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ABSTRACT In the presence of multiple sources, the performance of direction-of-arrival (DOA) estimation

based on beam power maximization is susceptible to the energy leaking from the interference beams to

the target beam, especially in the case that the signal of interest (SOI) is quite weak. To address this

issue, a robust wideband DOA estimation method is proposed in this paper. Unlike those conventional

high-resolution methods which mitigate the influence of energy leakage by reducing beamwidths and

sidelobe levels, the proposed method achieves this by directly reconstructing the element-space data to

approach the received hydrophone data of the single-source scenario containing only the SOI. Element-

space data reconstruction (ESDR) for the SOI is achieved by removing the element-space waveforms of all

the interference signals from the received hydrophone data. Moreover, an iterative algorithm is developed

to adaptively extract the element-space waveform of each interference signal, without requiring the prior

information of the array amplitude response coefficients and hydrophone coordinates of a distorted towed

array. Simulation results show that the proposed method outperforms its counterparts in terms of estimation

accuracy for a multi-source scenario. Meanwhile, the DOA estimation performance of the proposed method

in amulti-source environment is close to that obtained by the beam powermaximizationmethod in the single-

source scenario, even if the signal-to-interference ratio (SIR) is as low as−25 dB. At-sea experimental results

prove that, even though the number of signal sources is as many as seven and the SOI is contaminated by real

ocean ambient noise, the proposed method still achieves a better DOA estimation performance compared to

existing state-of-the-art methods.

INDEX TERMS Distorted towed array, element-space waveform estimation, energy leakage, multi-source

environment, wideband direction-of-arrival (DOA) estimation.

I. INTRODUCTION

Direction-of-arrival (DOA) estimation for the weak signals

in a multi-source environment is a crucial problem in array

signal processing [1]–[3], and plays a significant role in many

applications such as sonar, radar, and wireless communica-

tion [4]–[6]. Conventional beamforming CBF) is a popular

technique for sonar signal processing due to its robustness

and effectiveness, and is commonly used in DOA estimation

based on beam power maximization [7]. However, in the

The associate editor coordinating the review of this manuscript and

approving it for publication was Jiajia Jiang .

presence of multiple sources, the performance of DOA esti-

mation is severely affected by the energy leaking from the

interference beams to the target beam, due to the wide beams

and high-level sidelobes of CBF. The leaked energy can

pollute the beam power peak in the target directions or even

mask the weak targets directly, and thus degrade the DOA

estimation performance.

During the last several decades, many high-resolution

DOA estimation methods have been proposed to mitigate the

influence of energy leakage by decreasing the beamwidths

and sidelobe levels. The minimum-variance distortionless

response (MVDR) based approaches and multiple signal
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classification (MUSIC) based methods are regarded as the

representative methods in the field [8], [9]. These methods

obtain narrow beams and low sidelobes but require moder-

ately high signal-to-noise ratio (SNR) and sufficient snap-

shots to achieve satisfactory performance. For the MUSIC

based techniques, the number of sources is also required to

be known a priori to separate the signal vectors from the

noise vectors. Recently, the technique of sparse reconstruc-

tion (SR) provides a new perspective for DOA estimation,

due to the spatial sparsity that signal sources of interest only

occupy a small part of the entire angular space [10]–[22].

This type of algorithm recovers the spatial distribution of

the signal sources by directly representing the array output

on an overcomplete basis under sparsity constraint, and is

less sensitive to SNR and the number of snapshots [10]–[12].

Several algorithms, such as l1-norm based singular value

decomposition (l1-SVD) [13] and basis pursuit denoising

(BPDN) [14], have directly addressed the sparsity-based

DOA estimation problem. However, both the l1-SVD and

the BPDN methods have to choose an appropriate regular-

ization parameter to balance the noise level and sparsity of

the signal sources, which is a difficult problem in practice.

Several improved sparsity-inducing methods have been pro-

posed to achieve better estimation performance by exploiting

the group sparsity that signals at different targets from dif-

ferent directions share the same spectrum [15], [16]. The off-

grid version of the sparse Bayesian learning based relevance

vector machine (SBLRVM) algorithm [17] and the off-grid

sparse Bayesian learning algorithm based on Taylor series

expansion (OGSBL-T) [18] have been proposed to achieve

accurate DOA estimation in scenarios where the actual signal

DOAs are not exactly aligned with the angular grids. The

Bayesian sparse-plus-low-rank (BSPLR) matrix decomposi-

tion method has been proposed to estimate both stationary

and time-varying DOAs by considering all snapshots together

rather than estimating the DOAs snapshot-by-snapshot [19],

[20]. The method named wideband covariance matrix sparse

representation (W-CMSR) has been proposed to estimate the

DOAs of wideband signals by representing the array out-

put covariance matrix under sparsity constraints [21], [22].

Although these SR based methods can acquire improved

DOA estimation performance, the prior knowledge of the

array shape is often requisite.

A passive sonar array often requires a large aperture, even

up to several kilometers, to achieve accurate localization and

high array gain [23]. This long aperture is typically formed

by trailing a hydrophone array behind a towing platform in

a nominally straight line [24]. In this case, the forces caused

by oceanic currents and internal waves can change the shape

of the towed array to some extent [25]. Thus, array shape

distortion is inevitable for the towed array. Moreover, the

towing platform noise is a strong interference that has to be

dealt with for the towed array sonar, due to the limited dis-

tance between the towing platform and the towed array [26].

However, most of the aforementioned high-resolution DOA

estimation algorithms are known to be sensitive to the

model mismatch, such as array shape distortion. Such model

mismatch would drastically deteriorate the DOA estimation

performance [7]. A number of robust algorithms have been

proposed to alleviate this problem [7], [27], [28]. For exam-

ple, the robust Capon beamformer (RCB) algorithm has been

developed by coupling the covariance fitting formulationwith

an ellipsoidal array steering vector (ASV) uncertainty set

[27]. It belongs to the category of diagonal loading methods

and the amount of diagonal loading can be exactly calcu-

lated based on the ellipsoidal uncertainty set. The wideband

RCB (WBRCB) algorithm has been developed by extending

the narrowband RCB to the wideband scenario and reduc-

ing the computational complexity with a steered covariance

matrix technique [28]. The dCv method concerns the CBF

beam power as the convolution of the beam pattern with

the sources (bearing) distribution, and deconvolves the CBF

beam power using a Richardson-Lucy (R-L) algorithm to

obtain the bearing distribution of signal sources [7]. These

algorithms try to acquire narrow beams and low sidelobe

levels whilemaintaining robust to themodelmismatch, which

decrease the energy leaking from the interference beams to

the target beam. However, the influence of energy leakage

still exists as long as the sidelobes are not reduced to a

negligible level, and increases with the increasing strength

of interference signals. When the signal of interest (SOI) is

quite weak, the strong interferences, such as towing platform

noise, would drastically decay the DOA estimation accuracy

or even mask the weak signals directly [29], [30].

Several algorithms have been proposed to remove the inter-

ference signals directly. For example, the CLEAN algorithm

has been developed to reduce the sidelobe effect by eliminat-

ing the interference signals one by one, in order of descending

strength [31]–[33]. The inverse space filtering (ISF) tech-

nique has been developed to suppress the interference sig-

nal at the hydrophone level [34]. It contains three steps:

1) obtain the tracking beam data of the interference signal

utilizing CBF, 2) estimate the element-space waveform of

the interference signal based on the nominal array configu-

ration and estimated DOA, and 3) subtract the element-space

waveform from the received hydrophone data. The method

proposed in [35] combines the technique of CLEAN and ISF

to achieve weak target detection in passive sonar. It sequen-

tially removes the interference signals from the received

hydrophone data in order of descending strength, one at a

time, until the SOI is detected from the updated element-

space data. However, assumptions of the distortionless array

shape and consistent array amplitude response frequently

mismatch those of the actual towed array. Besides, during

the sequential signal removal, the estimation accuracy of

element-space waveforms of the previously detected interfer-

ence signals are also affected by the signals that have not yet

been detected. Thus, the element-space waveforms of inter-

ference signals are not properly removed, which can degrade

the DOA estimation accuracy of the SOI to some extent.

Hence, DOA estimation for the weak signals in amulti-source

environment is still an open problem, particularly when the
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array shape distortion and array amplitude response incon-

sistency coexist.

