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Robustification of Kalman Filter Models
RICHARD J. MEINHOLD and NOZER D. SINGPURWALLA*

Kalman filter models based on the assumption of multivariate Gaussian distributions are known to be nonrobust. This means
that when a large discrepancy arises between the prior distribution and the observed data, the posterior distribution becomes
an unrealistic compromise between the two. In this article we discuss a rationale for how to robustify the Kalman filter.
Specifically, we develop a model wherein the posterior distribution will revert to the prior when extreme outlying observations
are encountered, and we point out that this can be achieved by assuming a multivariate distribution with Student-¢ marginals.
To achieve fully robust results of the kind desired, it becomes necessary to forsake an exact distribution-theory approach and
adopt an approximation method involving “poly-¢” distributions. A recursive mechanism for implementing the multivariate-z—
based Kalman filter is described, its properties are discussed, and the procedure is illustrated by an example.

KEY WORDS: Automatic control; Bayes law; Bounded influence functions; Kalman filtering; Multivariate Student-¢ distri-
butions; Non-Gaussian filtering; Poly-r densities; Robustness; Signal processing.

1. INTRODUCTION

The Kalman filter (KF) model, successfully used by en-
gineers, economists, and other scientists, has come to be
regarded with increasing interest by statisticians; for ex-
ample, see Harrison and Stevens (1976), West, Harrison,
and Migon (1985), Diderrich (1985), Meinhold and Sing-
purwalla (1983, 1987), and the references therein.

The model—which stems from Wiener’s (1949) theory
for prediction and smoothing—relates a sequence of ob-
servations Y, Y,, . . . , Y, to a set of unobservable quan-
tities 0y, 0,, . . . , 6, via the observation equation

Y, = Ff, + v, (1.1

where the evolution of 6, is described by the system equa-
tion

0, = Gb., + w, 1.2)

with F, and G, (which may be scalars or matrices, de-
pending on the dimensions of Y, and 6,) assumed known.
The innovations {v,} and {w,} have mean 0 and are assumed
serially and pairwise independent with known covariance
matrices V, and W,, respectively. Under the special case
of a Gauss-Markov model, posterior to time ¢ — 1, but
prior to ¢, 6,_; is assumed Gaussian with mean §,_, and
variance 2,_,. Upon the receipt of Y,, and assuming that
v, and w, are also Gaussian, Bayes’s law is used to show
that 6, is Gaussian with mean and variance

6, = Gh,_, + K(Y, - FGH,_)) (1.3)

and
3, = — K,F)R,, (1.4)

respectively, where R, = G3,.,G, + W, and K, =

R.F/(F,R.F] + V)™, F] denotes the transpose of F, and

FGJ,_, is the predicted value of Y,, prior to time ¢.
Simplicity and an adaptive nature are attractive features
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of this recursive scheme [which may also be derived via a
least squares approach, as in Kalman (1960)]. On the other
hand, the model is nonrobust: The mean (1.3) is an un-
bounded function of the discrepancy between Y, and its
prior predicted value F,G0,_;, whereas the variance (1.4)
does not depend on the observed data. Thus a spurious
outlying value of Y, would adversely affect inference about
6,. The aim of this article is to “robustify”” the KF—that
is, to consider the treatment of such outliers in a manner
that will produce a robust model, entirely within the stric-
tures of the Bayesian paradigm. By robustification, we
mean a “judicious and grudging elaboration of the model
to ensure against particular hazards” (Box 1980, p. 396).
Furthermore, we wish to achieve the desired protection
through a fully Bayesian approach.

Previous approaches to robustifying the KF were un-
dertaken by Masreliez (1975), Masreliez and Martin (1975,
1977), Morris (1976), Ershov and Lipster (1978), West
(1981), Tsai and Kurz (1983), Boncelet and Dickinson
(1984), and Kitagawa (1987). These efforts, however, were
guided by sampling-theory principles (e.g., Hampel, Ron-
chetti, Rousseeuw, and Stahel 1986); in what follows, we
refer to this point of view as conventional robustness. The
attitude of Sorensen and Alspach (1971), Martin (1979),
West (1981, 1982), Smith and West (1983), and Guttman
and Pena (1985) is more in tune with ours; they proceeded
along distribution-theoretic lines by considering non-
Gaussian densities.

