimate to compare with Fig. 1.

Fig. 5. Four signals used in the Monte Carlo experiment.

serves the two discontinuities and downweights the influence of
the outliers.

We perform a Monte Carlo experiment to evaluate the relative
performance of the nonrobust and robust wavelet-based estima-
tors with three noise scenarios:

• (G) standard Gaussian noise;
• (C) a mixture of 90% Gaussian(0, 1) and 10% Gaussian(0,

16) at random locations;
• (T) Student noise with three degrees of freedom.

We use the four test functions plotted in Fig. 5 and defined in
Donoho and Johnstone [1, Tab. 1]:blocks, bumps, heavisine,and
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TABLE I
RELATIVE PREDICTIVE PERFORMANCE OFBASIS PURSUIT (c =1) AND ROBUST BASIS PURSUIT (c = 2:0; c = 1:345). ESTIMATED MEAN SQUARED ERROR

(�100) WITH A STANDARD ERROR OFROUGHLY 3%. (G: GAUSSIAN; C: CONTAMINATED; T: STUDENT t

Doppler. We normalize them such that their “standard devia-
tion” is equal to 7

where (21)

We choose two sample sizes of and ,
and the “s8” wavelet packet dictionary with all but four levels.
The minimax smoothing parameters are 2.232 and

2.594. Following the discussion of Section III, the
smoothing parameter is set to and the cutpoint of
the Huber loss function to with and .

For each combination of noise (G, C, T) of underlying func-
tion (blocks, bumps, heavisine, Doppler), of sample size (

, ), and of procedure (nonrobust, robust), we es-
timate the MSE by averaging (40)(1024)/model errors (i.e.,
40 for and 10 for to get the same number
of points is generated for the two sample sizes). Table I reports
the estimated MSEs of the competing estimators for the 24 sce-
narios.

In light of Table I, a cutpoint of at least is advisable
for robust basis pursuit; the standard value of derived
in the parametric context from asymptotic considerations is not
large enough. With a cutpoint of , the gain in efficiency can
be dramatic for non-Gaussian noise using robust basis pursuit.
Its counterperformance on thebumpssignal is due to the na-
ture of the signal whose features are difficult to distinguish with
noise in the upper tail when the sampling is light ( );
with an heavier sampling ( ), robust basis pursuit
again beats the nonrobust estimator for non-Gaussian noise.

V. APPLICATIONS

The first data is an image taken by a long-wavelength infrared
sensor. Just visible above the center of the image is an A-37
trainer aircraft flying above the Sierra Nevada at some distance
from the sensor platform. The 128 by 128 original image plotted
in the top left of Fig. 6 clearly shows some “outlier pixels.” A
standard median filter (with a window) gets rid of the bad
pixels but does not preserve the aircraft well (top right). The two
bottom plots of Fig. 6 show the denoised image using (left) basis
pursuit and (right) robust basis pursuit. The robust denoising
procedure has the definite advantage of cleaning the image of
the bad pixels while preserving the outline of the airplane. To
clean the image with the two wavelet-based techniques, we used

Fig. 6. Top: (Left) Noisy infrared sensor data and (Right)3�3 robust median
filter denoised image. Bottom: (Left) Nonrobust and (Right) robust wavelet
based denoised images.

the 2-D nondecimated wavelet transform with the “s8” wavelet.
In this application, we know the underlying image we want to
recover; therefore, we tried several values ofand (which was
feasible in a finite time thanks to the BCR algorithm) and chose

for the best visually appealing reconstruction
of the aircraft. Using this parameter setting , the
robust procedure can be used to clean future images.

The second data are radar glint observations and consist of
angles of a target in degrees. The signal contains a

number of glint spikes, causing the apparent signal to behave
erratically. From physical considerations, a good model for the
true signal is a low-frequency oscillation about. The esti-
mated standard deviation is . To get a nice “noise-
free” visual display, we choose the universal threshold

, and for the robust version, we choose
. Fig. 7 shows the (top) original signal and (left:

nonrobust; right: robust) the denoised estimates at the bottom.
The robust estimate is a low-frequency oscillation, as expected,
whereas the nonrobust estimate remains jagged. Note that the
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Fig. 7. Top: (Left) Noisy radar glint data and (Right) robust median filter
estimate. Bottom: (Left) Nonrobust and (right) robust wavelet-based estimate
(with local cosine packet).

median filter’s estimate still shows a highly oscillating denoised
signal.

VI. CONCLUSION

We have proposed a robust version of basis pursuit by re-
placing the nonrobust loss function by the so-called Huber
loss function. We solved the corresponding nontrivial optimiza-
tion problem for a given smoothing parameter and a
given cutpoint with an efficient and converging block
coordinate relaxation method that is empirically faster than an
interior point competitor. The two techniques are available in
the wavelet module of theSplus statistical software; the BCR
algorithm can otherwise be easily implemented. We proposed a
rule to choose the smoothing parameterand the cutpoint of
the Huber loss function. We showed on a particular simula-
tion that robust basis pursuit has a good predictive performance
with both Gaussian and long-tailed symmetric additive noise; in
particular, we recommend using a cutpoint of at least for
the Huber loss function. As illustrated with two applications, ro-
bust basis pursuit has a definite advantage over both a nonrobust
wavelet-based estimator and a median filter estimator.
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