In this paper, a robust wideband DOA estimation method is

proposed to obtain the accurate bearings of the weak signals

in a multi-source environment. Unlike those conventional

high-resolution algorithms that alleviate the energy leakage

by reducing beamwidths and sidelobe levels, the proposed

method achieves this by directly reconstructing the element-

space data to approach the received hydrophone data of the

single-source scenario containing only the SOI. The pro-

posed method contains two distinct stages. In the first stage,

the strongest signal is firstly detected based on the CBF

method, and its corresponding element-space waveform is

estimated and extracted; then the element-space waveforms

of other signals are sequentially estimated by removing the

previously extracted element-space waveform, until no signal

can be detected from the updated sample sequence of beam

power. In the second stage, element-space data reconstruc-

tion (ESDR) for the signal currently concerned is firstly

performed by removing the element-space waveforms of all

other detected signals from the received hydrophone data;

next, a refined estimate of DOA for the signal currently con-

cerned can be obtained based on the reconstructed element-

space data; then, the element-space waveform of the current

signal is updated based on the reconstructed element-space

data and the refined estimate of DOA, and used for ESDR of

the subsequential weaker signals. In addition, a data-driven

algorithm is developed for both stages to adaptively acquire

the element-space waveform of each detected signal, with-

out requiring the prior information of the array amplitude

response coefficients and hydrophone coordinates of a dis-

torted towed array.

The performance of the proposed method is verified

by both simulation and at-sea experiments. In conclusion,

it offers the following advantages over existing state-of-the-

art methods.

1) It outperforms existing algorithms in terms of estima-

tion accuracy. The DOA estimation performance of

the proposed method in a multi-source environment is

close to that obtained by the beam power maximization

method in the single-source scenario.

2) It can still obtain an excellent DOA estimation perfor-

mance, even if the signal-to-interference ratio (SIR) is

as low as −25 dB. In contrast, the DOA estimation

performance of the high-resolution algorithms, such as

WBRCB and dCv, is severely degraded in this case.

3) It is robust to array shape distortion and array amplitude

response inconsistency.

The remainder of this paper is organized as follows. First,

Section II introduces the data model and problem back-

ground. Next, the proposed ESDR-based wideband DOA

estimation method is presented in Section III. Then, exper-

iments based on the simulated and real data are provided

in Sections IV and V, respectively, to demonstrate the

FIGURE 1. Shape distortion of a towed array.

superiority of the proposed method. Finally, Section VI con-

cludes the paper.

Notations: We use lower-case bold characters to represent

vectors, (·)T denotes transpose, (·)H denotes conjugate trans-

pose, int (·) expresses rounding to an integer and x(q) stands

for the value of x in iteration step q, respectively.

II. DATA MODEL AND PROBLEM BACKGROUND

This section begins with a brief introduction of the data

model in a distorted towed array with inconsistent amplitude

response. Then, an analysis of wideband DOA estimation

based on beam power maximization is presented, followed

by a discussion of performance degradation caused by energy

leakage in a multi-source environment.

A. DATA MODEL FOR A DISTORTED TOWED ARRAY WITH

INCONSISTENT AMPLITUDE RESPONSE

Consider a uniform linear array (ULA) comprising of M

elements with inter-element spacing d . Because of oceanic

currents and internal waves, the hydrophone array towed

behind a maneuvering platform cannot be kept as a straight

line, as shown in Fig. 1. Suppose that the array shape distor-

tion only occurs on the horizontal plane. Take the position

of the hydrophone nearest from the platform as the origin of

the coordinate system. The positive x-axis is defined as the

direction opposite the heading of the towing platform.

Sinusoidal array shape distortion is the most common dis-

tortion form and can be described as

y = A sin (gx) , (1)

where A and g are a pair of parameters for describing shape

distortion [36]. The x-coordinate of each element of the towed

array can be recursively obtained as

xm =

{

0, m = 1,

xm−1 + 1xm, m = 2, . . . ,M ,
(2)

where 1xm = d
/

√

1 + A2g2cos2 (gxm−1) is the x-

coordinate offset between the (m − 1)th and mth elements

[36]. The corresponding y-coordinate can then be obtained

according to (1). The element coordinates (xm, ym) of the

distorted array are denoted by red circles ‘‘•’’ in Fig. 1 as

opposed to that of the original linear array (A = 0) denoted

by blue crosses ‘‘ ×’’.

Suppose that K uncorrelated wideband signals originated

from far-field sources simultaneously impinge on the towed
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array with directions ϑ = [ϑ1, . . . , ϑK ]. The data received

by the mth element can be expressed as [37]

rm (t) = αm

[

K
∑

k=1

sk
(

t − τm,k

)

+ vm (t)

]

, (3)

where αm represents the amplitude response coefficient of the

mth element, sk (t) denotes the waveform of the kth signal

at a reference position, τm,k stands for the time-delay of the

kth signal when propagating from the reference position to

the mth element, and vm (t) is the additive noise uncorre-

lated with the signals, respectively. The term rm (t) repre-

sents the element-space data at the mth hydrophone, to help

distinguish it from the beam-space data, while hm,k (t) =

αmsk
(

t − τm,k

)

denotes the element-space waveform of the

kth signal component at the mth hydrophone. As shown in

Fig. 1, the incident angle ϑk is defined as the angle between

the incident direction and the negative x-axis. When the

first element is considered as the reference, τm,k is given

by

τm,k =
xm cosϑk − ym sinϑk

c
, (4)

where c represents the acoustic speed in water. Due to imper-

fect manufacturing in practice, amplitude response inconsis-

tency is really common for a hydrophone array [38]. Suppose

that the amplitude response coefficient of the mth element

satisfies a Gaussian distribution

αm ∼ N

(

µα, σ 2
α

)

, (5)

where µα = 1
M

∑M
m=1 αm represents the mean of the

amplitude response coefficients of the hydrophone array

and σ 2
α = 1

M

∑M
m=1 (αm−µα)2 denotes the corresponding

variance.

Assuming that N snapshots are collected, the received data

rm (t) can be decomposed into N narrowband components

using Discrete Fourier Transform (DFT). The resulting nar-

rowband component corresponding to the nth frequency bin

is given by

Rm (fn) = αm

[

K
∑

k=1

Sk (fn) e
−j2π fnτm,k + Vm (fn)

]

, (6)

where n ∈ [1, . . . ,N ] represents the discrete frequency

index, fn = (n− 1) fs/N denotes the central frequency

of the nth bin with a sampling rate fs, and Rm (fn),

Sk (fn), and Vm (fn) are the DFT coefficients of the received

data, wideband signal, and additive noise at the nth fre-

quency bin, respectively. One of the primary goals of

most array processing techniques is to estimate the tar-

get directions based on (6). Assuming that K = 2

and the first source is the target, the second one is

the interference. Besides, the noises received by different

hydrophones have the same power spectrum, i.e., Vm (fn) =

V (fn) (∀m). The Cramer-Rao lower bound (CRLB) for

DOA estimation of the wideband signal with a ULA

satisfies [39], [40]

var
(

ϑ̂1

)

≥
1

(2π)2T
(

d
/

c
)2
sin2ϑ1

×
1

∫ fh
fl
f 2





λ1
S2
1
(f )

V2(f )

S2
2
(f )

V2(f )

D2(f ,ϑ1,ϑ2)
+

λ2
S2
1
(f )

V2(f )

D(f ,ϑ1,ϑ2)
+

λ3
S2
1
(f )

V2(f )

S2(f )

V (f )

D(f ,ϑ1,ϑ2)



df

,

(7)

where fl and fh respectively represent the lower and upper

bounds of the analysis frequency band, T = N
/

fs denotes

the time analysis window length, λ1, λ2, λ3, andD (f , ϑ1, ϑ2)

are respectively given by

λ1 = 4

{

M−1
∑

m=1

(M − m)m sin (mϕ)

}2

,

λ2 = 2

M−1
∑

m=1

(M − m)m2,

λ3 = 2 (M − 2)

M−1
∑

m=1

(M − m)m2 [1 + cos (mϕ)]

−4

M−1
∑

m=2

m−1
∑

g=1

(M − m)

[

m2 cos (gϕ) + g2 cos (mϕ)

+ (m− g)2 cos (gϕ)

]

,

D (f , ϑ1, ϑ2)

= 1 +M
S1 (f )

V (f )
+M

S2 (f )

V (f )
+M (M − 1)

S1 (f )

V (f )

S2 (f )

V (f )

−2
S1 (f )

V (f )

S2 (f )

V (f )

M−1
∑

m=1

(M − m) cos (mϕ),

and ϕ = 2π fd (cosϑ1 − cosϑ2)
/

c.

