
sensors

Article

Robustifying the Deployment of tinyML Models for
Autonomous Mini-Vehicles

Miguel de Prado 1,2,* , Manuele Rusci 3,* , Alessandro Capotondi 4, Romain Donze 1, Luca Benini 2,3

and Nuria Pazos 1

����������
�������

Citation: de Prado, M.; Rusci, M.;

Capotondi, A.; Donze, R.; Benini, L.;

Pazos, N. Robustifying the

Deployment of tinyML Models for

Autonomous Mini-Vehicles. Sensors

2021, 21, 1339. https://doi.org/

10.3390/s21041339

Academic Editor: Ricardo

Carmona-Galán

Received: 30 December 2020

Accepted: 9 February 2021

Published: 13 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 He-Arc Ingenierie, HES-SO, 2800 Delemont, Switzerland; romain.donze@he-arc.ch (R.D.);

Nuria.Pazos@he-arc.ch (N.P.)
2 Integrated System Lab, ETH Zurich, 8092 Zurich, Switzerland; lbenini@iis.ee.ethz.ch
3 DEI, University of Bologna, 40126 Bologna, Italy
4 Department of Physics, Mathematics and Informatics, University of Modena and Reggio Emilia,

41121 Modena, Italy; alessandro.capotondi@unimore.it

* Correspondence: miguel.deprado@he-arc.ch (M.d.P.); manuele.rusci@unibo.it (M.R.)

Abstract: Standard-sized autonomous vehicles have rapidly improved thanks to the breakthroughs

of deep learning. However, scaling autonomous driving to mini-vehicles poses several challenges

due to their limited on-board storage and computing capabilities. Moreover, autonomous systems

lack robustness when deployed in dynamic environments where the underlying distribution is

different from the distribution learned during training. To address these challenges, we propose a

closed-loop learning flow for autonomous driving mini-vehicles that includes the target deployment

environment in-the-loop. We leverage a family of compact and high-throughput tinyCNNs to control

the mini-vehicle that learn by imitating a computer vision algorithm, i.e., the expert, in the target

environment. Thus, the tinyCNNs, having only access to an on-board fast-rate linear camera, gain

robustness to lighting conditions and improve over time. Moreover, we introduce an online predictor

that can choose between different tinyCNN models at runtime—trading accuracy and latency—

which minimises the inference’s energy consumption by up to 3.2×. Finally, we leverage GAP8, a

parallel ultra-low-power RISC-V-based micro-controller unit (MCU), to meet the real-time inference

requirements. When running the family of tinyCNNs, our solution running on GAP8 outperforms

any other implementation on the STM32L4 and NXP k64f (traditional single-core MCUs), reducing

the latency by over 13× and the energy consumption by 92%.

Keywords: autonomous driving; tinyML; robustness; micro-controllers

1. Introduction

Autonomous driving has made giant strides since the advent of deep learning (DL).
However, scaling this technology to micro- and nano- vehicles poses severe functional
and robustness challenges due to the limited computational and memory resources of the
on-board processing unit [1,2]. Micro-controller units (MCUs) are typically used for small
unmanned vehicles to balance the power budget of the sensing front-end and keep the
system-energy low to extend the battery life.

Traditionally, small vehicles’ driving decisions have been off-loaded and carried out
remotely, implying energy-expensive, long-latency, and unreliable transmissions of raw
data to remote servers [3]. Off-system transfers can be prevented by processing data on-
board and directly driving the motor controllers. However, given the battery-powered
nature of the system, only a small fraction of the power can be allocated to the processing
unit, i.e., the brain of the autonomous vehicle. Thus, compact and low-power machine
learning (tinyML) techniques are needed to address these challenges and tackle on-device
sensor data analysis at hardware, algorithmic, and software levels [4,5].

There exists a wide variety of machine learning (ML) techniques that span from
traditional clustering, k-nearest neighbours, and decision tree methods [6–8], to modern

Sensors 2021, 21, 1339. https://doi.org/10.3390/s21041339 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4350-1617
https://orcid.org/0000-0001-7458-4019
https://doi.org/10.3390/s21041339
https://doi.org/10.3390/s21041339
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21041339
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/4/1339?type=check_update&version=2

Sensors 2021, 21, 1339 2 of 16

deep neural networks, transformers, and GAN methods [9–11]. Convolutional neural
networks (CNNs) represent the state-of-the-art for computer vision applications thanks to
their efficiency in extracting patterns from input images and learning complex relationships.

However, a major challenge for the design of autonomous driving decision models is
that the real-world environment changes over time: the data distribution used for offline
training might not match the deployment environment’s underlying distribution—e.g.,
the car driving through different landscapes or lighting conditions. Hence, there is an
increasing need to adapt to ever-changing environments to make vehicles more robust and
efficient over time.

1.1. Goal Specification: Robust Low-Power Autonomous Driving

We aim to shed light on the robustification of tinyML models for autonomous systems
deployed in dynamic environments. We specifically focus on enabling the deployment of
tinyCNNs to a low-power autonomous driving vehicle. We based our design on the NXP
cup framework [12], an autonomous racing competition that offers a solid platform on
which to test new ideas that can be reproduced or transported to other autonomous devices.
Our vehicle consisted of a battery-powered mini-car that needed to autonomously issue
seven different commands while driving on a small-scale racetrack: GoStraight, TurnLeft,
TurnRight, CrossingStreets, StartSpeedLimit, and StopSpeedLimit, as shown in Figure 1A.
The vehicle contained a linear camera—producing an image formed by a single line of
pixels, giving a 1D grey-scale image—and an on-board NXP k64f MCU [13] to detect the
current state, compute the required action, and drive the actuators accordingly.