2. BAYESIAN PERSPECTIVES ON ROBUSTNESS
AND THEIR RELEVANCE TO KF MODELS

The notion of robustness in a Bayesian setting has been
considered by many authors (e.g., see Berger 1984). In
general, what is meant by robustness—and a specification
of criteria for identifying when lack of robustness can be
a problem—can vary considerably for different settings.
In the setup of this article, we assume that the structural
part of the KF model provides an appropriate view of
reality; accordingly, an attempt at robustification will not
entertain changes in the basic structure given in (1.1) and
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(1.2). Also, we follow a guideline that stems from De
Finetti’s (1961) view that “a proper Bayesian effort will
not be concerned with the behavior of particular estimates
but rather with that of the entire posterior distribution”
(p- 203). Therefore, we need to decide what should happen
to the posterior distribution of 6, when a discrepancy be-
tween the prior specification and the observed data arises.
This question has been considered in a more general con-
text, and two schools of thought have emerged:

1. One school, advocated by Lindley (1968) and Leon-
ard (1974), argues that the data should be emiphasized in
preference to the prior (also see O’Hagan 1987). This idea
is in line with the notion of the prior “washing out” as
more data are accumulated.

2. The second school, advocated by De Finetti (1961),
parallels the conventional robustness argument that the
specified prior distribution embodies an educated expec-
tation of what should happen, so an observation that de-
viates markedly from its prediction should be regarded as
suspicious and given less weight in the formation of the
posterior.

In the KF situation, the prior at time ¢ will have evolved

from ¢ — 1 preceding observations, and the data will con-

sist of only one observed value. Therefore, the more mean-
ingful point of view (and the one that we adopt), would
be that of De Finetti: A robust KF model would be one
for which the posterior distribution of the state of nature
would return to its prior as the observation departs sig-
nificantly from its predicted value.

Dawid (1973) (also Hill 1974; Meeden and Isaacson
1977) formalized and unified the two schools of thought
by establishing that the behavior of either type can be
attained through the appropriate specification of the prob-
ability models. That is, when the prior is weak (strong),
as measured by its having a heavier (lighter) tail than the
likelihood, the posterior will converge to the likelihood
(prior) when the prior and the likelihood diverge. Under
the familiar Gaussian assumptions of the nonrobust KF,
both the prior and the likelihood have identical tails, so
neither dominates the other and the posterior turns out
to be a compromise between the prior and the likelihood;
this may be seen by rewriting the posterior mean (1.3) as
6, = (I - K,F)Gd,_, + K.Y, This suggests that an at-
tempt at robustification may be pursued by leaving the
basic KF model unaltered, but replacing random Gaussian
variables with those having distributions that provide for
a wider variety of behavior of tail-area probabilities. This
is in line with earlier work on robustness in statistics, in
which notions of “outlier prone” and “‘outlier resistant”
distributions, as considered by Green (1974, 1976) and
Neyman and Scott (1971), became relevant (also see
Gather and Kale 1986). The need to replace the Gaussian
distribution with one that is symmietric and behaves much
like the Gaussian in the central area (but has heavier tails)
leads to a consideration of the Student-z distribution (e.g.,
West 1982; Zellner 1976). Accordingly, we examine the
merits of specifying that {v;} and {w} have marginal Stu-
dent-t distributions, with the joint distributions across time
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either béing or not being a multivariate Student-¢ distri-

‘bution. The former yields a measure of location that is

nonrobust, but it has the property that the scale parameter
depends on the observed data (see Sec. A.1 in the Ap-
pendix). The latter, which leads to a desirable form of
robustification, is discussed in Section 3.

Before proceeding further, it may be worthwhile to re-
mark that in assuming that the innovation series follows
a Student-¢ distribution, there is no implication that the
analyst indeed believes that this is truly the case, any more
than there is reason to believe that any phenomenon is
actually Gaussian (see Anderson and Moore 1979, p. 10).
Rather, the distributional assumptions are regarded as rea-
sonable approximations to reality, tempered by concern
for the adverse consequences caused by spurious (ex-
tremely large or small) observations. One may wish
to contrast this with the robustness point of view taken
by Berger (1984), concerns about which can be found in
the accompanying discussions by Hill, Kadane, and Lind-
ley.