B. BEAM POWER MAXIMIZATION BASED DOA

ESTIMATION AND PERFORMANCE DEGRADATION CAUSED

BY ENERGY LEAKAGE IN A MULTI-SOURCE

ENVIRONMENT

CBF is a popular technique for array signal processing due

to its robustness and effectiveness. Thus, it is commonly

used in DOA estimation based on beam power maximiza-

tion. According to (6), wideband CBF can be converted into

multiple narrowband CBF operations using DFT. To sim-

plify the exposition in this subsection, we assume that the

array shape is linear (A = 0) and the array amplitude

response is consistent (σ 2
α = 0). Note that our approach

still performs well if both of the two assumptions do not

hold. This analysis is presented by first considering a single

source and focusing only on the signal component. CBF

beam power, as a function of the steering angle ϑ , is given
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by

P (ϑ, fn)

=
∣

∣

∣
wH (ϑ, fn) a (ϑk , fn) Sk (fn)

∣

∣

∣

2

= |Sk (fn)|
2

∣

∣

∣

∣

sin [Mπ (cosϑ − cosϑk) fn/ (2f0)]

M sin [π (cosϑ − cosϑk) fn/ (2f0)]

∣

∣

∣

∣

2

, (8)

where w (ϑ, fn) = [w1, . . . ,wM ]T ∈ C
M×1 represents

the steering vector and wm =
(

1
/

M
)

e−j2π fn(m−1)d cos(ϑ)/c,

a (ϑk , fn) =
[

e−j2π fnτ1,k , . . . , e−j2π fnτM ,k
]T

∈ C
M×1 denotes

the array manifold vector for the signal incident from the

direction of ϑk , and f0 = c/ (2d) is a reference frequency,

respectively. When the steering angle ϑ is close to the sig-

nal direction ϑk , (cosϑ − cosϑk) ≈ 0. Making use of the

L’Hospital’s rule and Taylor series expansion, (8) can be

rewritten as

P (ϑ, fn)

≈ |Sk (fn)|
2

∣

∣

∣

∣

sin [Mπ (cosϑ − cosϑk) fn/ (2f0)]

Mπ (cosϑ − cosϑk) fn/ (2f0)

∣

∣

∣

∣

2

= |Sk (fn)|
2

[

1 −
[ϕk fn/ (2f0)]

2

3!
+ o

(

[ϕk fn/ (2f0)]
2
)

]2

≈ |Sk (fn)|
2

[

1 −
(fn/f0)

2

12
ϕ2
k

]

, (9)

where o
(

[ϕk fn/ (2f0)]
2
)

represents the higher-order infinites-

imal of [ϕk fn/ (2f0)]
2 and ϕk = Mπ (cosϑ − cosϑk). For the

wideband signal, the beam power around ϑk is given by

P (ϑ) =

nh
∑

n=nl

P (ϑ, fn)

≈

nh
∑

n=nl

|Sk (fn)|
2

[

1 −
(fn/f0)

2

12
ϕ2
k

]

= ak

(

1 − bkϕ
2
k

)

, (10)

where nl = int
(

flN
/

fs + 1
)

and nh = int
(

fhN
/

fs + 1
)

respectively represent the discrete frequency indices corre-

sponding to fl and fh,

ak =

nh
∑

n=nl

|Sk (fn)|
2,

bk =

∑nh
n=nl

|Sk (fn)|
2(fn/f0)

2

12ak
.

Equation (10) suggests that the beam power around ϑk is

a function of the signal DOA, which satisfies a parabolic

model. The maximum of the beam power occurs at the

parabola vertex defined by ϕk = 0 (i.e., cosϑ = cosϑk ),

which can be used to acquire the signal DOA as follows

ϑ̂k = argmax
0≤ϑ≤π

P (ϑ) . (11)

An exhaustive search can be avoided by obtaining the signal

DOA as the vertex of a parabola fitted through three samples

around the beam power peak, which is termed three-point

beam power maximization [41]. Sample the beam power

at equal cosine interval and denote the sample sequence as

p = [P (θ1) , . . . ,P (θL)], where2 = [θ1, . . . , θL] is a vector

consisting of L candidate directions. The angle of the lth

candidate direction is given by

θl = arccos
[

1 − (l − 1) 1β

]

, l = 1, . . . ,L, (12)

where 1β = 2
/

(L − 1) is the cosine interval between adja-

cent samples. Locate the maximum of the sample sequence

as θl0 = argmax
θl∈2

P (θl). Take the cosines of the candidate

directions as abscissa of the sample sequence, and denote the

three samples around beam power peak as follows










(β1,P1)=
(

cos θl0−1,P
(

θl0−1

))

(β2,P2)=
(

cos θl0 ,P
(

θl0
))

(β3,P3)=
(

cos θl0+1,P
(

θl0+1

))

.

(13)

DOA estimation exploiting three-point beam power maxi-

mization can be straightforwardly obtained by [42]

ϑ̂k

=arccos

[

1

2

β2
3 (P1−P2)+β2

2 (P3 − P1) + β2
1 (P2−P3)

β3 (P1−P2)+β2 (P3−P1)+β1 (P2−P3)

]

.

(14)

Simulation results have shown that, for the single-source sce-

nario, DOA estimation based on beam power maximization

can achieve the performance close to CRLB, when the array

shape is distortionless. Moreover, this method has strong

robustness against array shape distortion and array amplitude

response inconsistency.

For the multi-source scenario, without loss of generality,

we consider K = 2 and the target and interference signals

impinge on the array from the directions of ϑ1 and ϑ2, respec-

tively. The SIR is defined as the power ratio of the target

signal to the interference signal in the analysis frequency band

[fl, fh], which is given by

SIR =

∑nh
n=nl

|S1 (fn)|
2

∑nh
n=nl

|S2 (fn)|
2
. (15)

Since the signals from different sources are assumed to

be uncorrelated, the beam power of signals from multiple

sources can be expressed as the sum of beam power of the

signal from individual sources [7]. The beam power around

ϑ1 is given by

P (ϑ)

=

nh
∑

n=nl

∣

∣

∣

∣

∣

wH (ϑ, fn)

[

K
∑

k=1

a (ϑk , fn) Sk (fn)

]
∣

∣

∣

∣

∣

2

≈ a1

(

1 − b1ϕ
2
1

)

+

nh
∑

n=nl

|S2 (fn)|
2

∣

∣

∣

∣

sin [Mπ (cosϑ − cosϑ2) fn/ (2f0)]

M sin [π (cosϑ − cosϑ2) fn/ (2f0)]

∣

∣

∣

∣

2

.

(16)
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FIGURE 2. Performance degradation caused by energy leakage in a
multi-source environment. The DOAs of the target and interference
signals are respectively ϑ1 = 40◦ and ϑ2 = 20◦, SIR = −15 dB, M = 32,
d = 0.8 m, c = 1500 m/s, fs = 20 kHz, N = 20000, fl = 468.75 Hz and
fh = 937.5 Hz.

It is evident from this expression that the beam power around

ϑ1 is a superposition of the peak beam power of the target

signal and energy leaking from the interference beam to the

target beam. The leaked energy, resulting from wide beams

and high-level sidelobes of CBF, can pollute or even mask

the beam power peak of target signal. The magnitude of this

effect depends on the bearing of the target signal, the SIR,

and the bearing separation between target and interference

signals. If one ignores the energy leakage and still calculates

the beam power based on element-space data consisting of

signals from multiple sources, the performance of DOA esti-

mation based on beam power maximization degrades signif-

icantly.

The impact of energy leakage on DOA estimation perfor-

mance is illustrated in Fig. 2. It is evident that the abscissa

of the beam power peak, calculated using element-space data

consisting of only the target signal component, corresponds

well with the true target bearing. In contrast, the abscissa

calculated using data consisting of both the target and inter-

ference signals exhibits a noticeable deviation from the true

target bearing.

III. ESDR-BASED WIDEBAND DOA ESTIMATION IN A

MULTI-SOURCE ENVIRONMENT

As discussed in Section II-B, in the case of a single source,

DOA estimation based on beam power maximization can

achieve performance close to CRLB. However, in the pres-

ence of multiple sources, its performance is severely affected

by the energy leaking from the interference beam to the

target beam. This motivates us to reconstruct the element-

space data with respect to the SOI, to approach the received

hydrophone data of the single-source scenario, thus com-

pletely eliminating or significantly reducing the unacceptable

energy leakage. Therefore, in this paper, we propose a robust

ESDR-based wideband DOA estimation method to acquire

the accurate bearings of the weak signals in a multi-source

environment.

In this section, we firstly introduce the ESDR based on the

ISF technique, and then develop a data-driven algorithm to

adaptively obtain the ISF parameter of each signal, including

received signal waveform, time-delay, and amplitude cor-

rection factor. Finally, we present the ESDR-based wide-

band DOA estimation method, which consists of two stages:

1) sequential detection and coarse estimation, and 2) fine

estimation.

A. ESDR USING THE ISF TECHNIQUE

ESDR can be achieved using an ISF technique that removes

the element-space waveforms of all the signals, excepting the

one currently interested, from the received hydrophone data.