Figure 1. Automotive application use-case. (A) Mini-vehicle containing a linear camera and an

on-board MCU running on circuit track. (B) Double-camera system setup for the close-loop learning

task. One camera feeds the GAP8 (running a tinyCNN) and another feeds the NXP k64f (running

the CVA).

The default autonomous driving controller is based on a conventional and hand-
crafted computer-vision algorithm (named CVA) that predicts accurately only under stable
lighting conditions. The fragility to light condition is due to the nature of the CVA, as
it calculates derivatives on the input image which requires good contrast (adding extra
normalisation methods would cause a high latency overhead). The lack of robustness
to lighting variability was countered by giving the camera a variable acquisition time,
adapting to the environment’s conditions (controlled by a PID) to obtain clear images.
However, the variability and slow-setting time of the camera adjustment (≥2 ms) limit the
vehicle’s agility. Thus, we took a tinyML approach aiming to replace the conventional CVA
with a tinyCNN to: (i) improve the robustness to lighting variations, and (ii) increase the
performance, i.e., actions/sec, by learning challenging features from short and constant
acquisition times.

Sensors 2021, 21, 1339 3 of 16

1.2. Contributions

This paper presents an end-to-end flow of data, algorithms, and deployment tools
that facilitate the deployment and enhance the robustness of a family of tinyCNNs to
control an autonomous, low-powered mini-vehicle. We combined model compression
and parallel computation to reduce the CNN’s inference latency, allowing us to keep up
with the on-board camera at s faster sampling rate (1 ms) compared to the original CVA
solution (2 ms). Despite the tinyCNN’s accuracy degradation due to low-contrast images,
the prediction’s accuracy is recovered over time by applying an imitation learning (IL)
methodology.

We implemented a system with two cameras, as shown in Figure 1B. The system
couples a dedicated fast-rate camera (CAM-VNN) that feeds a multi-core processor (GAP8)
running CNN inference, and a teacher system employing the CVA with access to a slower
frame-rate camera (Cam-CVA), providing clearer images. We implement a closed-loop
learning flow with the target deployment environment in-the-loop by comparing the
outputs of both methods at runtime (tinyCNN vs. CVA). If the tinyCNN’s prediction
differs from the CVA’s, the current sample of the fast-rate camera is sent to a remote
central unit, creating an incremental dataset. We retrained the tinyCNN on the complete
dataset, improving its prediction capabilities. Thus, when applying the closed-loop learning
strategy, the most accurate tinyCNN model reached an accuracy of 97.4% on the fast-rate
camera’s dataset, which is 16% more accurate than a bigger model (LeNet5) trained on the
initial dataset.

Additionally, we propose an on-board ML predictor to select at runtime between a
low-energy tinyCNN and a high-energy but more accurate tinyCNN based on the current
image. This approach leads to energy saving by choosing the more energy-demanding
CNN only for the more challenging inputs. Thus, our contributions are the following:

• We introduce a closed-loop learning methodology that enables the tinyCNNs to learn
through demonstration. By imitating an expert with access to good-quality images,
the tinyCNNs gain robustness to lighting conditions while having only access to a
fast-rate camera, thereby doubling the system’s throughput compared to CVA.

• We leverage GAP8 [14], a parallel ultra-low-power RISC-V SoC, to meet the CNN
inference computing requirements of this agile driving use case by adding it as a
System-on-Module (SoM) on the NXP platform.

• We introduce an ML predictor that can swap the tinyCNN model at runtime to
minimise energy consumption by analysing the input image. Thereby, we find new
Pareto-optimal points where the combination of tinyCNNs consumes up to 3.2× less
energy than always using the most accurate tinyCNN, while achieving only 3.2%
less accuracy.

Further, we compare our deployment solution on GAP8 (50 MHz) with two platforms
featuring an Arm Cortex-M processor: an STM32L4 (80 MHz) and an NXP k64f (120 MHz).
We show the Pareto-optimal front where our solution dominates all other implementations,
reducing the latency by over 13× and the energy consumption by 92%.

2. Related Work

We categorise the related work in three main areas:

2.1. Learning Methodology

There exists a wide variety of ML techniques that can be grouped into three classes:
supervised learning, unsupervised learning, and reinforcement learning [15]. Supervised
learning [16] corresponds to those methods that employ a labelled dataset or a teacher
to guide the training phase. Examples of this class are k-nearest neighbours [7], support
vector machine [17], decision trees [8], multi-layer perceptron, and convolutional neural
networks [9]. Contrarily, unsupervised learning algorithms autonomously learn structures
or patterns in the data without any teacher or labels. Examples of this class are clustering [6]
and auto-encoders [18]. Finally, reinforcement learning (RL) [19] relies on the notion of

Sensors 2021, 21, 1339 4 of 16

an agent that makes decisions in an environment to maximise an objective or cumulative
reward. Value-based algorithms such as Q-learning [20], and actor-critic algorithms such
as A3C [21] are some examples of RL.