3. THE KF MODEL WITH INDEPENDENT STUDENT-T
DISTRIBUTED VARIABLES

As stated before, Dawid’s theorem provides a general
framework for robustification in a distribution-theoretic
framework. His result holds for unspecified distributions,
and it pertains to necessary conditions for convergence in
distribution of the posterior to the prior; these conditions
are more restrictive than necessary for the KF model. The
multivariate-t distribution (see Theorem A.1 in the Ap-
pendix) violates one of Dawid’s conditions, resulting in
the weak robustification seen in Section A.1. One way to
produce the desired robustification (in the sense of De
Finetti 1961) and still retain elements of the KF’s recursive
mechanism is to assume independent Student-¢ distribu-
tions for all of the (now presumed scalar) variables in
question. Doing so, we not only weaken one of Dawid’s
conditions; we also obtain an almost sure convergence of
pertinent densities. This is summarized in the following
theorem.

Theorem 1. Let g(x), the prior density at x, be a Stu-
dent-¢ density with n degrees of freedom (df), and let f(y
- x), the density at Y given x, also be a Student-¢ density
with location x and m df. Then if n > m, h(x | y), the
posterior density at x given y, will converge a. e. to g(x)
as |y| — «. Furthermore, the posterior distribution will
converge to the prior distribution uniformly over Borel
sets.

Proof. Suppose that X ~ ¢(x; 0, 1, n) and (Y | x) ~
t(y; x, s, m), where t(-, x, s, m) denotes a Student-¢ dis-
tribution with location x, scale s, and df m, and let n >
m. Due to symmetry, it suffices to consider the case y —
+. Since t(y; x, s, m) = t(x; y, s, m),

hely) =
[1 + x¥/n]" D201 + (x — y)/ms]=m+0r
|1+ e+ G yyimeg e dz
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To show that the posterior distribution of X will converge
uniformly to its prior we argue that h(x | y) converges to
g(x) a. e. with respect to a Lebesgue measure 4 on (R,
$). We then use Scheffe’s theorem (Billingsley 1968, p.
224) to complete the proof. To prove a. e. convergence,
note that for any x € @, the ratio

gx)/h(xly) = [1 + (x — y)*/ms]m+12
X f” t(z; 0,1, n)[1 + (z — y)/ms]~ D2 4z

can be made arbitrarily close to unity for sufficiently large
y. The argument is based on the observation that for any
fixed x and large y, g(x)/h(x | y) can be represented as
the sum of integrals, one of which becomes as close to
unity (and the others-as close to 0) as we wish. The al-
gebraic details are in Meinhold (1984).

Theorem 2. Under the conditions of Theorem 1, if m -

> n, h(x | y) will converge a. e. to the likelihood (y | x)
as | y| = =; the convergence is uniform over Borel sets.

Proof. The proof is analogous to that of Theorem 1,
except that now, for any x € , the ratio

f(y = x)/h(x|y)

= (1 + x2/n)n+vr J’°° t(z; y, s, m)[1 + z3/n]-@+D72 dz

can be made arbitrarily close to unity for sufficiently
large y.

Note that Theorems 1 and 2 are duals of each other.
When n = m, a form of “outlier confusion’ would occur
in the sense that A(x | y) converges to neither the prior
nor the likelihood.

4. |IMPLEMENTATION OF THEOREM 1
IN THE KF SETTING

In KF models, provision is made for both the observable
Y, and the unobservable §, to experience spurious distur-
bances and distortions. In this article, however, we con-
centrate on “outliers” in the observation equation only;
these are referred to as additive outliers (see Martin and
Raftery 1987). Accordingly, we assume that 6, wy, . . .,
Wr, Uy, . . . , Ur are independent, each having a Student-
t density, with 6y, wy, . . . , wrhavingn dfand v, . . .,
vr having m df with m < n. The joint density of all the
variables is not a multivariate Student-¢ density. (as de-
scribed in Sec. A.1), and the resulting posterior distri-
butions will have “poly-t”’ densities (Broemeling 1985, p.
447) with no closed-form representation. Therefore, we
need to propose a recursive approximation scheme to
circumvent this difficulty yet adhere to the conditions
of Theorem 1. Prior to developing the approxima-
tion scheme, however, we must recognize that Theorem
1 describes only the behavior of the posterior distri-
bution in the face of an extreme or limiting observa-
tion. We also need to outline the nature of the posterior
distribution in the presence of a ‘“moderate”observa-
tion.
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4.1 Behavior of the Posterior in the Presence of a
Moderate Observation

