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This paper introduces a framework for robustifying convex, law invariant risk measures. The robustified risk

measures are defined as the worst case portfolio risk over neighborhoods of a reference probability measure,

which represent the investors beliefs about the distribution of future asset losses. It is shown that under

mild conditions, the infinite dimensional optimization problem of finding the worst-case risk can be solved

analytically and closed-form expressions for the robust risk measures are obtained. Using these results, robust

versions of several risk measures including the standard deviation, the Conditional Value-at-Risk, and the

general class of distortion functionals are derived. The resulting robust risk measures are convex and can

be easily incorporated into portfolio optimization problems and a numerical study shows that in most cases

they perform significantly better out-of-sample than their non-robust variants in terms of risk, expected

losses, and turnover.

Key words : Robust optimization, Kantorovich distance, norm-constrained portfolio optimization, soft

robust constraints

History :

1. Introduction

Since Markowitz published his seminal work on portfolio optimization, the scientific community

and financial industry have proposed a plethora of methods to find risk-optimal portfolio decisions

in the face of uncertain future asset losses. Most of these, similar to the Markowitz model, treat

uncertain losses as random variables. Although they recognize the uncertainty of the losses, these

methods usually assume that the distribution of losses is known to the decision maker, so that there

is no uncertainty about the nature of the randomness. However, in most cases, the distribution

of the losses is unknown and thus typically replaced by an estimate. It was recognized already in

early papers that the estimation of distributions, underlying the stochastic programs in question,
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introduces an additional level of model uncertainty (see Dupačová 1977). The estimation errors

thus introduced at the level of the loss distributions can lead to dramatically erroneous portfolio

decisions, as is well documented for the classical Markowitz portfolio selection problem (see for

example Chopra and Ziemba 1993).

In accordance with recent literature, we use the term ambiguity to refer to this type of (epis-

temic) uncertainty, to distinguish it from the normal (aleatoric) uncertainty about the outcomes

of random variables. Possible ways to deal with ambiguity in portfolio optimization can be catego-

rized roughly into three classes: robust estimation, norm-constrained portfolio optimization, and

robust optimization.

Robust estimation aims to dampen estimation errors that might have an adverse effect on the

resulting stochastic optimization problem. For portfolio optimization, examples of this approach

include various modifications of the Markowitz portfolio selection problem, such as the application

of Bayesian shrinkage type estimators proposed by Jorion (1986) and more recent approaches by

DeMiguel and Nogales (2009).

Norm-constrained portfolio optimization follows a slightly different approach: Instead of robus-

tifying the estimation, this method changes the corresponding risk minimization problems in order

to mitigate the effects of estimation error on the results of the optimization problem by artificially

restricting optimal portfolio weights. This line of research was triggered by Jagannathan and Ma

(2003), who argue that restricting portfolio weights is equivalent to using shrinkage type estima-

tors to estimate the covariance matrix in a Markowitz model. Similar approaches can be found in

DeMiguel et al. (2009a) and Gotoh and Takeda (2011).

The third approach uses robust optimization to immunize stochastic optimization problems

against estimation error. In contrast to the models discussed before, an ambiguity set, i.e. a set

of distributions assumed to contain the true distribution, is explicitly specified and the objective

function is changed to the worst-case outcome for distributions in the ambiguity set. Hence, deci-

sions are optimal in a minimax sense as they result in best worst-case outcomes. Initial research

in this direction includes papers by Dupačová (see for example Dupačová 1977), followed by more
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recent contributions by Shapiro and Kleywegt (2002), El Ghaoui et al. (2003), Goldfarb and Iyen-

gar (2003), Maenhout (2004) and Shapiro and Ahmed (2004). While most approaches make strong

assumptions about the nature of the ambiguity, there is also some research that uses non-parametric

methods (see Calafiore 2007, Pflug and Wozabal 2007, Delage and Ye 2010, Zymler et al. 2011,

Wozabal 2012, Li and Kwon 2013).

Various notions of ambiguity call for a number of different solution techniques that in turn lead

to different robust solutions. As an example, take robustification of the Conditional Value-at-Risk

(CVaR), which recently attracted some attention in the literature. Lim et al. (2011) show that the

CVaR is sensitive to misspecification of the underlying loss distribution. In Zhu and Fukushima

(2009), the authors treat the problem by considering uncertainty sets that comprise either of

discrete distributions with a fixed set of atoms or of combinations of a fixed set of given densities.

Natarajan et al. (2009) study similar problems but use partial information on the moments of

the loss distributions to define ambiguity sets. Gotoh and Takeda (2011) and Gotoh et al. (2013)

study robustified Value-at-Risk and CVaR optimization where the discrete support of the random

returns is ambiguous and the ambiguity set is described by a norm ball. Using the dual definition

of the norm, the authors arrive at robustified version of the CVaR that resembles the robustified

version of the CVaR obtained in this paper.

In this paper, we adopt a robust optimization approach with the ambiguous parameter being

the joint distribution of the asset losses. We assume the existence of a distributional model P̂ that

represents a best guess for the true distribution of the losses, which we refer to as the reference

distribution. As ambiguity sets we use neighborhoods of this reference distribution which are con-

sistent with the notion of weak convergence. Hence, the method is non-parametric in the sense that

it does not restrict the ambiguity sets to subsets of a parametric family of distributions. The ambi-

guity set is used to robustify a portfolio optimization problem involving a convex, law invariant risk

measure. Although the notion of ambiguity is rather general, we attain closed-form expressions of

the robustified risk measures, which can be used in place of the original risk measures to solve the
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robustified problem. Our approach works for various risk measures, including the standard devia-

tion, general distortion functionals such as the CVaR, the Wang functional and the Gini functional.

The results in this paper are based on theoretical findings in Pflug et al. (2012) obtained to study

certain qualitative features of naive diversification heuristics in portfolio optimization.

One of the advantages of the proposed robust measures is that they derive from a very gen-

eral notion of ambiguity, which requires only weak conditions regarding the real distribution of

asset losses. Furthermore, the obtained analytical expressions for the robustified risk measures

lead to convex, computationally tractable robustified stochastic programming problems, which are

often in the same problem class as the unrobustified problems. The computational simplicity of

the proposed robust risk measures also makes them applicable in a multitude of contexts as we

show by demonstrating that soft robustification of risk constraints (see Ben-Tal et al. 2010) leads

to computationally tractable problems that can be solved as a single convex programming prob-

lem. These favorable computational properties arise because the obtained robust risk measures are

essentially regularized versions of the original measures and therefore have a close connection to

the norm-constrained portfolios in the extant literature. In fact, we show that using the robusti-

fied standard deviation is equivalent to some of the models proposed in DeMiguel et al. (2009a).

Similarly, using our results, we can interpret the norm constrained CVaR optimization problem in

Gotoh and Takeda (2011) and in Gotoh et al. (2013) as robustified CVaR optimization. This paper

thus yields an alternative interpretation of norm constraints in portfolio optimization.