In this work, we focus on convolutional neural networks (CNNs), as they represent
the state-of-the-art for computer vision. For the training of the CNNs, we introduce a
learning flow that employs an imitation learning (IL) methodology. IL leverages the idea of
a student learning from an expert that gives directives through demonstration [22,23]. Thus,
the student has access to valuable data that can speed up the learning process and make it
safer for methods deployed in real-life scenarios, e.g., autonomous driving. In this context,
ALVINN [24] proposed a CNN-based system that, trained on driving demonstrations,
learns to infer the steering angle from images taken from a camera on-board. Similarly,
PilotNet [25] and J-Net [26] employed a system that collects the driver’s signal to label a
training dataset with on-board cameras. However, these approaches only use the expert to
label the training datasets.

Instead, we propose a closed-loop learning methodology where the learner confronts
the expert in real drive and gradually improves through demonstration. In this direction,
Pan et al. proposed [27], wherein they optimise the policy (online) of a reinforcement
learning agent that imitates an expert driver with access to costly resources, while the agent
has only access to economical sensors. However, their approach is not compatible with our
use case where low-power systems cannot hold such levels of computation and memory.

In a different context, Taylor et al. [28] proposed an adaptive method (online) to change
the CNN at runtime to improve the overall accuracy when tested in the ImageNet challenge
and deployed on a Nvidia Jetson. However, their runtime predictor is implemented in python,
which is rather slow (≈ 200 ms) and not suitable for MCUs. Inspired by this work, we
implemented an optimised ML predictor that can swap the CNN at runtime to improve the
energy efficiency of our autonomous low-power driving use case. Unlike studies such us [29],
we do not intend to predict far-sighted forecasts, but we want to infer (predict) whether the
current image will be well classified by a low-energy CNN, thereby saving energy. If the
result of the prediction is “no,” a larger and more accurate CNN is used instead.

Several ML algorithms could be used to implement our predictor. For instance, a KNN
algorithm was employed in [28] while an MLP and a SVM were used instead in [30,31] for
micro-drilling and cancer genomics applications, respectively. Other works, such as [32,33],
introduced self-learning or automated design space exploration methods to adapt to the
current environment and find the best method. However, those methods require floating-
point operations and large amounts of computation [19], restricting their use in MCUs. In this
work, we evaluated several ML algorithms, trading off accuracy and latency. We put a strong
focus on deployment optimisation and found that a DT gives the right balance, achieving a
prediction in as little as 15 µs.

2.2. High-Performance Autonomous Driving

There exist multiple CNN approaches for autonomous driving [34], ranging from
standard-size to small-scale vehicles. On the higher end, Nvidia and Tesla introduced
PiloNet [25] and AutoPilot [35], requiring dedicated platforms such as TESLA FSD chip and
NVIDIA drive, which provide TOPs of computing power and tens of gigabytes of memory
for their large CNN solutions. Other approaches such as DeepRacer [36], F1/10 [37], and
DonkeyCar [38] require GOPs and hundreds of megabytes that impose the use of high-end
embedded platforms such as Nvidia Jetson, Raspberry PI, or Intel Atom. By contrast,
we focus on end-to-end CNN solutions suitable for very low-power vehicles with MCUs
featuring MOPs and up to a few megabytes, which is an unexplored field.

2.3. Low-Power DL deployment

On the deployment side, multiple software stacks have been introduced to gain
flexibility for edge inference. Solutions targeting mid-high processors, such as ARM Cortex-
A cores, run fast inference by making use of DSP units to accelerate the matrix multiplication

Sensors 2021, 21, 1339 5 of 16

kernels, which demands the most significant part of the DL workload [39–41]. However,
these devices do not fit the energy requirements of battery-operated systems. In the context
of resource-constrained MCUs, several software stacks have been introduced to address the
severe limitations in terms of computational and memory resources. STMicroelectronics has
released X-CUBE-AI to generate optimised code for low-end STM32 MCUs [42]. Similarly,
ARM has provided the CMSIS-NN library [43], which targets Cortex-M processors and
constitutes a complete backend for quantised DL networks exploiting 2x16-bit vector
MAC’s instructions [44,45]. The functionality of the library has been demonstrated in
several DL use cases running on MCUs [44,45]. Recently, the CMSIS-NN dataflow has
been ported to a parallel low-power architecture, PULP, originating PULP-NN [46], which
exploits 4x8-bit SIMD MAC instructions and achieves an up to 15.5 MAC/cycle on a
parallel processor, such as the GAP8. In this work, we leveraged the GAP8 processor
for the autonomous driving use case by adding it as an SoM on the NXP platform. The
prediction produced by the GAP8, running CNN inference, is compared against the result
produced by the NXP module, running the handcrafted computer-vision algorithm (CVA).
In a case of mismatch, the camera input sample is transmitted to a remote server to enhance
the dataset for offline training. MCU platforms’ memory limitations (typically a few MBs)
prevent the entire dataset’s storage for online fine-tuning [47,48]. Moreover, an on-device
learning procedure results in an expensive computational load, usually demanding floating-
point engines that are not featured by ultra-low-power MCUs. Lately, some works have
shown continual learning algorithms that do not require the storage of the full dataset for
online fine-tuning [48–50]. However, these algorithms reach a lower accuracy with respect
to retraining on the full enhanced dataset [51]. Thus, we have opted for an offline retraining
methodology for our CNNs to gain robustness in this autonomous driving use case.