ESDR for the kth signal can be expressed as

rm,k (t) = rm (t) −

K
∑

i=1,i 6=k

η̂mĥi
(

t − τ̂m,i

)

= αm
[

sk
(

t − τm,k

)

+ vm (t)
]

+

K
∑

i=1,i 6=k

[

αmsi
(

t − τm,i

)

− η̂mĥi
(

t − τ̂m,i

)

]

,

(17)

where ĥi (t) represents the estimate of the received signal

waveform of the ith signal (The term hi (t) is notated to distin-

guish the received signal waveform from the signal waveform

si (t)), τ̂m,i denotes the estimate of time-delay for the ith

signal when propagation from the reference hydrophone to

themth hydrophone, and ηm is an amplitude correction factor

defined as the amplitude ratio of the ith signal component

received at the mth hydrophone to that in ĥi (t), i.e.,

η̂m =
αm

α
, m = 1, . . . ,M , (18)

where α represents the scale factor of si (t) in ĥi (t). The

received signal waveform hi (t), time-delay τm,i, and ampli-

tude correction factor ηm are collectively termed the ISF

parameters of the ith signal. The combination ĥm,i (t) =

η̂mĥi
(

t − τ̂m,i

)

provides an estimation of the element-space

waveform for the ith signal component received at the mth

hydrophone.

It is worth noting that the first term on the second line

of (17) represents received hydrophone data in a single-

source scenario containing only the SOI. The second term

denotes the sum of element-spacewaveform estimation errors

of all other signals. Hence, the reconstructed element-space

data can be considered the sum of received hydrophone data

in a single-source scenario and element-space waveform esti-

mation errors of all the interference signals. As indicated by

this expression, the effect of ESDR depends on the estimation

accuracy of ISF parameters. If these parameters are estimated

accurately enough, the element-space waveforms of all the

interference signals can be either completely eliminated or

significantly reduced, generating element-space data com-

parable to the received hydrophone data of a single-source

scenario.
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According to the data model discussed in Section II-A, the

estimate of the received signal waveform exploiting CBF can

be expressed as

ĥi (t) =
1

M

M
∑

m=1

rm
(

t + τ̂m,i

)

. (19)

The corresponding estimate of time-delay can be given by

τ̂m,i =
xm cos ϑ̂i − ym sin ϑ̂i

c
, (20)

where ϑ̂i represents the estimate of DOA of the ith signal.

If the time-delay is estimated accurately, the estimate of

the received signal waveform ĥi (t) can be approximated as

a coherent sum of the ith signal component from various

hydrophones. Thus, the scale factor of si (t) in ĥi (t) is given

by α = 1
M

∑M
m=1 αm. The estimate of the amplitude correc-

tion factor can be given by

η̂m =
αm

1
M

∑M
m=1 αm

=
αm

µα

. (21)

It is worth noting that η̂m can be considered the relative ampli-

tude response of themth hydrophone, i.e., the ratio of themth

amplitude response coefficient to the mean coefficient.

It is evident from (20) and (21) that the exact coordinates

and amplitude response coefficient of each hydrophone of the

array are required to estimate the ISF parameters accurately,

which is difficult for a distorted towed array. For a linear array

(A = 0) with consistent array amplitude response (σ 2
α = 0),

the estimations of time-delay and amplitude correction factor

are respectively simplified as

τ̂m,i =
(m− 1)d cos ϑ̂i

c
(22)

and

η̂m =
αm

µα

= 1. (23)

As indicated by these expressions, the exact coordinates and

amplitude response coefficient are no longer necessary for

estimations in this case. However, assumptions of the linear

array shape and consistent array amplitude response fre-

quently mismatch those of the real towed array, as discussed

in Section II-A. If one ignores these mismatches and still

estimates the ISF parameters using (19), (22), and (23), the

estimation accuracies decrease greatly. Thus, the element-

space waveforms of interference signals are not properly

removed, which can seriously degrade the ESDR accuracy.

Hence, a suitable algorithm is needed to acquire the accurate

ISF parameters without requiring the exact knowledge of the

hydrophone coordinates and amplitude response coefficients.

B. ITERATIVE ALGORITHM FOR ISF PARAMETER

ESTIMATION

In this subsection, an iterative algorithm, which is robust to

array shape distortion and array amplitude response incon-

sistency, is developed to adaptively obtain the accurate ISF

parameters. In the rest of this paper, unless otherwise stated,

the hydrophone coordinates (xm, ym) and relative amplitude

response ηm, obtained based on the assumptions of linear

array shape and consistent array amplitude response, are

termed nominal array configuration. The iterative algorithm

for ISF parameter estimation is described as follows.

Step 0: Obtain the initial estimates of time-delay τ̂
(0)
m,i and

the received signal waveform ĥ
(0)
i (t) based on the nominal

array configuration, according to (22) and (19).

Step q: q = 1, 2, . . . ,Q

1) Calculate the correlation function between element-

space data at the mth hydrophone and the estimated

received signal waveform of the ith signal as follows:

Rm (u) =

∫ T

0

rm (t + u) ĥ
(q−1)
i (t)dt,

−τmax ≤ u ≤ τmax,

(24)

where τmax = (M − 1) d
/

c represents the boundary

value of time-delay searching range.

2) Locate the maximum of Rm (u) as

u(q)
m = argmax

−τmax≤u≤τmax

Rm (u) , (25)

and denote this maximum as p
(q)
m = Rm

(

u
(q)
m

)

. The

estimate of time-delay is then given by

τ̂
(q)
m,i = u(q)

m − u
(q)
1 ,m = 1, . . . ,M . (26)

3) Perform the enhanced beamforming using the renewed

estimate of time-delay and update the estimate of the

received signal waveform with the obtained values

ĥ
(q)
i (t) =

1

M

M
∑

m=1

rm

(

t + τ̂
(q)
m,i

)

. (27)

These three substeps are carried on till the following termi-

nation rule

q̂ = min
q







q :

√

√

√

√

1

M

M
∑

m=1

∣

∣

∣
τ̂

(q)
m,i − τ̂

(q−1)
m,i

∣

∣

∣

2
≤ ε, q ≥ Q







(28)

is satisfied, where 1τ =

√

1
M

∑M
m=1

∣

∣

∣
τ̂

(q)
m,i − τ̂

(q−1)
m,i

∣

∣

∣

2
is the

iteration termination indicator (ITI) used to evaluate the vari-

ation of the estimated time-delay between adjacent iterations.

The terms ε > 0 and Q ≥ 1 are set in advance and the

settings are discussed in Section IV-A. Simulations in the

sequel confirm the fast convergence property and robustness

of this algorithm.

In step 0 of this algorithm, the value of ϑ̂i in (22) is deter-

mined exploiting the three-point beam power maximization

(Eq. (14)), and the time-delay estimation is conducted based

on the hypothetical linear array shape. However, in the qth

step, a data-driven time-delay estimation is obtained from

the relative position offset of correlation peaks. Note that the
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estimate of the received signal waveform ĥ
(q)
i (t) serves as the

reference signal used in correlation calculation, rather than

element-space data of the reference hydrophone r1 (t). This

is because the estimated received signal waveform exhibits a

higher signal-to-interference-plus-noise ratio (SINR) owing

to the array gain provided by beamforming. Furthermore, the

estimated received signal waveform can simultaneously be

served as adaptive iterative feedback. It is evident from (27)

that the improvement in time-delay estimation accuracy

increases the SINR of the estimated received signal wave-

form. This updated estimate of received signal waveform is

then used for time-delay estimation in the next iteration to

further improve the estimation accuracy.

At the conclusion of an iteration, the estimate of time-

delay τ̂
(q̂)
m,i is considered to be approximately compliant with

the true time-delay, which is a function of hydrophone coor-

dinates and the DOA of the signal. The estimate of the

received signal waveform ĥ
(q̂)
i (t) can then be approximated

as a coherent sum of the ith signal component from various

hydrophones, i.e.,

ĥ
(q̂)
i (t) ≈

∑M
m=1 αm

M
si (t) +

1

M

M
∑

m=1

αmvm

(

t + τ̂
(q̂)
m,i

)

. (29)

Substituting (3) and (29) into (24) yields the amplitude of the

mth correlation peak

p
(q̂)
m =

∫ T

0

rm

(

t + τ̂
(q̂)
m,i

)

ĥ
(q̂)
i (t)dt

≈ αm

∑M
m=1 αm

M

∫ T

0

s2i (t)dt +
α2
m

M

∫ T

0

v2m (t)dt

= amµaEsi +
α2
m

M
σ 2
vm

, (30)

where Esi =
∫ T
0 s2i (t)dt represents the energy of the ith

signal and Evm =
∫ T
0 v2m (t)dt denotes the energy of noise

at the mth hydrophone, respectively. In (30), we assume that

the noises at different hydrophones are incoherent with each

other. if Esi ≫ Evm
/

M , then p
(q̂)
m can be approximated as

p
(q̂)
m ≈ amµαEsi . (31)

Substituting (31) into (21) yields the estimate of amplitude

correction factor

η̂m =
αm

1
M

∑M
m=1 αm

=
αmµαEsi

1
M

∑M
m=1 αmµαEsi

≈
p
(q̂)
m

1
M

∑M
m=1 p

(q̂)
m

. (32)

It can be seen from this expression that the ratio of the mth

correlation peak amplitude to the mean amplitude provides

an estimation for ηm.