A remarkably stable pattern reappearing in many different settings is that robustification of

optimization problems is, in some sense, equivalent to regularization of the original problem, as

is also the case here. Regularization is a widely used tool for stabilization and robustification of

estimators. Apart from classical statistical regularizations, such as for example in ridge regression

and shrinkage estimators, authors in the field of machine learning as well as the robust optimiza-

tion recently discovered links between robustness and regularization. In Bousquet and Elisseeff

(2002), the authors show that adding a regularizing term to a learning algorithm yields algorithms

that are uniformly stable, i.e., robust with respect to changes in the test data set. Similar results
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were obtained by Caramanis et al. (2009) who show that regularized support vector machines are

equivalent to robustified support vector machines. El Ghaoui and Lebret (1997) investigate a linear

regression problem with ambiguous data, where the ambiguity set is defined by the Froebnius norm

and use conic programming techniques to show that the problem is equivalent to Tikhonov regular-

ization. Bertsimas et al. (2004) show that robust linear programming problems where the ambiguity

sets are balls in a normed space can be reformulated to convex optimization problems involving the

dual norm, which can also be interpreted as regularized versions of the original problems. Similar

results are obtained in Gotoh and Takeda (2011), Gotoh et al. (2013).

The remainder of this paper is structured as follows: Section 2 outlines the non-parametric notion

of ambiguity which leads to the specification of ambiguity sets and robustified risk measures. Sec-

tion 3 is dedicated to robustifying convex measures of risk and deriving closed-form expressions for

the robustified risk measures of many commonly used convex risk measures. In this section, we also

establish a connection between robust risk measures and norm-constrained portfolio optimization

and demonstrate how robustified risk measures can be used to define soft robust constraint in a

computationally efficient way. In Section 4, we provide a comparison of the out-of-sample perfor-

mance of several robustified risk measures with their respective non-robustified counterparts. We

also discuss how to choose the size of the ambiguity set for robustified risk measures. Section 5

concludes and suggests some avenues for further research.

2. Setting

Let (Ω,F , µ) be an arbitrary uncountable probability space that admits a uniform random variable,

and let XP : (Ω,F , µ)→RN be the random losses of N assets comprising the asset universe, i.e.,

the set of assets from which the decision maker may choose. The notation XP indicates that the

image measure of XP is the measure P on RN , or µ(XP ∈A) = P (A) for all Borel sets A⊆RN .

Our assumptions about the probability space ensure that for every Borel measure P on RN ,

there exists a random variable XP (see Pflug et al. 2012). Let Lp(Ω,F , µ;Rn) be the Lebesgue

space with exponent p containing random variables X : (Ω,F , µ)→Rn and Lp(Ω,F , µ) the space
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Lp(Ω,F , µ;R). Throughout our discussion, we choose q to be the conjugate of p, i.e., such that

1/p+ 1/q = 1. We denote the norm in Lp(Ω,F , µ;Rn) by || · ||Lp to distinguish it from the p-norm

in Rn, which we denote by || · ||p.

We are interested in robustifying convex measures of risk, defined as follows.

Definition 1 (Convex Risk Measure). Let 1 ≤ p <∞ and X, Y ∈ Lp(Ω,F , µ). A functional

R :Lp(Ω,F , µ)→R, which is

1. convex, R(λX + (1−λ)Y )≤ λR(X) + (1−λ)R(Y ) for all λ∈ [0,1];

2. monotone, R(X)≥R(Y ) if X ≥ Y a.s.; and

3. translation equivariant, R(X + c) =R(X) + c for all c∈R,

is called a convex risk measure.

Convex risk measures were first introduced in Föllmer and Schied (2002) and are generalizations

of coherent risk measures (see Artzner et al. 1999). Because of their convexity there exists a rich

duality theory for these functionals. In particular, one can show that every convex risk measure R

has a dual representation of the form

R(XP ) = sup
{
E(XPZ)− ρ(Z) :Z ∈Lq(Ω,F , µ)

}
(1)

where ρ is a penalty function defined on Lq(Ω,F , µ) and E is the expectation operator (for details

see Föllmer and Schied 2002, Pflug and Römisch 2007). It is worth noting that, using the above

representation, a convex risk measure can be interpreted as a robustified expectation operator,

where the robustification takes place via a change of measure induced by multiplying with Z inside

the expectation. In this paper, we want to go one step further and robustify convex risk measures

with respect to the measure P .

We denote a generic risk measure by R and assume that R is law invariant (see Kusuoka

2007), and therefore is a statistical functional that only depends on the distribution of the random

variables. More specifically, we assume that R(Y ) =R(Y ′) for all random variables Y and Y ′ with

the same image measure on R. This assumption is innocuous and correspondingly, it is fulfilled by

all meaningful risk measures.
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We start by analyzing the following generic portfolio optimization problem:

infw∈RN R(〈XP ,w〉)
s.t. w ∈W (2)

where 〈·, ·〉 :RN ×RN →R is the inner product, and W is the feasible set of the problem. The set

W may represent arbitrary constraints on the portfolio weights such as budget constraints, upper

and lower bounds on asset holdings of single assets, cardinality constraints, or minimum holding

constraints for certain assets. The only restriction we impose on W is that it must not depend on

the probability measure P , which rules out feasible sets defined using probability functionals as

well as optimization problems with probabilistic constraints.

If the distribution P of the asset losses is known, then (2) is a stochastic optimization problem

that can be solved by techniques that depend on R, W, and P . However, if P is ambiguous, then

the solution of problem (2), with P replaced by an estimate P̂ , is subject to model uncertainty,

and the resulting decisions are in general not optimal for the true measure P . Although statistical

methods, analysis of fundamentals, and expert opinions may suggest beliefs about the measure P ,

the true distribution remains ambiguous in most cases.

Therefore it is reasonable to assume that the decision maker takes the available information into

account but also accounts for model uncertainty when making decisions. We model this uncertainty

by specifying a set of possible loss distributions, given the prior information represented by a

distribution P̂ . This set of distributions is referred to as the ambiguity set, and P̂ is called the

reference probability measure. We define the ambiguity set as the set of measures whose distance

to the reference measure does not exceed a certain threshold. To this end, we use Pp(RN) to denote

the space of all Borel probability measures on RN with finite p-th moment, and

d(·, ·) :Pp(RN)×Pp(RN)→ [0,∞) (3)

to represent a metric on this space. The ambiguity set for a risk measure R : Lp(Ω,F , µ)→ R

is defined as Bpκ(P̂ ) =
{
Q∈Pp(RN) : d(P̂ ,Q)≤ κ

}
, i.e., the ball of radius κ around the reference

measure P̂ in the space of measures Pp(RN).
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More specifically, we use the Kantorovich metric to construct ambiguity sets. For 1≤ p <∞, the

Kantorovich metric dp(·, ·) is defined as

dp(P,Q) = inf

{(∫
RN×RN

||x− y||ppdπ(x, y)

) 1
p

: proj1(π) = P, proj2(π) =Q

}
(4)

where the infimum runs over all joint distributions π on RN ×RN , such that the marginal distri-

butions proj1(π) and proj2(π) of the first and last N components are P and Q respectively. Each

feasible measure π can be regarded as a transportation plan, transporting the probability mass

from the measure P to the measure Q (or the other way around) in the following way: For arbitrary

sets A, B ⊆RN , π(A,B) indicates how much of the probability mass P (A) is transported to the

set B. In this way, the problem (4) can be interpreted as a problem of optimal transport in RN for

which the cost of transport is measured by || · ||pp. It can be shown that the infimum in (4) is always

attained. For an excellent introduction to the subject of optimal transport see Villani (2003).