3. Initial Evaluation and Challenges

We aimed to take a tinyML approach and replace the initial CVA solution with
a tinyCNN. First, we evaluated an initial setup and verify the challenge of porting DL
methods on MCUs. In Section 4, we introduce the methods to enhance the performance and
robustness of the deployed CNNs. Finally, in Section 5, we show the result of the several
methodologies and compare three MCU platforms for the CNN’s inference latency and
energy. Thus, we evaluated an initial setup to assess a CNN’s accuracy and performance in
the target use case.

3.1. Data Collection

We have manually collected and labelled three initial datasets, each containing around
1000 samples per class (driving action) for the training set and 300 for the test set. The first
dataset, Dset-2.0, contains samples with a fixed acquisition time of 2.0 ms—clear enough
images—where the CVA can still predict well the required action. On the other hand,
the second and third datasets, Dset-1.5 and Dset-1.0, hold more challenging samples (low
contrast) with 1.5 and 1.0 ms acquisition times where the CVA fails to predict well, and
thus, we aimed to use a CNN instead.

3.2. Training

We chose LeNet5 [52] for our initial evaluation, as it is a small and well-known CNN
architecture, which is also used in [26]. We use PyTorch as a training environment with an
cross-entropy loss function, a SGD optimiser, data augmentation, and dropout to avoid
overfitting. Thus, we obtained an accuracy of 99.53% on the Dset-2.0 test set, but only
84.12% and 81.27% on the more challenging Dset-1.5 and Dset-1.0 test sets.

3.3. Lighting Condition Challenges

We aimed to show the effects of a dynamic environment on driving use cases, e.g.,
sudden sunlight or passing through a tunnel. We could emulate this scenario by training
LeNet5 on the one of our Dsets, e.g., Dset-2.0, and testing it on Dset-1.0, as they contain

Sensors 2021, 21, 1339 6 of 16

the same elements but sampled with different acquisition times, and therefore, simulate
different light conditions. As shown in Table 1, we can observe that the accuracy quickly
drops when the light conditions differ from the learned distribution, as the features, e.g.,
line tracks, might be diffused or too shiny.

Table 1. Lighting conditions challenges. Networks were either trained on Dset-2.0 or Dset-1.0 and

evaluated on all three Dsets.

Trained Dset-2.0 Dset-1.0

Tested Dset-2.0 Dset-1.5 Dset-1.0 Dset-1.0 Dset-1.5 Dset-2.0

LeNet5 (%) 99.5 83.3 32.8 81.3 61.0 42.7

3.4. Deployment

We employed CMSIS-NN (INT8) as a backend to execute LeNet5 on the NXP k64f.
The execution time turned out to be 5.4 ms, far too long compared to the ≈2 ms achieved
by the conventional CVA on the same platform and conditions.

Discussion: Given the fragility of the CNN to lighting conditions and the long execu-
tion time of LeNet5, the initial CNN setup provides no benefit compared to the original
CVA. To address these limitations, we propose a methodology to incrementally improve
our DL-based approach under the latency-memory constraints of MCU devices, notably
overcoming traditional CVA pipelines.

4. Robust and Efficient Deployment with tinyML

To address the challenges discussed above, first, we created and compressed a family
of tinyCNNs for efficient MCU deployment. Next, we introduce the GAP8 as a SoM to
accelerate the CNN’s inference. Then, we detail the closed-loop learning methodology,
and finally, we introduce the ML predictor to swap the tinyCNNs at runtime. The global
methodology can be seen in Figure 2.

Figure 2. Challenges and methodology for robust and efficient deployment with tinyML for au-

tonomous low-power driving vehicles.

4.1. Vehicle Neural Network (VNN) Family

We modified LeNet5’s topology by varying the number of convolutional layers and
the stride to shrink the model’s size, the number of operations, and the latency. Table
2 shows the different network configurations — networks and datasets have been open-
sourced from https://github.com/praesc/Robust-navigation-with-TinyML. To have a
higher tolerance to the diffusion of features in low-light conditions, we have opted for a
relatively large kernel size (k = 5) for both the convolution and the pooling layers, giving
the latter a stride of 3 to reduce the number of activations. As a result, we have created
a family of tinyCNN called vehicle neural networks (VNNs) containing a range of layers

Sensors 2021, 21, 1339 7 of 16

that span from 1 to 3 convolutions followed by one fully-connected (FC) layer for the final
classification. Overall, our family of VNNs achieved an accuracy between 91% and 98% on
the Dset-2.0.

Table 2. Vehicle neural network (VNN) family.