Suppose that the prior distribution of 6, and the likeli-
hood centered at Y, are both Student-z densities, with the
prior having a greater number of df than the likelihood.
The difference between the location of these two densities
ise =Y, — FG0,_,. When e, is small, the posterior
distribution of 6, is unimodal; as e, increases (a decrease
yielding mirror-image results) the mode of the posterior
distribution begins to move to the right, but at a decreasing
rate. Eventually, the rightward shift of the single mode
ceases and a second mode emerges to the right of the first.
As e, continues to increase, the left-side mode reverses
direction and shifts toward G,d,_,, the mode of the prior,
whereas the right-side mode follows the rightward move-
ment of Y,. This phenomenon of the appearance of the
second mode and its divergence from the first is similar
to that encountered by O’Hagan (1981), who aptly termed
it a “moment of indecision.” Ultimately, as e, becomes
very large, the result of Theorem 1 comes into play and
the leftmost mode of the posterior distribution essentially
coincides with the mode of the prior, and the probability
mass under the rightmost mode becomes essentially neg-
ligible—resulting in a posterior distribution that is prac-
tically indistinguishable from the prior. In what follows,
we propose a plan of approximation that mimics this be-
havior.

4.2 Approximating the Posterior Distribution

The scheme proposed here is motivated by Jeffreys
(1961, sec. 4.2), and it begins with the idea that the pos-
terior distribution of 0,_, may be represented by a mixture
of Student-¢ densities. The prior for 6, is then formed by
a componentwise convolution of each member of the mix-
ture and w,. This produces a prior with the same number
of components as the posterior, each with unchanged mea-
sure of location (the distribution of w, being centered at
0) but with new dispersion. When an observation Y, arises,
Bayes’s theorem is applied componentwise to the prior
mixture; for each member, a posterior distribution results,
which may be unimodal or bimodal. In the first instance,
a single Student-t density is used to approximate this up-
dated component; in the second, a mixture of two ¢ den-
sities is used. Specifically, suppose that after time ¢ — 1,
the posterior distribution of ¢,_, is represented by a mix-
ture of N,_; Student-¢ densities, each with n df; that is,

N;—l
01 ~ 21 @ -1t(*5 Wiam1s OFim1s ),
=

with 27 o,y = 1.

Because of (1.2) and prompted by a cumulant matching
scheme suggested by Patil (1965), the prior for ¢, will be
approximated by the mixture

Ni-1

0, ~ 2:1 aj.t—lt('; Gt,uj.t—h Gtzo';z,t—l + W, n)'
i=

. Simplicity and convenience are the key virtues of this ap-



482

proximation; its suitability should be judged in the light
of its performance, such as in the example in Section 4.5.
Upon receipt of Y,, the likelihood will be described by #(-;
Y, V., m), where m < n. A prior-to-posterior analysis
peformed for each component of the mixture that consti-
tutes the prior gives N, 1 posteriors, each given via Bayes’s
law as

tx; Gj—y, Gioj,y + W, m)t(x; y,, V,, m)
f H(z; Gjsov, Glo?_y + W, n)t(z; y,, V,, m) dz

(4.1)

Each of the N,_, posteriors will be either unimodal or
bimodal, depending on the nature of the roots of a cubic
equation (see Sec. A.2). When one of these posteriors is
unimodal, it will be approximated by a Student-t density
with n df and g, set equal to (say) xo, the mode of the
posterior. The weight «;, assigned to this component in
the mixture remains unchanged and is equal to «; ,_,. The
scale g7, of the approximating Student-¢ density is deter-
mined by setting

Xo» O.jz,t’ n)

() [ o]

the height of the approximating density at x4, equal to the
height of the actual posterior (4.1) at x,.