The Kantorovich metric dp metricizes weak convergence on sets of probability measures on RN ,

for which x 7→ ‖x‖pp is uniformly integrable (see Villani 2003). In particular, the empirical measure

P̂n, based on n observations, approximates P in the sense that dp(P, P̂n)→ 0 as n→∞, if the p-th

moment of P exists. This property justifies the use of dp to construct ambiguity sets as a stronger

metric would not necessarily reduce the degree of ambiguity by collecting more data.

Using the preceding definition of the ambiguity set, we arrive at the robust counterpart of (2):

infw∈RN supQ∈Bpκ(P ) R(〈XQ,w〉)
s.t. w ∈W.

(5)

We then define the solution of the inner problem as the robustified version Rκ of R, such that for

any given risk measure R and κ> 0

(P,w) 7→Rκ(P,w) := sup
Q∈Bpκ(P )

R(〈XQ,w〉). (6)

Note that the robustified risk measure takes two inputs: a measure P and portfolio weights w.

For a given reference measure P̂ , the mapping w 7→Rκ(P̂ ,w) is convex in w, so problem (5) has a

convex objective.
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3. Robust Risk Measures

In this section, we derive explicit expressions for the robustified versions of convex, law-invariant

risk measures defined above. We consider risk measures R with a subdifferential representation of

the form (1)

R(X) = sup{E(XZ)− ρ(Z) :Z ∈Lq(Ω,F , µ)} (7)

for some convex function ρ : Lq(Ω,F , µ)→ R. If R is lower semi-continuous, then it admits a

representation of the form (7), with ρ=R∗ where R∗ is the convex conjugate of R. If ρ=R∗ and X

is in the interior of the domain {X ∈Lp(Ω,F , µ) :R(X)<∞} , then argmaxZ {E(XZ)− ρ(Z)}=

∂R(X) where ∂R(X) is the set of subgradients of R at X. Consequently, we denote the set of

maximizers of (7) at X by ∂R(X).

In the following, we give some examples of convex risk measures. A more detailed exposition and

derivations of the subdifferential representation can be found in Ruszczyński and Shapiro (2006)

as well as in Pflug and Römisch (2007). We start with the simplest risk measure: the expectation

operator.

Example 1 (Expectation). The expectation E(X) : L1(Ω,F , µ) → R is used by risk-neutral

agents but since it fulfills all the conditions of Definition 1, it is a convex measure of risk. The

subdifferential representation is trivial with ∂E(X) = {1} for all X ∈L1(Ω,F , µ).

The next risk measure relates closely to the classical Markowitz functional, with the only differ-

ence being that the variance is replaced by the standard deviation.

Example 2 (Expectation-corrected standard deviation). The expectation-corrected

standard deviation Sγ :L2(Ω,F , µ)→R is defined as Sγ(X) = γ Std(X)+E(X). The subdifferential

representation of Sγ is given by

Sγ(X) = sup
{
E(XZ) :E(Z) = 1, ||Z||L2 =

√
1 + γ2

}
. (8)

We also address the CVaR, the prototypical example of a coherent risk measure in the sense of

Artzner et al. (1999).
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Example 3 (Conditional Value-at-Risk). The Conditional Value-at-Risk (see Rockafellar

and Uryasev (2000)) is defined as

CVaRα(X) =
1

1−α

∫ 1

α

F−1X (t)dt, (9)

where FX is the cumulative distribution function of the random variable X, and F−1X denotes its

inverse distribution function. Because CVaR is defined as a risk measure, we are concerned with the

upper tail of the loss distribution, such that α is typically chosen close to 1. The dual representation

of CVaR is given by

CVaRα(X) = sup

{
E(XZ) :E(Z) = 1,0≤Z ≤ 1

1−α

}
(10)

for 0≤ α< 1.

Next we discuss a class of examples, called distortion functionals that are predominantly used

in the insurance and pricing literature.

Example 4 (Distortion functionals). The definition of a general distortion functional is

based on the following representation of the mean of the random losses

E(X) =

∫ 1

0

F−1X (p)dp=

∫ 1

0

F−1X (p)d id(p) (11)

with id(p) = p the identity. In a distortion functional the mean is distorted in the sense that instead

of id some monotonically increasing, convex function H : [0,1]→R is used in the above integral.

A general distortion functional, dependent on a function H, is therefore given as

RH(X) =

∫ 1

0

F−1X (p)dH(p). (12)

Note that H introduces an increased weight on the higher losses and thereby reflects the risk

aversion of the decision maker.

It can be shown that if H(p) =
∫ p
0
h(t)dt, then

RH(X) = sup{E(XZ) :Z = h(U), U uniform on [0,1]} (13)

is the subdifferential representation of RH .
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Note that the CVaR is a distortion functional withH(p) = max
(
p−(1−α)

α
,0
)

. The next two examples

directly make use of the idea of distorting the expectation by assigning higher weights to higher

losses and have their origin in the insurance pricing literature.

Example 5 (Wang transform). Let Φ be the cumulative distribution of the standard normal

distribution. The Wang transform Wλ :L2(Ω,F , µ)→R defined as

Wλ(X) =

∫ ∞
0

Φ
(
Φ−1(1−FX(t)) +λ

)
dt (14)

for λ > 0, was originally introduced by Wang (2000) for positive random variables X. It can be

shown that

Wλ(X) =

∫ 1

0

F−1X (p)dHλ(p) (15)

with Hλ(p) =−Φ[Φ−1(1− p) +λ]. Note that (15) is also meaningful for general random variables,

i.e., the restriction to positive random variables can be relaxed.

Example 6 (Proportional hazards transform or power distortion). The proportional

hazards transform or power distortion Pr :L1(Ω,F , µ)→R for 0< r≤ 1 is defined as

Pr(X) =

∫ ∞
0

(1−FX(t))rdt, (16)

and was introduced by Wang (1995) for positive random variables. Similar to the case of the Wang

transform, it can be shown that

Pr(X) =

∫ 1

0

F−1X (p)dHr(p), (17)

with Hr(p) =−(1− p)r.

The next two risk measures also turn out to be distortion risk measures although their original

definition is not based on the idea of a distorted expectation.

Example 7 (Gini measure). The Gini measure was first studied by Yitzhaki (1982) and pro-

posed as an alternative to classical mean-variance type optimization because of its close links to
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second order stochastic dominance. The expectation-corrected Gini measure Ginir :L1(Ω,F , µ)→

R is defined as

Ginir(X) =E(X) + rE(|X −X ′|) (18)

where X ′ is an independent copy of X. It can be shown that

Ginir(X) =RH(X) =

∫ 1

0

F−1X (p)dH(p) (19)

with H(p) = (1− r)p+ rp2.

Example 8 (Deviation from the median). The deviation from the median DMa :

L1(Ω,F , µ)→R, introduced by Denneberg (1990), can be regarded as a L1-variant of the standard

deviation and is defined as

DMa(X) = E(X) + aE
(
|X −F−1X (1/2)|

)
(20)

=

∫ 1

0

F−1X (p)dp+ a

∫ 1

0

|F−1X (p)−F−1X (1/2)|dp (21)

=

∫ 1/2

0

F−1X (p)(1− a)dp+

∫ 1

1/2

F−1X (p)(1 + a)dp=

∫ 1

0

F−1X (p)dH(p) (22)

with

H(p) =

{
p(1− a), p < 1/2
1
2
(1− a) + p−1

2
(1 + a), p≥ 1/2.