LeNet5 VNN4 VNN3 VNN2 VNN1

Parameters (K) 72.85 6.04 0.97 1.29 0.48
Complexity(KMAC) 181.25 163.41 28.69 5.82 7.5

Training of CNNs is normally carried out using large floating-point data types. Such
types need specific arithmetic units which may not even be present in MCUs due to their
large area and energy consumption. Quantization reduces the storage cost of a variable by
employing reduced-numerical precision. In addition, low-precision data types can improve
the arithmetic intensity of the CNNs by leveraging the instruction-level parallelism, e.g.,
SIMD instruction. Thus, we have quantised our VNN models to fixed-point 8-bit to reduce
memory footprint and power consumption [53,54]. We have employed post-training
quantization where the weights can be directly quantised while the activations require a
validation set (sampled from circuit runs) to determine their dynamic ranges. Thus, we
observed a low accuracy loss (<3%) after the quantisation of the VNNs when trained on
the initial Dsets and negligible loss (<1%) after the closed-loop learning phases.

4.2. System-on-Module Setup

We leveraged GAP8 [14], a parallel ultra-low-power RISC-V SoC based on the PULP
architecture, to meet the CNN inference computing requirements. GAP8 features an MCU-
system, which includes a RISC-V core, a large set of peripherals, and 512 kB of L2 memory,
and an 8-core RISC-V (cluster) accelerator featuring a DSP-extended ISA that includes
SIMD vector instructions, such as 4 × 8-bit Multiply and Accumulate (MAC) operations.
Besides, the cluster is equipped with a zero-latency 64 kB L1 Tightly Coupled Data Memory
and a multi-channel DMA engine for efficient data movements between in-cluster and
off-cluster memories.

We added GAP8 as a System-on-Module (SoM) on the NXP platform and set up the
system with two synchronised cameras (calibrated to have the same view of the circuit),
one feeding the NXP and another feeding the GAP8 (see Figure1B). We used the GAP8 as a
CNN accelerator, which was only in charge of inferring the VNN on the input image, while
the NXP controlled all the other sensors and actuators. The results from the VNN were
constantly transferred via UART from the GAP8 to the NXP to drive the vehicle.

4.3. Closed-Loop Learning Flow

Initially, our family of VNNs achieved an accuracy of 78–83% on Dset-1.0, a drop
of 15–20% compared to the VNNs trained on the Dset-2.0 setup. Thus, we needed a
learning strategy to enhance the accuracy of the VNNs on the low-contrast images of the
Dset-1.0 setup. However, developing robust applications on low-power systems require
integrating data (often private), algorithms, and deployment tools, which might need
significant expertise [55]. Hence, we propose a closed-loop learning methodology as a way
to gradually improve the quality of our datasets and boost the accuracy of the VNNs.

We implement this technique by collecting valuable data from the sensors at runtime,
training the model from scratch on the cumulative set of data (offline), and pushing back
the updates to the deployed VNN; see Figure 3. Thus, we pursue two main objectives: (i)
improving the robustness to lighting variations and, (ii) increasing the performance, i.e.,
actions/sec, by learning challenging features from shorter acquisition times.

Sensors 2021, 21, 1339 8 of 16

Figure 3. Closed-loop learning pipeline. End-to-end closed-loop learning cyclic methodology via

imitation learning.

We leverage the CVA in our closed-loop learning methodology, as we have experi-
mentally found that it predicts accurately provided adequate light conditions (not possible
to benchmark CVA statically on our Dsets as it uses previous samples to predict the current
one; i.e., it works on a continuous data stream). We can assume the predictions of the CVA
as ground-truth and follow an imitation learning (IL) approach where the CVA acts as a
teacher to help the VNNs learn better features. Hence, we decoupled the original system
(single camera feeding the CVA) and propose a setup with two cameras:

• Cam-CVA: Set with a variable (and long) acquisition time that adapts to the lighting
conditions (controlled by a PID) and always provides clear images. This camera feeds
the CVA running on the NXP.

• Cam-VNN: Set with a short and constant acquisition time that captures the lighting
variability of the environment. This camera feeds the VNN running on the GAP8.

By confronting the results of both algorithms while the mini-vehicle runs in a lighting-
changing environment, we can improve the generalisation capacity of the deployed VNN.
Moreover, we can also leverage IL to increase the VNNs’ accuracy on the more chal-
lenging Dset-1.5 and Dset-1.0 setups, which, in turn, improves the system’s throughput
(actions/sec). We carry out the IL methodology as follows:

• Step 1. While number of samples < N:

– Mini-vehicle drives on the circuit while predicting the required action. Each input
image that leads the VNN’s predictions to differ from those of the CVA is collected.

– Each sample gets automatically labelled by the CVA, which receives clear images
from Cam-CVA, and it is sent over to the PC.

• Step 2. It includes the new samples in the training set to reinforce those classes where
the VNN has failed.

• Step 3. The model is trained (offline) and the updated model is pushed back to the
GAP8. Back to step 1.

The learning procedure can be repeated multiple times. However, we find that the
frequency of new sample discovery decreases over time, thanks to the deployed solution
progressively improving. Thus, we show an experiment with several phases, which we
describe in Section 5.

4.4. Runtime Predictor for VNN Swapping (Online)

We present an energy-efficient deployment use case where the VNNs trained on the
closed-loop pipeline can be swapped at runtime trading accuracy and energy, as shown
in [28]. We introduce a predictive method (predictor) in the system that continuously selects
the VNN (architecture + weights) by analysing the input image before this is passed to the
target VNN for inference; see Figure 4. Thus, we can leverage a low-energy VNN for “easy”
images, and we employ a more accurate (and costly) VNN for more challenging samples.