When one of the individual posteriors is bimodal, it will
be approximated by a mixture of two Student-¢ densities,
each with n df. These densities will be centered at y;; , set
equal to (say) x,;, the smaller mode of the posterior, and
U2 Set equal to (say) x,, the larger mode of the posterior.
The scale parameters o7, and 0%, of the two mixing Stu-
dent-t densities will be found by equating the curvature of
the approximating densities at their modes x, and x, to the
(approximate) curvature of the actual posterior (4.1) at x,
and x,, respectively. Specifically, to obtain ¢}, we would
set

t(xo; 1y, =

d? . 5 _h+ 1
T Al log t(x; pj1.c = X1, Gl ) |eoy, = ne?,
so that
d2
- Z)p log t(x; Gt.uj.t—l’ Glzo-lz,f-l + W, n)l"=x1
n+1 1+ (6 — Gjuy)
__nrr1 ¥~ Gt 2 M1
nGla?,_, {( v Gittie-) [ n(Gioly + W)

- [1 + (xl - Gtﬂj,l—l)z/n(Gtzajz,t—l + Wt)]_ll} .

Implicit in this calculation is the assumption (w log) that
Y, lies to the right of G,u;,_, and that, accordingly, this
latter quantity is closer to x; and Y, is relatively far from
x; (a necessary condition for the bimodal case to arise).
So the curvature of t(x; y,, V., m) is negligible in the
neighborhood of x;. By an analogous argument, ¢%;, is
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determined by setting

2

d
- Z’C—E log t(x; x,, 0‘%,;,, n)|x=Xz

d?
= -7 log t(x; Y,, V,, m).

The weights a;;, and a;, , of the mixture components will
be given as

Qe = aj.t—lt(Gtﬂj,t—l; Y, V, m)/[t(Gt,uj,t—l; Y, V, m)
+ t(Yl; Gl,uj.t—la Gtza']z,r—l + W, n)]
Ay = Q-1 — QXjy,. 4.2)

The approximation scheme could be refined—for ex-
ample, by considering the exact curvature of the actual
posterior instead of the approximate curvature or by using
a mixture to approximate a posterior that is unimodal but
skewed. Such fine-tuning may, in some applications, be
preferable to the simple approach selected here.

4.3 Choice of Degrees of Freedom nand m

The extent to which our proposed scheme accepts or
rejects an observation depends on the values selected for
n and m. Requiring that n > m > 0 restricts the choice
to values in the north-northeast octant. For illustration we
consider three cases: Case A, in whichn = 30 and m =
29; Case B, in which n = 30 and m = 2; and Case C, in
which n = 2 and m = 1. Case A reflects the fact that
both the prior and the likelihood are near normal; Case
B reflects the fact that the prior is near normal, whereas
the likelihood is very heavy-tailed; Case C reflects the fact
that both the prior and the likelihood are heavy-tailed.

In Figure 1 we show, via box-and-whisker plots, the
posterior distributions for each of the three cases, for a
range of values of Y,; specifically, ¥, = 0, 1, 2, 3, 4, 5,
10, and 20. The horizontal widths of the boxes represent
the o weight given to that component of the posterior
mixture; these weights are determined via (4.2). The right
end of each of the three illustrations shows the box-and-
whisker plots of the prior distributions; these would cor-
respond to the posterior distributions when Y, is infinite.

An examination of the plots in Figure 1 shows that for
Case A, wherein the information provided by the likeli-
hood is slightly “less strong” than that from the prior, the
“rejection” of Y, and the return of the posterior to the
prior is slow, requiring large values of Y,. In Case B, the
much lighter-tailed prior dominates the likelihood (so
that little weight is given to Y,) and the posterior returns
to the prior for small values of Y,. In Case C, there is a’
scant amount of information in both the prior and the
likelihood, so the indecision (multimodality) in the pos-
terior arises quickly and continues to persist even for large
values of Y,.

The disparate kinds of behavior of the posterior distri-
butions illustrated in Figure 1 may serve as a guide to users
in choosing values of n and m so as to attain a desired
degree of robustness.
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Figure 1. Box-and-Whisker Plots lllustrating the Behavior of the Pos-
terior of 6, for Different Values of Y,, n, and m. The width assigned to
each box in a plot of the bimodal posterior indicates the a weight
assigned to that component of the mixture.