(23)

We proceed by investigating the robust portfolio selection problem. For this purpose, let the

portfolio weights w and the measure P̂ be given. The idea behind calculating robustified risk

measures is to define a measure Q such that

〈XQ,w〉= 〈X P̂ ,w〉+ c|Z|q/p sign(Z), (24)

for Z ∈ ∂R(〈X P̂ ,w〉) and c ∈ [0,∞). In (24), the portfolio losses under P̂ , 〈X P̂ ,w〉, are shifted

in the worst direction with respect to R, such that the parameter c determines the distance of

Q to P . If Z ∈ ∂R(〈XQ,w〉), i.e. continues to be the direction of steepest ascent of R at the

point 〈XQ,w〉, then Q is the worst case measure, in the sense that Rκ(P̂ ,w) =R(〈XQ,w〉) with

κ= d(P̂ ,Q). The next proposition formalizes this intuition. The key assumption is that the norm
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of the subgradients of R stays constant, which ensures that Z ∈ ∂R(〈XQ,w〉), i.e., that the risk

measure can be maximized in the loss distribution by going up along the subgradient Z starting

from 〈X P̂ ,w〉.

Proposition 1. Let R : Lp(Ω,F , µ)→R be a convex, law-invariant risk measure and 1≤ p <∞

and q be defined by 1
p

+ 1
q

= 1. Let further P̂ be the reference probability measure on RN . If κ > 0

and either

1. p > 1 and

||Z||Lq =C for all Z ∈
⋃
X∈Lp

∂R(X) with ρ(Z)<∞, or (25)

2. p= 1 and

||Z||L∞ =C and |Z|=C or |Z|= 0, a.s., (26)

then the solution to the inner problem (6) is

Rκ(P̂ ,w) =R(〈X P̂ ,w〉) +κC||w||q. (27)

Proof. This follows directly from Lemma 1 and Propositions 1 and 2 in Pflug et al. (2012). �

Note that the risk measures treated in this paper share the property of having subgradients

with constant norm with the Lp-norm itself: The dual representation of the p-norm is given by

||x||p = sup{〈x, y〉 : ||y||q = 1}. The conditions on the subgradients are not fulfilled for all functionals

on Lp(Ω,F , µ), as is demonstrated for the variance in Section 3.1. However, all examples discussed

above fulfill condition (25) or (26) for some p′ ≥ p and therefore we can derive robust versions of

the discussed risk measures based on Proposition 1.

Proposition 2. 1. The robustified expectation operator Eκ :L1(Ω,F , µ;RN)×RN →R is given

by Eκ(P,w) =E(〈XP ,w〉) +κ||w||∞.

2. The robustified expectation-corrected standard deviation Sκγ : L2(Ω,F , µ;RN) × RN → R is

given by Sκγ (P,w) = Sγ(〈XP ,w〉) +κ
√

1 + γ2||w||2.

3. The robustified Conditional Value-at-Risk CVaRκ
α :L1(Ω,F , µ;RN)×RN →R is given by

CVaRκ
α(P,w) = CVaRα(〈XP ,w〉) +

κ

1−α
||w||∞. (28)
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4. For 1< p<∞ and a general distortion measure RH :Lp(Ω,F , µ)→R, the robustified version

RκH :Lp(Ω,F , µ;RN)×RN →R is given by

RκH(P,w) =RH(〈XP ,w〉) +κ||h(U)||Lq ||w||q, (29)

with H(p) =
∫ p
0
h(t)dt and U representing a uniform random variable on [0,1].

5. The robustified Wang transform W κ
λ : L2(Ω,F , µ;RN) × RN → R is given by W κ

λ (P,w) =

Wλ(〈XP ,w〉) +κeλ
2/2||w||2.

6. For 1/2< r ≤ 1, the robustified power distortion P κ
r : L2(Ω,F , µ;RN)×RN →R is given by

P κ
r (P,w) = Pr(〈XP ,w〉) + κr√

2r−1 ||w||2.

7. The robustified Gini measure Giniκr : L2(Ω,F , µ;RN) × RN → R is given by Giniκr (P,w) =

Ginir(〈XP ,w〉) +κ
√

3+r2

3
||w||2.

8. The robustified deviation from the median, DMκ
a : L2(Ω,F , µ;RN) × RN → R, is given by

DMκ
a(P,w) = DMa(〈XP ,w〉) +κ

√
1 + a2||w||2.

Proof. 1 and 2 follow directly from Proposition 1 and the corresponding subdifferential rep-

resentations. To show 3, we note that if we choose a set A ⊆ Ω such that µ(A) = 1 − α and

X(ω)≥ F−1X (α) for all ω ∈A, it is easy to see that

Z(ω) =

{
1

1−α , ω ∈A
0, otherwise

∈ ∂CVaRα(X). (30)

Hence, condition (26) is fulfilled, and ||Z||∞ = 1
1−α . Since all subgradients have to be pointwise

smaller than (1− α)−1, any Z ′ that doesn’t put the whole mass on the worst (1− α) percent of

the outcomes cannot represent a direction of steepest descent, i.e., all the subgradients are a.s.

equivalent to Z, which proves 3.

From the subdifferential representation of distortion measures, it follows that subgradients are of

the form h(U), with U uniform on [0,1]. In particular, all subgradients have the same distribution

and therefore the same q-norm. Hence, 4 follows.

To calculate the robust version of the Wang functional, note that

hλ(p) =
dHλ(p)

dp
= exp

(
−2λΦ−1(1− p)−λ2

2

)
. (31)
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We then compute

||hλ||22 =

∫ 1

0

exp
(
−2λΦ−1(1− p)−λ2

)
dp=

1√
2π

∫ ∞
−∞

exp

(
−2λx−λ2− x

2

2

)
dx (32)

=
1√
2π

∫ ∞
−∞

exp

(
−(x+ 2λ)2− 2λ2

2

)
dx= eλ

2

. (33)

Therefore, 5 follows. The points 6, 7 and 8 can be proven analogous to 5. �

Note that the dual norm together with the constant C represents the Lipschitz constant of the

respective risk measure with respect to the Kantorovich distance. Hence, the constant C can be

interpreted as the sensitivity of the risk measure with respect to the change in the image measure

of the asset losses. Clearly, some risk measures are more sensitive to ambiguity than others. For

example, the expectation is relatively robust (with a coefficient of 1) as compared to the CVaR

(with a coefficient of (1−α)−1). This is the case, since the CVaR only depends on a small part of

the distribution and hence, by changing this small part, the CVaR can be dramatically influenced

while the overall distribution does not change much. In contrast, for a unit change in expectation

a larger change in the overall distribution is necessary.

Note that the first four risk measures in the above proposition, are defined on their respective

maximal domains. Clearly, a smaller p can not be chosen, since the corresponding Kantorovich ball

would contain measures for which the risk is not defined. If instead a higher exponent p is chosen

for the domain Lp(Ω,F , µ), then the corresponding ambiguity set gets smaller and the robust risk

measure gets less robust.