Similarly to Taylor et al. [28], we opt to implement our predictor as a binary classifier.
The binary predictor is trained to infer whether a given input image’s distribution will

Sensors 2021, 21, 1339 9 of 16

be well classified by a low-energy (and less accurate) VNN, e.g., VNN1 or VNN2. If
the result of the prediction is negative, a larger and more accurate VNN, e.g., VNN3
or VNN4, is employed. We used same the training and test sets as in the closed-loop
learning methodology to train and evaluate our binary predictor. We took one of our
low-energy VNNs, and we performed inference on the dataset. We set apart those samples
that were classified correctly from those that were not, creating our two categories, i.e.,
will-predict-well and will-not.

Figure 4. Runtime predictor. A VNN is chosen at runtime based on the input image.

Since the predictor will cause an overhead in the system, we need to consider the
predictor’s accuracy and performance. Thus, we trained and evaluate several machine
learning (ML) algorithms to implement our predictor: a k-nearest neighbour (KNN), a support
vector machine (SVM), a decision tree (DT), and a convolutional neural network (CNN).

5. Experimental Setup and Results

We present the results of our proposed methods introduced in Section 4 and repre-
sented in Figure 2 for the low-power autonomous driving use case. First, we show the
effectiveness of the closed-loop learning flow to improve the robustness of a VNN. Next,
we demonstrate the energy savings brought by the ML predictor. Then, we compare our
solution running on GAP8 with two other traditional single-core MCUs, and finally, we
summarise all the results achieved during this work:

5.1. Closed-Loop Learning Flow

We demonstrated the effectiveness of the proposed methodology on Dset-1.0, the most
challenging setup, by applying the closed-loop learning strategy to improve the robustness
of the model.

We show several stages, starting by training each VNN on the original Dset-1.0 training
set. Next, we combined our three Dsets: 2.0, 1.5, and 1.0, and trained the VNNs on it to
make it have access to a richer data distribution. Then, we deployed a VNN – we choose
VNN1, as it features a small architecture and yet good potential for learning, but any other
VNN can be deployed—on the mini-vehicle and set the acquisition time of Cam-VNN
to 1 ms. We made the vehicle run in a varying-light environment while the VNN and
CVA results were confronted. Those new samples where VNN failed were collected at
every stage and were merged into a Dset-1.0 training set to make an incremental dataset
that we show in three phases: +25%, +50%, and +100% (new samples with respect to the
original Dset-1.0). In the last stage, i.e., +100%, we heavily altered the lighting conditions
on the environment to improve the robustness of the VNN. We trained (following the
training details of Section 3.2) the VNN from scratch at each phase for 1000 epochs on
the complete set and sent an update of the weights to the vehicle before starting the next
phase. We performed each training three times to account for the variability in the random
initialisation.

Figure 5A displays the results obtained on the Dset-1.0 test set. Initially, our family of
VNNs achieved an accuracy of 78–83%. After training the VNNs on the combined dataset
(Dset-All), most of the VNNs were able to generalise better, and their accuracy noticeably

Sensors 2021, 21, 1339 10 of 16

improved due to the richer diversity of light conditions. Further, when leveraging the
closed-loop learning methodology through IL and training the networks on the reinforced
dataset, VNN3, VNN4, and LeNet5 reached accuracies of 94.1%, 97.4%, and 98.3%. By
contrast, VNN2’s accuracy remained mostly constant and VNN1’s decayed at the end,
probably due to their shallow topology and lower capacity, failing to learn from more
challenging data. Overall, the closed-loop learning approach allowed an increase in
accuracy of over 15% on Dset-1.0, matching the accuracy of the conventional CVA on
Dset-2.0 while doubling the throughput of the system.

Figure 5. Closed-loop learning evaluation. X-axis is shared. (A) The VNN’s accuracy on Dset-1.0

test (8-bit). (B) VNN4 trained on Dset-1.0 learns/forgets features from Dset-2.0.

Figure 5B illustrates how VNN4 learns and forgets features. We trained VNN4 on the
data from Dset-1.0 setup, i.e., the same as in Figure 5A, and compare VNN4’s accuracy on
Dset-1.0 and Dset-2.0 test sets, which contained samples with different acquisition times,
and therefore lighting conditions. We can observe that, at first, when the VNN4 had only
been trained on Dset-1.0 initial’s data, the accuracy on Dset-2.0 was poor. Nonetheless,
when VNN4 received data from Dset-All, it generalised better and performed well in both
test sets. However, as the experiment went on and VNN4 only saw data from the Dset-1.0
setup, it tended to forget and slowly decreased its accuracy on the Dset-2.0 test set. Finally,
by heavily altering the lighting conditions at the 100% point, VNN4 can rehearse with data
similar to those of Dset-2.0 and "remembers." This experiment depicts a challenge typical
of continuous learning. It shows signs of the effects of catastrophic forgetting [47] and how
rehearsal techniques can tackle this issue [48], which we plan to address in the future.

5.2. Runtime Predictor for VNN Swapping

In this section, we discuss the runtime predictor’s results to reduce energy consump-
tion. First, we evaluate several ML algorithms used to implement the predictor and then
we show the energy and accuracy results when it is integrated into the system.