This approach is summarized in Algorithm 1. Its conver-

gence property and robustness are verified by simulations in

Section IV-A.

Algorithm 1 Iterative Algorithm for Robust ISF Parameter

Estimation

Input: rm (t): The element-space data.

ϑ̂i: The pre-estimated DOA of the ith signal.

Set q = 0. Obtain the initial estimates of time-delay τ̂
(0)
m,i

and received signal waveform ĥ
(0)
i (t) based on

hypothetical linear array shape, according to (22)

and (19).

repeat

1) q = q+ 1.

2) Calculate the correlation function Rm (u) between

element-space data at the mth hydrophone rm (t)

and the estimate of the received signal waveform

ĥ
(q−1)
i according to (24).

3) Determine the position u
(q)
m and amplitude p

(q)
m of

the maximal correlation peak and estimate the

time-delay τ̂
(q)
m,i according to (26).

4) Perform the enhanced beamforming using the

renewed time-delay τ̂
(q)
m,i and update the estimate

of the received signal waveform ĥ
(q)
i (t),

according to (27).

until 1τ ≤ ε or q ≥ Q.

Set q̂ = q. Let ĥi (t) = ĥ
(q̂)
i (t), τ̂m,i = τ̂

(q̂)
m,i , and the η̂m

is obtained according to (32).

Output:
{

ĥi (t) , τ̂m,i, η̂m

}

: The estimate of ISF parameters

of the ith signal.

It is worth noting that the ISF parameter estimation of

different signals affects each other in a multi-source environ-

ment. Therefore, a suitable operation procedure is required to

mitigate this influence. The corresponding process presented

in this paper includes two stages: 1) sequential detection

and coarse estimation, 2) fine estimation. The two stages are

discussed in detail below.

C. SEQUENTIAL DETECTION AND COARSE ESTIMATION

In the presence of multiple sources, the estimation accuracy

of the DOA and ISF parameters of the weak signals is affected

by the strong signal, particularly when the strength of the

strong signal is much larger than that of the weaker ones.

Hence, a technique termed sequential detection is presented

below to mitigate this influence and obtain the coarse esti-

mates of DOA and ISF parameters for each detected signal.

First, set r∗
m (t) = rm (t) and calculate the sample sequence

of beam power utilizing r∗
m (t). Signal detection from sample

sequence begins with the strongest one. After that signal

component is located and its coarse DOA estimation θ̂ck (The

superscript c denotes coarse) is obtained using three-point
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beam power maximization, we remove it from r∗
m (t) exploit-

ing an ISF technique with the following three steps.

1) Estimate the ISF parameters of the kth signal, i.e., the

received signal waveform ĥck (t), time-delay τ̂ cm,k , and

amplitude correction factor η̂cm, using r∗
m (t) and θ̂ck ,

according to Algorithm 1.

2) Remove the kth signal component from r∗
m (t) utilizing

the ISF technique as follows:

r∗
m (t) = r∗

m (t) − η̂cmĥ
c
k

(

t − τ̂ cm,k

)

, m = 1, . . . ,M .

(33)

3) Calculate the sample sequence of the beam power

exploiting the updated element-space data r∗
m (t).

Steps 1-3 are repeated until the updated sample sequence

does not contain any peaks that can be associated with the

signals. After each signal is removed, the maximal value of

the updated sample sequence is compared with a predefined

threshold Tth. If this maximal value exceeds the threshold,

an additional signal is assumed to be exist in the remain-

ing element-space data and the procedure is repeated. The

detection threshold Tth is assumed to be known in advance.

(The determination of Tth involves the selection of detec-

tor and false alarm probability (PFA), which is discussed

in [43], [44]).

D. FINE ESTIMATION

Once the sequential detection is finished, the coarse estimates

of DOA and ISF parameters of all the detected signals are

obtained, i.e.,
{

θ̂ck , ĥ
c
k (t) , τ̂ cm,k , η̂

c
m

}

, k = 1, 2, . . . , K̂ , where

K̂ is the number of detected signals. In order to further

mitigate the influence of other signals on the one currently

concerned, we reconstruct the element-space data to approach

the received hydrophone data of a single-source scenario.

A refined estimate of DOA can then be acquired from the

reconstructed data. The fine estimation is performed as fol-

lows. 1)

1) Set θ̂ rk = θ̂ck , ĥ
r
k (t) = ĥck (t), τ̂ rm,k = τ̂ cm,k , η̂rm = η̂cm,

and k ∈
{

1, 2, . . . , K̂
}

(The superscript r denotes

refined).

2) For k = 1 → K̂ , do

a) Reconstruct element-space data for the kth sig-

nal by removing the element-space waveforms

of all other detected signals from the received

hydrophone data

r̂m,k (t) = rm (t) −

K̂
∑

i=1,i 6=k

η̂rmh
r
i

(

t − τ̂ rm,i

)

,

m = 1, . . . ,M . (34)

b) Refine the DOA estimation of the kth sig-

nal exploiting reconstructed element-space data

r̂m,k (t) and update θ̂ rk with the resulting value.

c) Refine the ISF parameter estimation of the kth

signal using r̂m,k (t) and θ̂ rk according to Algo-

rithm 1, and update ĥrk (t), τ̂ rm,k , and η̂rm with the

obtained values.

It is worth noting that, during the sequential detection, ISF

parameter estimation for previously detected strong signals

is also affected by subsequently detected weaker ones, par-

ticularly when their strengths are comparable or the bearing

separation is small. To mitigate this influence, ISF parameter

estimation for the current signal is performed again utilizing

reconstructed element-space data and the refined estimate of

DOA. The updated ISF parameters are then used to improve

the ESDR of subsequent weaker signals.

Algorithms described in Sections III-B, III-C, and III-D

are combined into an integral algorithm and presented in

Algorithm 2, which is given at the upper left of the next page.

E. CALCULATION COMPLEXITY

In complexity analysis, we neglect all operations whose cal-

culation complexity not depending onMN . We can conclude

from the proposed algorithm that the stage of sequential

detection and coarse estimation requires the calculation of

K̂+1 beam power sample sequences (consisting of L candi-

date directions), K̂ ISF parameters estimations (Algorithm 1),

and K̂ interference signal removals from the element-space

data (Eq. (33)). The stage of fine estimation requires the

calculation of K̂ ESDRs (Eq. (34) and consisting of K̂−1

signal removals), 3K̂ beam power samples (three-point beam

power maximization), and K̂ ISF parameters estimations. For

the ISF parameters estimation, it requires the calculation of

Q cross-correlations between tracking beam data and every

element-space data (Eq. (24)) and Q+ 1 time-domain beam-

forming (Eq. (27)). In total, the proposed algorithm involves

the calculation of L( K̂+1 )+3K̂ beam power samples, 2K̂Q

cross-correlations, 2K̂ (Q+ 1) time-domain beamforming,

and K̂ 2 interference signal removals.

The calculation of the beam power samples is conducted in

the frequency domain and M N -samples DFTs are required

for each stage. Besides, the number of frequency bins used

for beam power calculation is Nfb = nh − nl + 1. For

the cross-correlation between tracking beam data and every

element-space data, it requires the calculation of 2M + 1

2N -samples DFTs. For both time-domain beamforming and

signal removal, an Nfo order fractional time-delay filter is uti-

lized to achieve the precise time-delay. The DFT is achieved

by the efficient Fast Fourier Transform (FFT). Thus, the

calculation of M N -samples DFT takes MN log2N complex

multiplications and additions. For the calculation of each

beam power sample, it takes MNfb complex multiplications

and (M−1)Nfb complex additions. For the calculation of

cross-correlation, it takes 4 (2M+1)N log2N complex mul-

tiplications and additions. For the calculation of time-domain

beamforming, it takes
(

Nfo+1
)

MN real multiplications and

NfoMN+ (M − 1)N real additions. For the calculation of
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Algorithm 2 Robust ESDR-Based Wideband DOA Estima-

tion Algorithm

Input: rm (t): Received hydrophone data defined by (3).

Sequential Detection and Coarse Estimation

Set k = 0 and r∗
m (t) = rm (t). Calculate the sample

sequence of beam power p = [P (θ1) , · · · ,P (θL)]

utilizing r∗
m (t), and locate its maximum as

θl0 = argmax
θl∈2

P(θl).

while P
(

θl0
)

> Tth do

1) k = k + 1.

2) Estimate the DOA of the kth signal θ̂ck using the

three-point beam power maximization, according

to (14).

3) Estimate the ISF parameters of the kth signal

utilizing r∗
m (t) and θ̂ck , according to Algorithm 1.

4) Remove the kth signal component from r∗
m (t)

exploiting the ISF technique, according to (33).

5) Calculate p using the updated r∗
m (t) and locate its

maximum as θl0 = argmax
θl∈2

P(θl).

end while

K̂ = k: The number of detected signals.
{

θ̂ck , ĥ
c
k (t) , τ̂ cm,k , η̂

c
m

}K̂

k=1
: The coarse estimates of DOA

and ISF parameters of all the detected signals.