44 Some Comments on the
Approximation Scheme

An aspect of the approximation scheme deserving of
comment is the growing number of components in the
mixture that approximates the posterior distribution of the
state of nature. A similar situation has been encountered
in other work (e.g., Harrison and Stevens 1976). A strat-
egy for curtailing this growth is to merge two adjacent
mixture components that are close enough to yield a un-
imodal density when combined. A sufficient condition that
suggests the desirability of such a combination is that |u;,
— W4 < min(o;,, 6y,), for any j # k. The combined
(pooled) component is assigned location u, = a;,.u;, +
Qe bl sr SCAle 077 = o 07, + 0%, + @ (e — el
and weight o, = «;, + a,,. Another possibility is that
some components of the mixture come about as a result
of outlying values of Y, that may not recur. In such cases,
the « weights associated with such components gradually
diminish, and eventually we may choose simply to drop
such components from the mixture, when in our judgment
(say a = .01 or .05) they become of little significane. Some
caution should be exercised against discarding mixture ele-
ments too quickly, however, or the model’s ability to re-
spond to genuine shifts in structure is compromised—that
is, those cases where a deviant Y, results from an “outlier”
in the system equation error, the effect of which will per-
sist, as opposed to one from the observation equation. For
such dramatic shifts in the model structure, the posterior
mass in the area of extreme observations will, as Theorem
1 suggests, be quite small. Nonetheless, should similar
values of Y, consistently continue to be realized, then un-
der our proposed scheme for component weights, one-half
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of the mass of the posterior will “relocate” to the appro-
priate vicinity, providing a signal to the modeler about a
change in the structure of the process and indicating that
the original model specification is no longer realistic. This
may be viewed as a desirable property for a recursive
tracking procedure to possess—especially an automated
one. Robust filters with data-dependent mean squared er-
ror recursions, in the style of Masreliez (1975), also have
the desirable relocation or “regaining of tracking” prop-
erty (see Martin and Thompson 1982; Martin and Yohai
1985).

Finally, our use of the Student-¢ distribution essentially
results in a bounded-influence filter with a smoothly re-
descending influence, which leads to a rejection-at-infinity
property. From a practical point of view, there is little
difference between a very small weight and total rejection,
so the approach here can be regarded as a mechanism
that, in practice, does not operate substantially differently
from other robust procedures, but does pursue the goal
of robustness (as enunciated by Box 1980), entirely within
the strictures of the Bayesian paradigm (as interpreted by
De Finetti 1961).

4.5 An lllustrative Example

We illustrate the operation of the proposed scheme by
considering a simple simulated example described in Table
1 and Figure 2. For each time period ¢ (t = 1, . . ., 10)
we assume a structure known as the steady model, wherein
Y, =0, + v, 0, =6,_, + w; and (in the notation of Sec.
4.2) v, ~ 1(-;0,2,2), w,~ t(-; 0, 1, 3), and 6, ~ t(; 0,
1, 3). The likelihood is then approximated by t(-; Y, 2,
2), and the prior distribution for 6, is given by 2 i1 @1t

Table 1. A Simulated Example

t Y, J Q; Hit af
0 1 1 0 1
1 1.638 1 1 .856 1.031
2 —.224 1 1 .283 .878
3 9.540 1 .698 759 2117
2 .302 8.908 2.688
4 -2.079 1 .698 -1.123 1.771
2 146 —-1.590 2.390
3 .156 8.071 4,451
4* 1 .844 -1.204 2.231
2 .156 8.071 4.451
5 181 1 .844 —.303 1.119
2 .156 .793 5.305
6 1.902 1 .844 .877 1.307
2 .156 1.663 1.300
6" 1 1 1.000 1.390
7 6.721 1 .539 2.189 4.266
2 .461 5.555 5.437
8 8.134 1 .539 7.400 3.884
2 .461 7.635 1.639
8" 1 1 7.508 2.863
9 5.882 1 1 6.379 1.241
10 7.003 1 1 6.726 .840

* A condensation of the original.
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Figure 2. Box-and-Whisker Plot of the Posterior Distribution of 8, for

the Data in Table 1. The width assigned to each box in a plot of the
bimodal posterior indicates the o weight assigned to that component
of the mixture. Also shown are values of 6, given by the nonrobust filter.