5.2.1. Evaluation of ML Algorithms

For the evaluation, we employed an open-source framework [56] that offers imple-
mentations of the ML algorithms (KNN, DT and, SVM) in python (scikit-learn library) and
C-code, which we used for training and deployment, respectively. Since the evaluation
framework offers the implementations using float32 (FP) data type, we executed them on
the NXP k64f MCU, which contains an FP unit. For the CNNs, we employed PyTorch and
CMISIS-NN instead.

The ML models may take the input image directly or have a feature reduction step
to decrease the number of input features. In case of a reduction, we can either (i) split
the image into the three main parts of the driving track, i.e., left line, middle, and right

Sensors 2021, 21, 1339 11 of 16

line, and calculate the mean intensity of each part (based on experience) or (ii) employ
principal component analysis (PCA) where we select the number of final features (maxi-
mum likelihood estimation (M), 3, 2, or 1). As for the CNNs, we developed two networks
(Conv-Relu-Pooling and FC) following the same concepts of the VNNs but smaller in size
to provide a fast response.

We evaluate the ML algorithms with different feature reduction possibilities, giving
the VNN2–VNN4 swap as an example, since they are the lightest and most accurate
networks, respectively. Thus, we trained our ML algorithms to infer whether VNN2 will
predict the input image correctly in the Dset-1.0 setup. Figure 6 shows the accuracy and
performance of the binary predictor. Overall, we observed that KNN and DT achieved
high accuracy (>90%), while SVM’s accuracy fell under 80%. Both KNN and DT worked
better with a large number of input features, i.e., no feature reduction (none) or "M," losing
precision towards "PCA-1." The highest accuracy was achieved by DT-M with 93.5%. The
ultra-tiny CNNs took the input directly (none) and achieved an accuracy of up to 92%,
being on par with KNN and DT.

Figure 6. ML predictors (latency vs. accuracy). Binary classifier to infer whether VNN2 will classify

the input images correctly. Algorithms contained float32 data types. Tested on NXP k64f MCU.

Regarding the performance, KNN is extremely slow as it needs to go through the
whole training set to calculate the distance for each prediction. Additionally, CNN and
PCA-M methods took a considerable amount of time on the inference and feature extraction
steps, respectively. Thus, taking into account the performance and accuracy, we further
evaluated DT-none and DT-mean (in green), which we converted to integers for better
deployment on the GAP8 platform. Besides, we optimised the execution by embedding
the pre-processing in the ML algorithm’s body, halving the memory accesses. In terms
of clock cycles, DT-none and DT-mean became 10×, 2.5× faster than the FP counterpart,
respectively. The speedup differs among them probably due to the feature extraction
differences. Thus, we selected the DT-none algorithm as our predictor with an accuracy of
91.1% and a latency of 15 µs, making its overhead negligible with respect to the VNN’s
inference time.

5.2.2. VNN Swap Results

Next, we integrated our ML predictor into the system as shown in Figure 4 and
evaluated it on Dset-1.0 test set. The ML predictor selected VNN2 85.8% of the time,
leaving VNN4 for the rest, 14.2%. Thus, while VNN2 and VNN4 individually obtained
accuracies of 80.2% and 97.4% on Dset-1-0 test set, the combined model accomplished 94.2%,
3.2% less accuracy than VNN4 but consuming 3.2× less energy, or 14% more accuracy
than VNN2 with 1.5× more energy consumption (on the GAP8). By these means, we
obtained a new point in the design space whereupon the combined model achieved an
accuracy similar to VNN3’s while it consumed energy equivalent to that used by VNN1.
We repeated the same experiment with a VNN1–VNN4 swap. In this case, the ML predictor
achieved an accuracy of 87%, making the combined model accomplish 96.2% accuracy,
1.2% less than VNN4 but consuming 2.5× less energy.

Sensors 2021, 21, 1339 12 of 16

Figure 7 summarises the accuracy, latency, and energy measured for the VNNs on
several platforms. Looking at the GAP8 results, we can see that, overall, these combina-
tions achieved reductions in energy and latency, pushing the Pareto-optimal front on the
GAP8 towards higher efficiency (latency and energy calculated as weighted averages of
both models).

Figure 7. Accuracy–latency–energy trade-off. Accuracy (with respect to Dset-1.0, y-axis), latency

(x-axis), and energy-consumption (balloon area) for an inference of the VNNs on the STM32 L476,

NXP k64f, and GAP8. The black line highlights the Pareto front. The ML predictor achieves a new

Pareto-optimal front for GAP8 by swapping VNNs at runtime.

5.3. MCU Efficient Deployment

In this section, we offer a comparison between different MCUs when running our
VNNs. We compare the GAP8 (at 50 MHz) with two other classes of MCUs: a low-power
single-core MCU (STM32 L476 at 80 MHz [57]), and a high-performance single-core MCU
(NXP k64f at 120 MHz [13]). We also compare different inference backends supported
on these devices, such as STMicroelectronics X-CUBE-AI [42], ARM CMSIS-NN [43], and
PULP-NN [46] for GAP8.