For the power distortion, the Wang transform, the Gini measure and the expectation-corrected

deviation from the median the domains of the robustified measures are smaller than the domain

of the non-robustified risk measures – in particular, these measures are no longer defined on

L1(Ω,F , µ). The reason lies in the more restrictive, pointwise conditions on the subgradients for the

case p= 1 in Proposition 2, which is not fulfilled by the subgradients of the respective measures.

We therefore define the robust measures on L2(Ω,F , µ), though any other p, with 1< p<∞, is a

possible choice as well.
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3.1. The case of variance and standard deviation

Although not formally a risk measure in the sense of Definition 1, the variance and the standard

deviation are often used as measures of risk. In this section, we show that the standard deviation

can be robustified using Proposition 1, whereas the variance cannot be treated within the outlined

framework. We also investigate the relation of norm-constrained portfolio optimization to the

robustifications we propose.

We start with a subdifferential representation of the standard deviation. The standard deviation,

Std(X) :L2(Ω,F , µ)→R, is defined as

Std(X) = ||X −E(X)||2 = sup{E [(X −E(X))Z] : ||Z||L2 = 1} . (34)

Clearly, the maximizer Z∗ in (34) is equal to

Z∗ =
X −E(X)

||X −E(X)||2
. (35)

Because E(Z∗) = 0, we can rewrite (34) as

Std(X) = sup{E [X(Z −E(Z))] : ||Z||L2 = 1, E(Z) = 0} (36)

= sup{E [XZ] : ||Z||L2 = 1, E(Z) = 0} . (37)

This representation is of the form (7), and because translation equi-variance is not used in the

proof of Proposition 1, we can write the robustified standard deviation as

Stdκ(P,w) = Std(〈XP ,w〉) +κ||w||2. (38)

The situation differs for the variance: The applicability of Proposition 1 requires that all elements

in ∂R have the same q-norm. While this requirement is met for most common risk measures, it is

not true for the variance, because

Var(X) = ||X −E(X)||22 = sup

{
E(XZ)− 1

4
Var(Z) :E(Z) = 0

}
(39)

and Z∗ = 2(X − E(X)), with ||2(X − E(X))||2 = 2Std(X), i.e., the subgradients do not have

constant norms. The variance therefore does not fit into the framework proposed in this paper.
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However, minimizing the variance is equivalent to minimizing the standard deviation, which can

be robustified as demonstrated above.

Inspecting the robustified risk measures, we note that the robustification is achieved by penalizing

with the corresponding dual norm of the portfolio, multiplied by a constant. Therefore, we can

relate the robustified risk measures to a problem of norm-constrained portfolio optimization (see

DeMiguel et al. 2009a, Gotoh and Takeda 2011). In particular, minimizing (38) is equivalent to

solving a 2-norm-constrained Markowitz problem: If we denote by Σ the covariance matrix of the

N assets under measure P̂ , we can define the 2-norm-constrained Markowitz problem proposed by

DeMiguel et al. (2009a) as

minw w
>Σw

s.t. 〈w,1〉= 1, ||w||2 ≤ c,
(40)

where 1= (1, . . . ,1)> ∈RN . Comparing the KKT condition of (40) to the KKT conditions of

minw w
>Σw+κ||w||2

s.t. 〈w,1〉= 1,
(41)

it is easy to show that for every c≥ 1/
√
N , there exists a κ≥ 0, such that (40) is equivalent to (41).

Conversely, for every κ≥ 0, there exists a c such that (41) is equivalent to (40). This principle can be

extended to other measures of risk, which demonstrates the equivalence of the robust optimization

approach with models that penalize high norms of the portfolio weights.

3.2. Soft robust constraints

The motivating problem (5) centered on robustifying the objective function of a stochastic opti-

mization problem. In this section, we show that the robustified risk measures found in Proposition

2 can also be used in the constraints of stochastic optimization problems. For a fixed reference

measure P̂ and a convex risk measure R, we consider a robustified problem of the form

infw∈RN E(〈X P̂ ,w〉)
s.t. R(〈XQ,w〉)≤ β, ∀Q∈Bpκ(P̂ )

w ∈W.

(42)

Using the robust risk measure Rk, we can rewrite (42) as the following convex problem:

infw∈RN E(〈X P̂ ,w〉)
s.t. Rκ(P̂ ,w)≤ β

w ∈W.

(43)
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For κ = 0, problem (43) reduces to the nominal instance, i.e., a classical mean risk problem.

However, for a given κ > 0, the constraint has to be fulfilled for all distributions Q ∈ Bpκ(P̂ ),

regardless of their distance from P̂ . This approach leaves little flexibility to trade-off the robustness

of the constraint against performance: Although decreasing κ decreases robustness and typically

increases performance, this necessarily implies that measures whose distance from P̂ is greater

than κ will not be taken into account.

A possible remedy for this dilemma has been proposed by Ben-Tal et al. (2010), who define what

they call a soft robust approach by considering the problem

infw∈RN E(〈X P̂ ,w〉)
s.t. R(〈XQ,w〉)≤ f(κ), ∀Q∈Bpκ(P̂ ), ∀κ∈ [0, δ]

w ∈W,

(44)

where f :R→R is a convex function. The authors discuss several choices for f and the ambiguity

set. For their numerical results they choose f(κ) = κ and the entropy distance as a notion of

distance between probability measures to define the ambiguity set. The resulting problems are

solved in an iterative fashion requiring the solution of one standard robust problem per iteration.

For a decision w to fulfill the soft robust constraint for a risk measure R with Lipschitz constant

C, we require that

max
κ∈[0,δ]

Rκ(P̂ ,w)≤ f(κ), (45)

or equivalently R(〈X P̂ ,w〉) + maxκ∈[0,δ] {κC||w||q − f(κ)} ≤ 0. Because f is convex, it turns out

that we can find one κ∗, such that the infinitely many constraints in (44) can be replaced by a

single one. We either have

max
κ∈[0,δ]

{κC||w||q − f(κ)}=

{
δC||w||q − f(δ), for κ∗ = δ

−f(0), for κ∗ = 0,
(46)

i.e., a boundary solution, or the maximum is given by the first-order condition

C||w||q −
∂f

∂κ
= 0. (47)

We could for example choose δ=∞ and f(κ) = dκ2 +β, which leads to κ∗ =
C||w||q

2d
. Consequently,

(44) becomes
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infw∈RN E(〈X P̂ ,w〉)
s.t. R(〈X P̂ ,w〉) +

C2||w||2q
4d

≤ β,
w ∈W.

(48)

In general, problem (48) is a convex problem with finitely many constraints, which can be solved

efficiently for the risk measures discussed herein. We note that f also could be chosen as a linear

function or as an arbitrary convex polynomial. The chosen form gives the modeler the freedom

to model the trade-off between performance and robustness: The parameter β represents the risk

bound for the nominal model and d offers the possibility of weakening the risk constraints for

the other measures. Measures that are far away from the reference measure have to fulfill looser

risk limits than measures that are closer to the reference measure. Thus, the robustification is

not restricted to measures in a prespecified neighborhood of P̂ but rather takes into account all

measures according to their distance from P̂ .

4. Numerical Study

In this section, we numerically test a selected set of risk measures against their robust counterparts.

As is common in the literature, we use a rolling horizon analysis to evaluate the out-of-sample

performance of different portfolio selection criteria. This as if analysis permits us to assess what

would have happened, had we applied a specific portfolio selection criterion in the past. The

selection of data sets is motivated by a similar out-of-sample analysis performed by DeMiguel et al.