Hji-1, 6}-1 + 1, 3). The resultant posterior distributions
are displayed in Figure 2, via box-and-whisker plots, with
the horizontal width of the box representing the o weight
given to that component of the posterior mixture. In those
instances wherein the displayed posterior distribution rep-
resents a condensation of the original (i.e., some com-
ponents of the original mixture have been combined; see
Sec. 4.4), in Table 1 an asterisk is indicated on the ¢ as-
sociated with it. v

‘Two outlier situations are considered. At = 3 a large
value of Y, occurs, but the subsequent values of Y, return
to the earlier neighborhood of 0; note that by the time ¢
= 6, the posterior distribution of 6, is “back to normal.”
At = 7 a permanent shift in Y, occurs corresponding to
- a dramatic shift in the state of nature; we see from Figure
2 that the ensuing sequence of posteriors responds in a
reasonable manner to this shift. Contrast this with the
behavior of a nonrobust Kalman filter for which the values
8,, obtained via (1.3), are for t = 1, ..., 10, given as
-819, .298, 4.919, 1.420, .800, 1.351, 4.036, 6.085, 5.984,
and 6.493, respectively. Finally, from an inspection of the
plots of Figure 1, it appears that if one desires to minimize
the occurrence of bimodal posteriors, yet require a fast
response to a permanent shift in the level of the pro-
cess, then one must opt for large values of m and n, with
n>m.

5. SUMMARY AND CONCLUSIONS

We have proposed a model wherein, by using the Bayes-
ian approach with a judiciously selected family of density
functions, belief regarding an unknown state of nature
(subsequent to observation of a related random variable)
is embodied in a mixture of probability density functions
from the specified family. A system for updating this
expression of knowledge in the face of succeeding obser-
vations is suggested, along with some ideas on how a
modeler might restrain the growth of this probabilistic
representation, depending on his or her objectives. Fi-
nally, according to the restraints imposed, one can produce
a mechanism yielding expression of belief about the state
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of nature that will be largely unaffected by occasional spu-
rious observations (bounded and smoothly redescending
influence), yet will eventually respond to genuine but dra-
matic shifts in this unknown quantity (relocation or re-
gaining of tracking property). Our proposed approach
easily lends itself for implementation on a computer. We
give an example illustrating the manner in which it re-
sponds to spurious observations and changes in the state
of nature.

APPENDIX: CONSIDERATION OF THE
MULTIVARIATE-T DISTRIBUTION AND
OTHER DERIVATIONS

At The KF Model With Multivariate Student-T
Distributed Variables

Suppose that 6, and Y, are of dimension p x 1 and g X1,
respectively, and that ¢ = 1, ..., T. Suppose that the T(p +
q) + p dimension column vector [8,, v,, w, . . ., v, w]' is
assumed to have a multivariate Student- distribution with v df,
location p = [90, 0,...,0], and scale Jr(p+q+p> Where the latter
isa[T(p + q) + p] x [T(p + q) + p] matrix with block-
diagonal elements 3y, V,, W, ..., V;, W,, and off-diagonal
elements 0. For convenience, this distribution, which has a den-
sity at x given by
£, (% n, J, )

r (2__;'_P) I J|—1/z
= [+ (- W - o],
r (g) (mv)r?

is denoted by tr(,..,(*; 4, J, v). Then we can easily prove the
following theorem (details are omitted).

Theorem A.1. For a multivariate-t—derived KF, 8, ~ L(; b,,
C(Y,...,Y)%,v + qt), where 0, and 3, are given by (1.3)
and (1.4), respectively, and C(Y,, . .., Y)) = [v + Z._, (Y, —
FGO. ) (FRF, + V) (Y, - FGO. )/ + qo).