Fine Estimation

Set θ̂ rk = θ̂ck , ĥ
r
k (t) = ĥck (t), τ̂ rm,k = τ̂ cm,k , η̂

r
m = η̂cm, and

k ∈
{

1, · · · , K̂
}

.

for k = 1 → K̂ do

1) Reconstruct element-space data for the kth signal

using
{

ĥri (t) , τ̂ rm,i, η̂
r
m

}K̂

i=1,i 6=k
according to (34).

2) Refine and update the DOA estimation of the kth

signal employing reconstructed element-space data.

3) Refine and update the ISF parameter estimation of

the kth signal utilizing reconstructed element-space

data and the refined estimate of DOA, according to

Algorithm 1.

end for

Output: θ̂ rk , k ∈
{

1, · · · , K̂
}

: Refined estimate of DOA.

signal removal, it takes
(

Nfo+2
)

MN real multiplications and
(

Nfo+1
)

MN real additions.

The complex multiplication can be obtained by four

real multiplications and two real additions, and the com-

plex addition requires two real additions [42]. There-

fore, the overall calculation complexity of the proposed

algorithm is
[

2K̂ (Q+ 1)
(

Nfo+1
)

+K̂ 2
(

Nfo+2
)

+8log2N+

64K̂Qlog2N
]

MN+4
[

L
(

K̂+1
)

+3K̂
]

MNfb real multipli-

cations and
[

2K̂ (Q+ 1)
(

Nfo+1
)

+K̂ 2
(

Nfo+1
)

+

FIGURE 3. Nominal and actual array configuration of a distorted towed
array. (a) Hydrophone coordinates. (b) Relative amplitude response
coefficients.

8log2N+64K̂Qlog2N
]

MN+4
[

L
(

K̂+1
)

+3K̂
]

MNfb real

additions. Since K̂ , Q, and Nfo are all far less than N , we may

conclude that the algorithm complexity isO
(

K̂QMN log2N
)

operations, where O (·) denotes big O notation. It is observed

that the computational load mainly lies in the calculation of

beam power sample and cross-correlation, and both of them

can be achieved by the efficient FFT. Besides, the proposed

method can simultaneously obtain DOAs and tracking beam

data of K̂ sources.

IV. NUMERICAL SIMULATIONS

In this section, we firstly analyze the convergence property

and robustness of the iterative algorithm for ISF parameter

estimation. Then we investigate the impact of SIR, bearing

separation (between the target and interference signals), and

SNR on the DOA estimation performance of the proposed

method, respectively.

Suppose that the data is collected from a distorted towed

array comprising of M = 32 elements with inter-element

spacing d = 0.8 m. The parameters for describing array

shape distortion are set to be A = 0.8 and g = π
/

24,

respectively. The actual values of the hydrophone coordinates

are shown in Fig. 3(a) and compared with the nominal values.

The fluctuation of the amplitude response coefficients of this

array is set to be σα

/

uα = 0.04. The actual values of the

relative amplitude response (i.e., αm
/

µα,m = 1, . . . ,M ) are

shown in Fig. 3(b) and compared with the nominal values.

The sound velocity is set to be 1500 m/s. The time analysis

window length is T = 1 s and the sampling rate is fs =

20 kHz. Thus, the sampling number is N = 20000 and the

sampling interval is Ts = 50µs. The lower and upper bounds

of the analysis frequency band are set to be fl = 468.75Hz

and fh = 937.5Hz, respectively. The influence of off-grid

on the performance of the proposed method decreases as
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the number of candidate directions increases. However, the

calculation complexity of the proposed method is propor-

tional to the number of candidate directions. To balance the

DOA estimation performance and the calculation complexity,

we set the number of candidate directions to be L = 2M + 1.

In this case, all of the three samples around the beam power

peak are within the half-power width (3 dBwidth) of the main

beam, which can satisfy the essential requirement of DOA

estimation exploiting three-point beam power maximization,

and the influence of off-grid is reduced to an acceptable level.

The input SNR of the kth signal is defined as the power ratio

of signal to noise in the analysis frequency band [fl, fh], which

is given by

SNRk =

∑nh
n=nl

|Sk (fn)|
2

∑nh
n=nl

|V (fn)|
2
. (35)

A. PERFORMANCE EVALUATION OF ITERATIVE

ALGORITHM FOR ISF PARAMETER ESTIMATION

In this subsection, the convergence property and robustness

of the iterative algorithm used for ISF parameter estimation

are investigated in detail. A simulation is conducted in which

the signal is assumed to be incident on the array from a

direction of 60◦ with SNR= 0 dB. To evaluate the ISF param-

eter estimation accuracy at the qth iteration, we define the

following assessment criteria. The estimation accuracy of the

received signal waveform ismeasured by the correlation coef-

ficient (CC) between the estimated received signal waveform

and the true received signal waveform, which is given by

CC(q)
rsw =

∫ T
0 ĥ

(q)
k (t)hk (t) dt

√

∫ T
0

[

ĥ
(q)
k (t)

]2
dt

√

∫ T
0 [hk (t)]2dt

. (36)

The estimation accuracies of time-delay and amplitude cor-

rection factor are evaluated using the root mean square

error (RMSE) of the estimates from M hydrophones, which

are respectively given by

RMSE
(q)
td =

√

√

√

√

1

M

M
∑

m=1

∣

∣

∣
τ̂

(q)
m,k − τm,k

∣

∣

∣

2
(37)

and

RMSE
(q)
acf =

√

√

√

√

1

M

M
∑

m=1

∣

∣

∣
η̂

(q)
m − ηm

∣

∣

∣

2
. (38)

Fig. 4(a) shows the corresponding variations of the itera-

tion termination indicator, which decreases rapidly and con-

verges to 5.356∗10−8 Ts at the seventh iteration. The conver-

gence curves of the ISF parameter estimations corresponding

to Fig. 4(a) are shown in Fig. 4(b), 4(c) and 4(d), respec-

tively. The results indicate that the proposed iterative ISF

parameter estimation algorithm is convergent. Furthermore,

the estimates of the three ISF parameters all converge to the

accurate values just at the second iteration. It can be noted

that the convergence speeds of the three ISF parameters are

FIGURE 4. Convergence property analysis of the iterative algorithm for
ISF parameter estimation. (a) Iteration termination indicator. (b) The
correlation coefficient between the estimated received signal waveform
and the true received signal waveform. (c) RMSE of time-delay
estimation. (d) RMSE of the estimates of amplitude correction factor.

TABLE 1. Estimation accuracy of ISF parameters.

faster than that of the iteration termination indicator. This is

because the variations of CCrsw, RMSEtd , and RMSEacf are

all reduced to negligible levels when the indicator is below

0.01 Ts. Hence, ε = 0.01 Ts andQ = 3 can be specified as the

termination criteria and applied to the remaining simulations.

The final estimates of the ISF parameters can be obtained

once the iteration terminates. The corresponding accuracy of

each parameter is listed in Table 1 and compared with that

obtained based on the nominal array configuration. It can

be seen that the improvement in estimation accuracy by

using Algorithm 1 is evident. This is to be expected since

Algorithm 1 is a data-driven method. Thus, the obtained

estimates of time-delay are approximately compliant with

the actual hydrophone coordinates and signal DOA. More-

over, the updated estimate of the received signal waveform

is taken as adaptive iterative feedback and used for time-

delay estimation in the next iteration, further improving

the estimation accuracy. As discussed in Section III-B, the

accurate estimates of the received signal waveform and the

amplitude correction factor can then be obtained utilizing

the resulting estimates of time-delay. In contrast, the method

based on the nominal array configuration is data-independent.

Thus, its resulting estimates exhibit significant deviations

from the actual values, due to the incorrect assumptions of

hydrophone coordinates and amplitude response coefficients.

Fig. 5(a) and 5(b) show the time-delay offsets between adja-

cent hydrophones (i.e., 1τ̂m,k = τ̂m,k − τ̂(m−1),k ,m =

2, . . . ,M ) and the amplitude correction factors, respectively.

It is evident that both estimates obtained using Algorithm 1

fluctuate around the actual values. However, for the estimates

obtained based on nominal array configuration, the time-

delay offsets are fixed at d cos θ̂k/c = 5.354 Ts and the

amplitude correction factors are fixed at η̂m = 1 for all

elements.
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FIGURE 5. ISF parameter estimation results. (a) The estimates of
time-delay offsets between adjacent hydrophones. (b) The estimates of
the amplitude correction factors. (c) Energy ratios of the element-space
waveform estimation errors to the true element-space waveforms.