(2009a). All computations are carried out in MATLAB 2012a using GUROBI 5.0 as a solver and

YALMIP (see Löfberg (2004)) to formulate the optimization problems.

We test the portfolio selection rules Sγ , CVaR, standard deviation, and deviation from the

median against their respective robust counterparts. The selection of the first three measures is

motivated by their importance in finance literature; the mean absolute deviation from the median

is interesting, because it is a L1-equivalent of Sγ .

As a benchmark, we use the 1/N investment strategy, investing uniformly in all available assets,

which has received significant attention in recent literature on portfolio selection (e.g. DeMiguel

et al. 2009b). Pflug et al. (2012) show that the 1/N rule eventually becomes optimal if ambiguity
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about the true distribution of the asset returns increases. The uniform portfolio allocation and

the nominal problem thus can be seen as two extremes with respect to ambiguity in the loss

distribution: The former assumes no information at all about the distribution, whereas the latter

assumes complete information. Optimally, a robustified portfolio selection rule outperforms both

extremes by incorporating the available information P̂ while also insuring against misspecification

of the model.

Additionally, we use the short-sale constrained versions of the non-robustified problems as bench-

marks. Preventing short-sales makes portfolios with negative and therefore also with extremely

large positive positions impossible and therefore the corresponding solutions are less prone to

estimation error as was also noted for example in DeMiguel et al. (2009a). In fact, Jagannathan

and Ma (2003) showed that for Markowitz optimization no-short-sale constraints are equivalent to

shrinking the covariance matrix – a procedure which is often advocated to mitigate the negative

effects of estimation error (see for example Jorion 1986, DeMiguel and Nogales 2009).

This section comprises four subsections: First we outline the setup of the rolling horizon study

followed by a discussion of the data sets used to conduct the study and the parameter choice for

the different portfolio selection rules. The third section describes how to choose the parameter κ

for the robustified risk measures. In the final section, we analyze the numerical results.

4.1. Out-of-sample evaluation

We use historical loss data xt ∈RN over T periods and choose an estimation window of length L,

with L< T . Starting at period L+ 1, we use the data on the first L historical losses (x1, . . . , xL)

as an estimate of the future loss distribution to compute the portfolio position wL+1 for period

L+ 1. Specifically, we choose P̂ to be the uniform distribution on the scenarios (x1, . . . , xL), such

that P̂ (xi) = 1/L for all 1≤ i≤ L. In the next step, we evaluate the portfolio against the actual

historical losses in period L+ 1 to arrive at the portfolio loss lL+1 = 〈wL+1, xL+1〉. Subsequently,

we adopt a rolling estimation window for the data by removing the first return and adding xL+1

to our data for estimation. Continuing in this manner, we cover the whole data set and obtain a
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sequence of portfolio decisions (wL+1, . . . ,wT ) and a sequence of realized losses (lL+1, . . . , lT ), which

we use to assess the quality of the portfolio selection mechanism.

For the rolling horizon analysis, we solve the problem

infw∈RN Rκ(P̂ ,w)
s.t. 〈w,1〉= 1

(49)

for the risk and deviation measures mentioned previously. We compare the results for κ= 0, i.e.,

the nominal case with the robustified results for κ> 0. For the short-selling constrained problems,

we additionally add the constraint w≥ 0.

In practice, a portfolio manager would impose many more restrictions on feasible portfolio

weights than it is done here. However, because we want to analyze the impact of robustification

on the performance of R as a portfolio selection criteria, we refrain from diluting the results by

imposing further constraints.

We use three performance criteria to assess the quality of a portfolio selection rule: the risk and

the returns associated with the empirical distribution of (lL+1, ..., lT ), and the average turnover

resulting from the respective decisions. We use the arithmetic mean to calculate the average returns

from the realized losses in the rolling horizon study. The turnover is defined as follows: Let w+
t ∈RN

be the relative portfolio weights after the losses lt have been realized but before the rebalancing

decision in period t+ 1,

w+
t =

wt� (1− lt)
〈wt, (1− lt)〉

, (50)

where � is the component-wise or Hadamard product. Then the turnover is defined as

turnover =
1

T −L− 1

T−1∑
t=L+1

〈|w+
t −wt+1|,1〉. (51)

The turnover is a measure of stability of the portfolio over time. Portfolio strategies that yield a

high turnover are undesirable because of the induced transaction costs and, in extreme cases, the

practical infeasibility of the resulting decisions.

Note that neither the expected return nor the turnover appear explicitly in the optimization

problems and it could be argued that if these are of relevance to the portfolio manager, then this
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Abbr. Description Range Freq. T L

10Ind 10 US industry portfolios 07.1963–12.2010 Monthly 570 240
48Ind 48 US industry portfolios 07.1963–12.2010 Monthly 570 240
6SBM 6 portfolios formed on size and book-to-market 07.1963–12.2010 Monthly 570 240
25SBM 25 portfolios formed on size and book-to-market 07.1963–12.2010 Monthly 570 240
100SP 100 S&P assets 04.1983–12.2010 Weekly 1445 500

Table 1 Overview of used historical data sets. The first four data sets were obtained from the homepage of

Kenneth French, http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. The last

data set was obtained from Yahoo Finance.

should be addressed directly in the problem formulation. However, we still report these figures,

since they reveal interesting insights into the characteristics of the solutions and the differences

between the approaches.

4.2. Input data & parameters

We use the data sets described in Table 1 for our numerical studies. The data for the first four

portfolios are available on Kenneth French’s webpage. The portfolios 6SBM and 25SBM are dis-

cussed in Fama and French (1992). The data for 10Ind, 48Ind, 6SBM, and 25SBM each consist of

T = 570 monthly returns from July 1963 until December 2010. The number of assets ranges from 6

to 45, thus representing small- to medium-scale asset universes. The largest data set 100SP consists

of weekly returns for 100 randomly selected S&P assets from April 1983 to December 2010, i.e.,

T = 1445 data points.

Because short windows for estimation often lead to unrealistic estimates of the loss distributions

(cf. Kritzman et al. 2010), we choose L = 240 for the data sets consisting of monthly losses and

L= 500 for 100SP, such that the forecast window covers a time span of 20 and approximately 10

years in the past, respectively. Consequently, we obtain 330 and 945 portfolio decisions and realized

losses on which we base our analysis. We note that, in line with the findings in the literature,

shorter time horizons are expected to lead to worse outcomes both for the robustified and the

unrobustified risk minimization approaches, i.e., make the uniform portfolio strategy seem more

attractive.
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We choose the functional S1, CVaR with parameter α = 0.95, the deviation from the median

with parameter a= 2, and upper semi-standard deviation as risk measures for our numerical tests.

4.3. Choice of κ

The choice of the parameter κ is crucial when using the robustified risk measures. Portfolio opti-

mization problems with differently sized asset universes, different degree of stability of the stochastic

process over time, and different additional constraints call for tailored choices of the robustness

parameter κ.

Increasing κ can mitigate the effects of estimation error resulting from using a wrong distribution

of losses P̂ in the optimization problem. However, choosing κ > 0 introduces a bias in the form

of the penalization term. Thus, when choosing κ the modeler must weigh contradictory goals of

minimizing estimation error and minimizing bias – a situation reminiscent of many statistical

procedures.