From Theorem A.1 it is clear that a multivariate-~~dervied KF
possesses a closure property that enables us to derive an inference
mechanism via an exact distribution theory; however, it still
yields a nonrobust measure of location. On the other hand, the
scale parameter is a multiple of 3, (the Gaussian-derived KF
scale parameter), with C(Y,, . .., Y;) as the multiplier. The
magnitude of the multiplier increases quadratically in the one-
step-ahead prediction error |Y, — F,G§,_,, implying that ob-
servations that are inconsistent with prior expectations cause a
loss in precision of the estimate of the state of nature. Thus this
filter neither accepts nor rejects a large observation in the sense
that even though the measure of location is a linear function of
an outlying Y,, the measure of dispersion explodes. The poste-
rior, in effect, tends toward a non-informative distribution; we
call this behavior outlier confusion. Since inference is concerned
with the entire posterior distribution (not just the measure of
location), the use of a multivariate-t-derived KF may be consid-
ered a weak robustification of the KF model.

Another feature of the multivariate--derived KF emanates
from the fact that C(Y,, . . . , Y,) possesses a memory of unlim-
ited order. In the absence of extreme outliers and assuming that
2, the V’s, and the W,’s were realistically valued, cy, ...,
Y,) converges in probability (as t — «) to 1. Hence the long-
term tendency for C(Y,, . . ., Y,) to adhere to or deviate from
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1 provides information about the reasonableness of the model
specification. Finally, since 6, has a posterior density with v +
tq df, the growing information of the process means that 6, be-
haves in a less heavy-tailed manner as compared with Y,, which
always has v df.

A2 Roots of a Cubic Equation Characterizing
the Posterior

Suppose that the prior density of X is a Student-t density,
denoted by t(x; 0, 1, n), and that the likelihood of Y given X =
xist(y; x, s, m) = t(x; y, s, m), n > m. Because of symmetry
we need only consider the case y > 0. The posterior density of
X|Y=yis

h(x|y) « [1 + x¥n]-@921 + (x — yY/ms)-o+v2, (A1)

The mode(s) of the posterior density will be located at those
values of x for which d{log[h(x | y)]}/dx = 0, where

d{loglh(x | y)l}/dx x — (n + Dx[ms + (x — y))
= (m + 1)(x = y)n + x7
==[m+1+ @+ D
+{(m + 1) + 2(n + 1)]yx?
= [(m+ Dn + (n + D)(ms + y)x
+ (m + )ny. (A2)

Methods for solving this cubic equation may be found in Bur-
ington (1955). To cast (A.2) into the “standard” form, x> + px?
+ gx + r = 0, we let

k=@m+1)/(m+1)

p = —[2k + 1)/(k + 1)]y

g =[n+ k(ms + y))ik + 1)

r= —nyllk + 1). (A.3)

Setting z = x + p/3, we arrive at the reduced form z* + az +
b = 0, where

_3q-p _ —(K+k+1)y>+ 3k + D)(n + kms)
3 3k + 1y
b= (2p* - 9pq + 27r)/27
= Qk + 1)k +2)(k — 1)y> + 9%k + D[k + 1)
X (n + kms) — 3n(k + 1)]y. (A9

Ford = b*/4 + a*/27, the following will hold: (a) If d > 0 there
is one real root and two complex conjugate roots, implying that
the posterior is unimodal. (b) If d = 0 there are three real roots
(all unequal if d < 0), implying that the posterior is bimodal.

It is easy to demonstrate that (A.2) is positive for x < 0 but
negative for x = y, so all roots lie in the open interval (0, y).
Therefore, a necessary condition for bimodality is e < 0; from
(A.4), this requires that y > [3(k + 1)(n + kms)/(k* + k +
1)]'2, so the posterior will be unimodal whenever y is sufficiently
small. On the other hand, d may be seen to be a sixth-degree
equation in y, with a negative coefficient of y$, so d will be
negative and the posterior will be bimodal for all y greater than
some constant.

By expressing the three real roots in the bimodal situation as
—sign(b)2(—a/3)"*cos(¢ + jn/3),j = 0,1, 2, where ¢ is ob-
tained as a solution to cos(3¢) = [—(b%/4) + (a*/27)]'?, it may
be shown that as y becomes very large, the two modes will be
located near 0 and y. The height of the posterior at the rightmost
mode will approach 0 relative to the height at the leftmost mode.
A first-order Taylor series approximation to the leftmost mode—
the “dominant” one that returns to the prior mode of 0—locates

a
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it near ny/[n + k(ms + y)?], which exhibits the property of an
initial increase and a subsequent decrease of the location of the
mode.

[Received February 1987. Revised September 1988.)
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