As discussed in Section III-A, the expression ĥm,k (t) =

η̂mĥk
(

t − τ̂m,k

)

provides an estimation of the element-space

waveform for the kth signal at the mth hydrophone. The esti-

mation accuracy of the element-space waveform is measured

using the energy ratio of estimation error to true element-

space waveform (ETER), which is defined as

ETERm,k =

∫ T
0

[

η̂mĥk
(

t − τ̂m,k

)

− αmsk
(

t − τm,k

)

]2
dt

∫ T
0

[

αmsk
(

t − τm,k

)]2
dt

(39)

Fig. 5(c) illustrates ETERm,k calculated utilizing the ISF

parameters produced by both Algorithm 1 and the method

based on nominal array configuration. It is evident that

the maximum achieved by Algorithm 1 is less than 0.024,

while the minimum achieved by the nominal based method

is greater than 0.067. Moreover, the ETERm,k achieved by

Algorithm 1 is mostly uniform and almost fixed at 0.02

for ∀m. In contrast, the ETERm,k achieved by the nominal

based method exhibits a significant fluctuation. This proves

that Algorithm 1 provides a practical approach to acquire

the accurate estimates of element-space waveforms, without

requiring the exact hydrophone coordinates and amplitude

response coefficients of the distorted towed array.

Note that the time-delay estimation in Algorithm 1 can be

seen as a matching filter (MF), as shown in (24). MF is a

popular technique for array signal processing and is widely

applied in the active sonar system, where the reference signal

(transmitted signal) is known. However, unlike the MF in

active sonar, the reference signal (ship-radiated noise) used

for MF in passive sonar cannot be accessed directly. Hence,

it is necessary to estimate the received signal waveform from

the received hydrophone data, which is still an open problem,

particularly when the strong interference sources and array

shape distortion coexist. The corresponding CRLB of time-

delay estimation is given by [45]

var
(

τ̂
)

≥
3

8π2T

1 + SNRk + SNR
ref
k

SNRkSNR
ref
k

1

f 32 − f 31
, (40)

where SNR
ref
k represents the SNR of the reference signal.

As indicated by this expression, for a given SNRk , the per-

formance of time-delay estimation depends on the SNR
ref
k .

The higher is the SNR
ref
k , the lower the time-delay estimation

variance. For Algorithm 1, at the conclusion of an iteration,

the estimated received signal waveform (tracking beam data)

can be approximated as a coherent sum of the kth signal

component from various hydrophones of the array. If the

noises at different hydrophones are assumed to be incoherent,

the corresponding SNR can be approximated as SNRtbk =

M × SNRk (The superscript tb denotes the tracking beam).

We proceed with the simulation to demonstrate the time-

delay estimation performance of Algorithm 1, and com-

pare it with the maximum likelihood (ML) method based

on the nominal array configuration, the generalized cross-

correlation (GCC) based method [46], and the MF based

method. The reference signals used in the GCC based

method, Algorithm 1, and the MF based method are respec-

tively the element-space data of the reference hydrophone, the

estimated received signal waveform, and the actual received

signal waveform. Therefore, the MF based method is the

upper performance bound of Algorithm 1. According to (40),

the corresponding CRLBs are respectively given by

var
(

τ̂GCC
)

≥
3

8π2T

2 + 1
/

SNRk

SNRk

1

f 32 − f 31
, (41)

var
(

τ̂Alg1
)

≥
3

8π2T

1 + 1
/

M + 1
/

(M × SNRk)

SNRk

1

f 32 − f 31
,

(42)

and

var
(

τ̂MF
)

≥
3

8π2T

1

SNRk

1

f 32 − f 31
. (43)

As indicated by these expressions, since M ≫ 1, the vari-

ances of both Algorithm 1 and the MF based algorithm are

smaller than that of the GCC based algorithm. Furthermore,

the variance of Algorithm 1 is increasingly close to that of the

MF based algorithm as the SNRk increases.

The target signal is assumed to be incident on the array

from a direction of 60◦ with input SNRvaries over the interval
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FIGURE 6. RMSE of time-delay estimation versus SNR.

[−20, 15] dB. Fig. 6 presents the RMSEs of time-delay

estimation versus SNR for different methods. It is evident that

the RMSEs of the GCC based method, Algorithm 1, and MF

based method are all decrease as the SNR increases, when

the SNR surpasses the threshold SNR. However, the RMSE

of the nominal based ML approach is almost independent of

SNR and fixed at a constant. This is because the incorrect

assumption of hydrophone coordinates is the main reason for

time-delay estimation errors in this case. It is also seen that

the performance of Algorithm 1 outperforms the GCC based

algorithm and comparable to the MF based algorithm when

the SNR surpasses −13 dB. Furthermore, the threshold SNR

of Algorithm 1 is the same as that of the MF based approach

and 7 dB lower than that of the GCC based approach. Note

also that the RMSE of Algorithm 1 is smaller than that of

the MF based method when the SNR is less than −14 dB.

This is because the estimated received signal waveform con-

tains the noises correlated with element-space data at each

hydrophone, which dominated the estimated received signal

waveform in this case.

Based on the above simulation analysis, we can conclude

that the proposed iterative algorithm can rapidly converge to

the accurate estimates of the ISF parameters. Meanwhile, it is

robust to array shape distortion and array amplitude response

inconsistency.

B. PERFORMANCE EVALUATION OF DOA ESTIMATION

In the following simulations, we will analyze the impact of

SIR, bearing separation, and SNR on the DOA estimation

performance of the proposed method in terms of RMSE. The

RMSE of DOA estimation is defined as

RMSEDOA =

√

√

√

√

1

Nt

Nt
∑

i=1

(

θ̂i − θ

)2
, (44)

where θ̂i represents the estimate of DOA at the ith trial, θ

denotes the real DOA of the target signal, Nt is the number

of Monte Carlo trials and is set to be 500 in the remain-

ing simulations. The proposed method is compared with the

FIGURE 7. RMSE of DOA estimation versus SIR.

CBF-based, WBRCB-based [28], and dCv-based [7] meth-

ods. In addition, RMSE of the estimates obtained by the beam

power maximization method in the single-source scenario is

also presented for comparison. For the first three cases, CRLB

in the multi-source scenario is also provided as a reference.

The impact of SIR on the performance of the proposed

method is investigated in the first simulation of this sub-

section. The target and interference signals are assumed to

be incident on the array from directions of ϑ1 = 40◦ and

ϑ2 = 20◦, respectively. The input SNR of the target signal

is fixed at 0 dB and the SIR varies from 0 dB to −25 dB

with a step size of −1 dB. Fig. 7 shows the RMSEs of

ϑ̂1 versus SIR for different methods. It is evident that the

RMSEs of the CBF, WBRCB, and dCv methods increase

as the SIR decreases. However, the RMSE of the proposed

method is almost independent of SIR and fixed at a constant.

Furthermore, the RMSE of the proposed method is smaller

than those of its counterparts and close to that of the single-

source scenario throughout the SIR interval. It is also worth

noting that the DOA estimation accuracy of both theWBRCB

and dCvmethods decreases significantly when the SIR is less

than −20 dB. However, the proposed method can still obtain

excellent DOA estimation performance close to that of the

single-source scenario, even if the SIR is as low as −25 dB.

This is to be expected since when the SNR keeps unchanged,

the lower is the SIR, the higher the interference-to-noise ratio

(INR), and thus the higher the estimation accuracy of the

element-space waveform of the interference signal.

The impact of bearing separation on the performance of

the proposed method is investigated in the second simulation.

The target signal arrives at the array with a DOA of ϑ1 = 60◦.

The interference signal is located at ϑ2 = ϑ1 − 1ϑ , where

1ϑ represents the bearing separation and varies from 3◦ to

40◦ with a step size of 1◦. The input SNR of the target signal

is set to be 0 dB and the SIR is fixed at −15 dB. Fig. 8

illustrates the RMSEs of ϑ̂1 versus bearing separation for

different methods. It is observed that the proposed method

outperforms comparable algorithms over the whole range of

1ϑ . Moreover, the result of the proposed method agrees well

with that of the single-source scenario when1ϑ surpasses 5◦.
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FIGURE 8. RMSE of DOA estimation versus bearing separation.

It is also worth noting that the RMSEs of both the CBF and

dCv methods do not change monotonically with the increase

of 1ϑ . Instead, they exhibit significant fluctuations. This is

due to the fact that the energy leaking from the interference

beam to the target beam is not a monotonic function of 1ϑ ,

as shown in (16).

The impact of SNR on the performance of the proposed

method is investigated in the third simulation. The input SNR

of the target signal varies over the interval [−10, 15] dB.

The SIR is fixed at −15 dB and the other parameters are

the same as those in Fig. 7. The RMSEs of ϑ̂1 versus SNR

for different methods are shown in Fig. 9. It is evident that

the RMSE of the proposed method is much smaller than

those of its counterparts and close to that of the single-source

scenario throughout the SNR range. This is because, for the

CBF, WBRCB, and dCv methods, energy leakage is the main

reason resulting in DOA estimation error in this scenario.