In this paper, we choose κ by a cross validation type procedure based on S in-sample losses

X1, . . . ,XS: For a set S ⊆ {1, . . . , S}, denote by XS the random variable with µ(XS =Xj) = |S|−1

for all j ∈ S. Now consider randomly drawn partitions Si1, Si2 of {1, . . . , S}, i.e. {1, . . . , S}= Si1∪Si2

and Si1 ∩Si2 = ∅ for i= 1, . . . ,m. For κ> 0, define the following measure of estimation error

E(κ) =
m∑
i=1

(
Rκ(〈XS

i
1 ,wκSi1

〉)−R(〈XS
i
2 ,wκSi1

〉)
)2

(52)

where wκSi1
are the optimal portfolio weights found using XS

i
1 and κ in the robustified portfolio

optimization problem. The optimal value κ∗ is chosen such that

E(κ∗) = min
κ
E(κ). (53)

As is common with cross-validation, the above optimization problem of finding κ∗ has no special

structure that can be exploited by optimization routines. In fact, in general it can not even be

guaranteed that the problem is convex. However, since the optimization involves only one variable

and the violations of convexity are typically mild, standard line search routines do not have a
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Figure 1 Panel (a): The cross validation function E for the first CVaR problem of the rolling horizon study for

the data set 25SBM. The red line indicates the optimal value found by the line search routine fminbnd ;

Panel (b): Dependence of the coefficient of variation of 30 runs of (53) on the number of partitions m

for the first problem of the rolling horizon study for the data set 25SBM and S2.

problem finding the minimum. For the numerical examples, we use the MATLAB function fminbnd

to solve (53). A typical example of an objective function, including mild non-convexities, is depicted

in Figure 1, Panel (a). As can be seen from the figure the fminbnd routine finds the minimal κ.

The above method simulates an in-sample/out-of-sample situation using only in-sample data.

κ is chosen in such a way so as to strike a balance between variance and bias: If κ is too large

the robustified in-sample risk Rκ(〈XSi1 ,wκSi1〉) will be much larger than the out-of-sample risks

R(〈XSi2 ,wκSi1〉) for many i. If κ is too small, there will be many partitions i such that the estimate

of the optimal robust in-sample risk is too small and therefore Rκ(〈XSi1 ,wκSi1〉) is smaller than

R(〈XSi2 ,wκSi1〉). Both situations are penalized by E.

Clearly, since the partitions used in the calculation of E are randomly sampled, the solution to

(53) is random as well. By increasing the number of partitions m it is possible to consider more

different configurations of the data points and therefore also get a more complete picture of the

out-of-sample error. One would therefore expect that the outcome of the optimization (53) will be

less dependent on the chosen random seed if m is large. In other words, if we solve (53) several

times, we would expect a small variance of the obtained optimal values κ∗.
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We choose m= 100, since this seems to consistently keep the coefficients of variations of κ∗ below

5% for all the considered risk measures and data sets. See Figure 1, Panel (b) for a depiction of

the typical dependence of the coefficient of variation of κ∗ on the parameter m. For the numerical

results presented in the next section, we use the whole rolling horizon window for finding κ and

the partitions are chosen to have equally sized parts, i.e., |Si1|= |Si2| for all i= 1, . . . ,m and S =L.

4.4. Results

Table 2 shows the out-of-sample risk for the different asset universes in Table 1. The reported

figures are calculated for the set of out-of-sample losses generated by the rolling horizon study;

for the robustified measures Rκ, we report the value of the unrobustified measure R0 calculated

for losses generated by the robustified problems. The corresponding risks for the 1/N strategy and

the short-sale constrained problems, which serve as benchmarks, can also be found in the table.

We use a standard MATLAB implementation of the two-sided bootstrapping test, based on 5000

samples, to test whether the risk of the respective robustified versions of the risk measures differ

significantly from the non-robustified versions.

We note that both the robustified risk measures and the non-robustified risk measures outperform

the 1/N rule in most cases and are never significantly outperformed by the 1/N rule. This finding

is interesting, especially for the non-robustified risk measures, because it implies that the chosen

measure P̂ is close enough to the real data generating process to result in sensible decisions. Thus,

it confirms our choice of the window size.

Turning to the comparison between the robustified and non-robustified measures, we note that in

most cases, the former yield a lower out-of-sample risk than latter. There are some exceptions, but

the general picture indicates that larger data sets yield larger (more significant) differences between

the two risk measures, and the robustified measures are unambiguously better for large data sets.

For data sets with fewer assets, the situation is less clear though. For 6SBM, the non-robustified

risk measures even fare better than the robustified measures. These results indicate that for this

rather small data set, the information encoded in P̂ is accurate to a degree that the gains from
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10Ind 48Ind 6SBM 25SBM SP100

Nominal

S2 0.0645 0.0719 0.0650 0.0575 0.0363
CVaR.95 0.0887 0.1187 0.0850 0.1104 0.0587
DM2 0.0467 0.0555 0.0434 0.0420 0.0272
Std 0.0375 0.0383 0.0406 0.0370 0.0189

No short-sales

S2 0.0648 0.0643 0.0783 0.0757 0.0340
CVaR.95 0.0876 0.0888 0.1037 0.1020 0.0437
DM2 0.0465 0.0467 0.0539 0.0527 0.0237
Std 0.0375 0.0372 0.0444 0.0432 0.0183

1/N

S2 0.0757 0.0856 0.0861 0.0888 0.0449
CVaR.95 0.0990 0.1121 0.1142 0.1167 0.0562
DM2 0.0537 0.0599 0.0608 0.0631 0.0305
Std 0.0428 0.0478 0.0481 0.0497 0.0239

Robustified

S2 0.0633 0.0622∗∗∗ 0.0665∗∗ 0.0568 0.0333∗∗∗

CVaR.95 0.0836 0.0897∗∗ 0.0969∗∗ 0.0817∗∗ 0.0497∗

DM2 0.0458∗∗∗ 0.0443∗∗∗ 0.0442∗∗∗ 0.0385∗∗∗ 0.0231∗∗∗

Std 0.0368∗∗ 0.0355∗∗∗ 0.0412∗∗ 0.0369 0.0176∗∗∗

Table 2 Risks for the non-robustified and robustified measures, for the models with no short-sale restrictions, as

well as the 1/N rule. The best results for a combination of risk measure and data sets are printed in bold font. Stars

indicate the significance of the difference of the robustified and unrobustified solutions (***: 1%, **: 5%, *: 10%).

robustification are smaller than the losses that result from the distortion of the objective function

in the robustified problem using the κ found by cross-validation. For larger sets of assets, this effect

reverses, as is evident from the results for 100SP and 48Ind.

Looking at the results for the short-sale constrained problems, we see that those yield smaller risk

than the robustified risk measures only in two instances. A comparison between the unrobustified

risk measures and the short-sale constrained problems yields mixed results: In some instances the

results of the short-sale constrained problems are better than the results for the unrobustified

problems (especially for the data sets with more assets), while in some instances the restriction to

positive asset weights leads to worse results in terms of risk. In summary, it can be said that for

larger data sets the short-sale constraint mitigates some of the problems connected with estimation

error but it generally tends performs worse than the robustified risk measures in this respect.