It is also worth noting that the RMSEs of both the proposed

method and the single-source scenario go into saturation

when SNR exceeds 8 dB. The reason is that, in this case,

the DOA estimation errors are mainly caused by array shape

distortion.

For the fourth simulation, we consider the scenario of

one target signal and three interference signals. The target

signal arrives at the array with a DOA of ϑ1 = 40◦. The

interference signals are located at ϑ2 = 20◦, ϑ3 = 30◦,

and ϑ4 = 46◦, respectively. The input SNR of the target

signal varies over the interval [−10, 15] dB. The strengths

of the first two interference signals are respectively 10 dB

and 7 dB larger than that of the target signal, while the

strength of the third interference signal is 3 dB smaller than

that of the target signal. Fig. 10 shows the RMSEs of ϑ̂1

versus SNR for different methods. The RMSEs of both the

method in [35] (marked with Nominal based CLEAN-ISF)

and its modified version (marked with Algorithm 1 based

CLEAN-ISF) are also presented for comparison. For the

modified version, Algorithm 1, rather than the method based

on the nominal array configuration, is used to estimate the

ISF parameters. It is evident that the performance of the

FIGURE 9. RMSE of DOA estimation versus SNR.

Algorithm 1 based CLEAN-ISF method is superior to that

of the Nominal based CLEAN-ISF method. This is to be

expected since Algorithm 1 is robust to array shape distortion

and array amplitude response inconsistency in terms of ISF

parameter estimation, as discussed in Section IV-A. Note

also that the proposed method outperforms the Algorithm 1

based CLEAN-ISFmethod in terms of DOA estimation accu-

racy. This is because the CLEAN-ISF method is achieved

by sequentially removing the interference signals from the

received hydrophone data in order of descending strength,

one at a time. The signal removal is ended once the target

signal is detected from the updated element-space data. Thus,

the interference signals weaker than the target signal are not

removed and still remain in the element-space data. However,

the DOA estimation accuracy of the target signal is also,

to some extent, affected by the interference signals weaker

than itself, particularly when their strengths are comparable

or the bearing separation is small. On the other hand, during

the sequential signal removal, the estimation accuracy of ISF

parameters of the previously detected interference signals are

also affected by the signals that have not yet been detected.

Thus, the element-space waveforms of interference signals

are not properly removed, which can degrade the DOA esti-

mation accuracy of the target signal to some extent. Both of

the influences mentioned above are significantly mitigated by

the proposed method, which follows a coarse-to-fine proce-

dure for DOA estimation.

Simulation results presented above show that, in the pres-

ence of multiple sources and array shape distortion, the

proposed method outperforms its counterparts in terms of

estimation accuracy. Meanwhile, the DOA estimation perfor-

mance of the proposed method is close to that obtained in the

single-source scenario, even if the SIR is as low as −25 dB.

V. EXPERIMENT OF SEA TRIAL DATA

In this section, the performance of the proposed method is

evaluated with real data collected at sea. Fig. 11 demonstrates

the schematic diagram of the sea trial, conducted in the South

China Sea. As shown in Fig. 11, the depths of the sea, the

acoustic source and the receiving array are 105 m, 20 m
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FIGURE 10. RMSE of DOA estimation versus SNR in the presence of one
target signal and three interference signals.

FIGURE 11. Schematic diagram of the sea trial.

and 45 m, respectively. The transmitting vessel is anchored,

and a wideband signal is transmitted from the acoustic source

with a spectrum level of 130 dB at 1 kHz. The sound speed

profile (SSP) obtained in the sea trial area shows a weak neg-

ative gradient. The towing vessel runs according to the pre-

designed route with a speed of 6 knots. The distance between

the acoustic source and the receiving array is about 8 km. The

length of the tow cable is 700 m and the data is collected from

a towed array comprising of 100 elements with inter-element

spacing 0.8 m. The sampling frequency fs, time analysis

window length T , and lower and upper bounds of the analysis

frequency band are the same as those in the simulations.

The bearing time record (BTR) calculated using 32

hydrophones based on the CBF, WBRCB, dCv, and the

proposed method are shown in Fig. 12(a), 12(b), 12(c),

and 12(d), respectively. For reference, the BTR calculated

utilizing 100 hydrophones based on the dCv is shown in

Fig. 12(e). As seen from Fig. 12(e), the number of sources is

seven. The target signal impinges on the array from direction

around 37◦ and the towing vessel interference is located

at around 17◦. These are consistent with the results calcu-

lated using the Global-Position-System (GPS) coordinates

of the transmitting and towing vessels and the orientation

of the hydrophone array. However, for Fig. 12(a), it is dif-

ficult to identify the trajectory of the target signal from

the surrounding interference sources, since the beam power

TABLE 2. RMSE of DOA estimation results of sea trial data.

peak of the target signal is masked by the high sidelobes of

the towing vessel interference. As for Fig. 12(b) and 12(c),

although the energy leakages are reduced to some extent,

the beam power peaks of the target signal are still severely

damaged. It is worth noting that the only trajectory visible

in Fig. 12(d) belongs to the target signal. This is expected

since the proposed method reconstructs the element-space

data to approach the received hydrophone data of a single-

source scenario, containing only the target signal component.

The profiles of the results at t = 100 s are presented in

Fig. 12(f). It is evident that the maximum peak of the beam

power sample sequence, calculated exploiting reconstructed

element-space data, is associated with the target signal. Its

abscissa agrees well with the target DOA obtained from

Fig. 12(e).

The DOA estimation results obtained from

Fig. 12(b), 12(c), 12(d), and 12(e) are presented in Fig. 13.

Note that limited orientation accuracy of the towed array,

provided by the attitude sensor, makes it difficult to obtain

the high-accuracy target DOA exploiting the GPS coordi-

nates and array orientation in the sea trial environment.

Comparing Fig. 12(e) with Fig. 12(a), 12(b), and 12(c)

suggests that the dCv beam power, calculated utiliz-

ing 100 hydrophones, exhibits significantly lower sidelobes

and narrower beamwidths. As a result, the target trajectory is

clear throughout the time frame and the obtained estimates

of DOA exhibit higher estimation accuracy. As such, the

estimates of DOA obtained from Fig. 12(e) can be used as

the references to evaluate the performance of the proposed

method. From Fig. 13, it is evident that the estimates of DOA

obtained by the proposed method agree well with the refer-

ences throughout the time frame. In contrast, the estimates

produced by both WBRCB and dCv methods exhibit signifi-

cant deviations from the reference in some time frames. The

DOA estimation accuracy ismeasured throughRMSE and the

obtained results are listed in Table 2. It can be seen that the

proposed method outperforms the WBRCB and dCv meth-

ods, which is consistent with the BTR presented in Fig. 12.

These results suggest that the proposed method still main-

tains better effectiveness and higher robustness compared

to its counterparts, even though the number of sources is

as many as seven and the target signal is contaminated by

real ocean ambient noise. It is worth noting that the signals

from different sources are not totally uncorrelated with each

other, especially for those encountered in a towed array sonar

system [47]–[49]. The magnitudes of correlation are related

to the type and working conditions of sources, the frequency

and bandwidth of signals, and the underwater environment

[50]–[52]. For the proposed ESDR-based wideband DOA

estimation algorithm, the influence of correlation among

the signals mainly lies in the time-delay estimation based

on cross-correlations between the estimated received signal

43536 VOLUME 9, 2021



C. Zhu et al.: Robust Wideband DOA Estimation Based on Element-Space Data Reconstruction in a Multi-Source Environment

FIGURE 12. BTR calculated using 32 hydrophones based on (a) CBF, (b) WBRCB, (c) dCv, (d) the proposed method. (e) BTR calculated
utilizing 100 hydrophones based on dCv. (f) Profile of the results at t = 100 s.

FIGURE 13. DOA estimation results of sea trial data.

waveform and the element-space data of every hydrophone.

This influence is mitigated significantly in the proposed

method due to the magnitudes of all the signals, except the

one currently considered, are much decreased by the signal

removal and beamforming.

VI. CONCLUSION

In this paper, a robust ESDR-based wideband DOA estima-

tion method is proposed to acquire the accurate bearings of

theweak signals in amulti-source environment. The proposed

method first directly reconstructs the element-space data to

approach the received hydrophone data in a single-source

scenario, containing only the SOI. Thus, it can completely

eliminate or significantly reduce the unacceptable energy

leaking from the interference beams to the target beam.

A refined estimate of DOA is then obtained based on the

reconstructed element-space data. Both simulation and at-sea

experimental results verify the advantages of the proposed

method over the WBRCB based and dCv based DOA esti-

mation methods. In addition, the proposed method is par-

ticularly suitable for the scenario of DOA estimation with

a towed array, where strong interference sources and array

shape distortion coexist. The future work will consider the

analytical derivation for the DOA estimation accuracy of the

proposedmethod and extend thismethod to the scenarioswith

lower SNR.
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