Although maximizing returns was not the goal of this experiment, we report the expected out-of-

sample average returns in Table 3. Note that the quantities reported in Table 3 are returns, i.e., the

negative of the losses used to calculate the risk. Hence, larger values are better. Surprisingly, the
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10Ind 48Ind 6SBM 25SBM SP100

Nominal

S2 0.0110 0.0081 0.0163 0.0191 0.0016
CVaR.95 0.0121 0.0084 0.0170 0.0241 0.0012
DM2 0.0112 0.0076 0.0160 0.0196 0.0016
Std 0.0111 0.0073 0.0151 0.0162 0.0018

No short-sales

S2 0.0099 0.0098 0.0104 0.0105 0.0022
CVaR.95 0.0104 0.0101 0.0097 0.0095 0.0023
DM2 0.0100 0.0097 0.0108 0.0105 0.0022
Std 0.0100 0.0099 0.0102 0.0105 0.0023

1/N 0.0099 0.0099 0.0101 0.0105 0.0030

Robustified

S2 0.0104∗∗ 0.0101∗∗ 0.0153∗∗∗ 0.0167∗∗∗ 0.0019
CVaR.95 0.0089∗∗∗ 0.0116 0.0141∗∗∗ 0.0179∗∗∗ 0.0020
DM2 0.0102∗ 0.0101∗∗ 0.0152∗∗ 0.0166∗∗∗ 0.0020
Std 0.0105∗∗ 0.0099∗∗∗ 0.0142∗∗∗ 0.0148∗∗∗ 0.0020

Table 3 Returns for the non-robustified and robustified measures, for the models with no short-sale restrictions,

as well as the 1/N rule. For explanations regarding the formatting see Table 2.

results are quite similar to the results on the out-of-sample risks, although less pronounced: The

robustified measures outperform the unrobustified measures on the two largest data sets. Com-

paring the returns to those from the 1/N strategy, we find that both the unrobsutified and the

robust risk measures outperform the 1/N strategy except on 100SP in which the 1/N policy con-

sistently outperforms all other strategies. With the exception of the data set SP100, the short-sale

constrained problems yield lower expected returns than both the robustified and the unrobusti-

fied problems and the 1/N strategy is narrowly outperformed by various short-sale constrained

problems in about half of the cases.

The situation is clearer for the turnovers, presented in Table 4: Except for two results, turnover for

the robustified portfolio selection rules are consistently and significantly better than the respective

non-robustified counterparts. Therefore the portfolio compositions that arise from the robustified

portfolio selection rules are much more stable and require less rebalancing, hence, incurring less

transaction costs than portfolios found using the original measures. Unsurprisingly, the 1/N policy

significantly outperforms both the robustified and the unrobustified problems in terms of turnover.

The short-sale restricted portfolios exhibit significantly less turnover than the nominal and the

robustified risk measures, which is due to the inability to leverage which restricts the absolute size

of the portfolio.
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10Ind 48Ind 6SBM 25SBM SP100

Nominal

S2 0.1086 0.4222 0.1827 0.5349 0.1961
CVaR.95 0.2300 1.1079 0.3064 1.2437 0.5717
DM2 0.1878 0.9811 0.2686 1.1463 0.5438
Std 0.1050 0.3932 0.1507 0.4445 0.1859

No short-sales

S2 0.0358 0.0481 0.0316 0.0458 0.0470
CVaR.95 0.0435 0.0598 0.0415 0.0473 0.0634
DM2 0.0768 0.1037 0.0520 0.0784 0.1208
Std 0.0373 0.0481 0.0333 0.0437 0.0487

1/N 0.0498 0.0498 0.0407 0.0426 0.0327

Robustified

S2 0.0733∗∗∗ 0.1629∗∗∗ 0.2015∗∗∗ 0.3002∗∗∗ 0.0674∗∗∗

CVaR.95 0.2390 0.6086∗∗∗ 0.2007∗∗∗ 0.8173∗∗∗ 0.1634∗∗∗

DM2 0.0940∗∗∗ 0.1902∗∗∗ 0.2673∗∗∗ 0.3427∗∗∗ 0.0790∗∗∗

Std 0.0755∗∗∗ 0.1734∗∗∗ 0.1675∗∗∗ 0.2611∗∗∗ 0.0751∗∗∗

Table 4 Turnovers for the non-robustified and robustified measures, for the models with no short-sale

restrictions, as well as the 1/N rule. For explanations regarding the formatting see Table 2.

Mean Standard Deviation
S2 CVaR.95 DM2 Std S2 CVaR.95 DM2 Std

10Ind 0.0036 0.0028 0.0038 0.0036 0.0006 0.0026 0.0007 0.0005
48Ind 0.0155 0.0311 0.0152 0.0150 0.0018 0.0091 0.0020 0.0015
6SBM 0.0014 0.0028 0.0013 0.0016 0.0004 0.0015 0.0003 0.0005
25SBM 0.0040 0.0069 0.0040 0.0040 0.0004 0.0026 0.0003 0.0003
100SP 0.0174 0.0612 0.0156 0.0170 0.0022 0.0266 0.0013 0.0022

Table 5 Means and standard deviations for κ∗ found in (53) for the rolling horizons study.

In summary, the robustified risk measures perform very well for larger data sets. For data sets

with only a few assets, the results are mixed, because the approximation of the data generating

process by P̂ seems more accurate.

Table 5 shows the average values of κ∗ that are chosen by the cross-validation type procedure

discussed in Section 4.3 for the different data sets and risk measures. What can be seen is that

κ∗ is generally higher for data sets with more assets, which can be attributed to the fact that

the Lp norms in the corresponding spaces are larger. Furthermore, we note that the κ∗ for the

risk measures S2, DM2, and Std are quite similar and that, except for 10Ind, the κ∗ for CVaR.95

are relatively larger. Also the variability of the κ∗ over time, expressed in terms of the standard

deviation, is larger for the CVaR.95 than for the other measures, which can be attributed to the

sensitivity of CVaR with respect to small changes in the (upper tail of) distribution.
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5. Conclusion and further work

We propose a framework for solving portfolio optimization problems under ambiguous loss distri-

butions. The problems are solved as worst case over a set of distributions called the ambiguity

set, constructed as a Kantorovich ball around a reference measure P̂ . In contrast to most other

approaches, the ambiguity sets are constructed without any assumptions regarding the member-

ship of the true distribution in any parametric family, such that the ambiguity sets are fully

non-parametric.

Despite the generality of the approach, we obtain closed-form expressions for a large class of

robustified risk measures. Furthermore, these closed-form expressions are typically numerically

tractable, in the sense that they can be incorporated as convex objective functions or constraints in

portfolio optimization problems. We also provided a numerical study showing that the robustified

portfolio selection problems usually yield better results than the nominal problems, unless the data

sets have very few assets.

The robustified optimization problems bear a close resemblance to the norm-constrained prob-

lems proposed by DeMiguel et al. (2009a). The results in this paper thus yield an alternative

interpretation to norm-constrained portfolio selection rules and thereby of Bayesian shrinkage type

estimators in portfolio selection – an aspect that deserves further attention and may be an interest-

ing topic for future research. More generally, the connection between robustification with respect

to the Kantorovich metric and norm-regularization seems to be an interesting topic to explore,

for example in regression, where it can be shown, using results of this paper, that classical ridge

regression is equivalent to a robustified OLS estimator.
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