5.3.1. MCU Hardware/Software Inference Evaluation

Figure 8 reports the inference comparison, in terms of clock cycles. We compare our
optimised solution, the GAP8 platform coupled with the PULP-NN backend, against an
STM32 L476 MCU supporting either X-Cube-AI [42] or CMSIS-NN [43], and an NXP k64f
MCU coupled with the CMSIS-NN [43]. First, we evaluate X-Cube-AI and CMISIS-NN on
the same platform to have an estimation of the performance of each backend. Thus, when
deploying the family of VNNs on the STM32 L476, we observed that X-Cube-AI backend
was up to 27.8% slower than CMISIS-NN. Hence, we took the STM platform coupled with
CMISIS-NN as a reference for comparison with the NXP and GAP8 platforms.

1

10

100

1000

10000

VNN1 VNN2 VNN3 VNN4 LENET5

K
C
yc
le
s

STM32 L476 (X-
CUBE-AI)
STM32 L476
(CMSIS)
NXP k64f
(CMSIS)
GAP8 - 1 Core
(PULP-NN)
GAP8 (PULP-NN)

2x
10.5x 2x

9x

2.5x
12x

3x
17x 1.5x

9x

Figure 8. VNN inference performance. Kilo clock cycles spent on the different MCUs evaluated in

this work for all the VNN family (8 bit).

Thus, we observed that while the NXP solutions were up to 28% slower than STM’s
when inferring the VNNs, the GAP8, with only one active core, reduced the clock cycles up

Sensors 2021, 21, 1339 13 of 16

to 3.13× thanks to its dedicated 4 × 8-bit SIMD MAC instructions. We obtained further
speedups by using the 8-core cluster of GAP8, which lead to a further improvement of
up to 6.4×. We argue that the discrepancy from the ideal 8× speedup is related to the
low workload of small networks for which the parallelization overhead is not negligible.
Overall, running an inference task on the GAP8’s cluster can be over 21× faster than the
NXP or STM32 (X-Cube-AI) solutions.

5.3.2. Energy–Accuracy–Latency Trade-off

Thanks to the high accuracy obtained through the closed-loop learning methodology,
we can employ a camera with a short-acquisition time (1 ms), which we set as our latency
target for the classification task. Figure 7 summarises the accuracy, latency, and energy
measured on the different MCUs. All VNNs deployed on GAP8 met the 1 ms target and
established the accuracy–latency Pareto frontier, dominating all the other implementations
on STM32 L476 and NXP k64f. Remarkably, only VNN2 got under 1 ms on the NXP k64f
(0.97 ms) due to its shallow topology and the higher clock frequency of the NXP.

Looking at the energy consumption of a single classification, VNN4 on GAP8 (8 cores,
50 MHz) consumed 18.9 µJ, 65.2% less compared to VNN2 on NXP k64f (120 MHz) while
being 17.2% more accurate. The same VNN2 on GAP8 consumed 3.9 µJ, 92.8% less than
the NXP k64f. The usage of STM32 L476 (80 MHz) is only possible if executing VNN2
and relaxing the target latency up to 1.5 ms. VNN2 on STM32 L476 consumed 66.26%
less energy (18.3 µJ) compared to the NXP k64f using the same network topology and the
same amount of energy as VNN4 on GAP8, while the latter caused 13.5% more latency and
17.2% more accuracy.

5.4. Robust and Efficient Deployment with tinyML Results

Table 3 summarises the results achieved through the different methodologies and
optimisations introduced in the paper. Firstly, we can observe that by using the GAP8
platform for CNN deployment, we obtained faster and more energy-efficient solutions;
e.g., LeNet5’s deployment became 4.5× faster and consumed 12.4× less energy than the
NXP baseline. The improvement of GAP8’s solution over NXP’s is explained by the use of
GAP8’s multi-core acceleration and the optimized NN SW stack that efficiently exploits
SIMD 8-bit MAC instructions. Nonetheless, the inference model’s accuracy (LeNet5)
is limited to 81.3% because of distribution shifts between the training and deployment
environments. To overcome this issue, we enhanced the training dataset by gradually
collecting more challenging samples that correspond to inference’s failures when the CNN
is deployed in the target environment.

Table 3. Robust and efficient deployment with tinyML results on Dset-1.0.

Baseline
(LeNet5-NXP)

GAP Deployment
(LeNet5-GAP)

Closed-Loop Learning
(VNN4-GAP)

ML Predictor
(VNN1/4-GAP)

Accuracy (%) 81.3 81.3 97.4 96.2
Latency (ms) 5.4 1.2 0.91 0.37
Energy (µJ) 302 24.3 18.9 7.6

Thanks to our closed-loop learning methodology, we can train CNNs that learn from
richer data distributions, improving the accuracy over time. That way, LeNet5 achieved
a final accuracy of 98.3%, that is, an improvement of over 15%. Nonetheless, LeNet5 is
still rather large and energy-hungry for our automotive agile use case. Thus, we propose a
family of tiny CNNs (named VNNs) to replace LeNet5 without compromising accuracy.
The tiny models are 1.3–6× faster (see Figure 7) and feature a 12–150× reduction in the
number of parameters with respect to LeNet5. Lastly, we employed an ML predictor to
swap the VNNs at runtime based on the input data. A lightweight inference model (VNN1)

Sensors 2021, 21, 1339 14 of 16

is usually used unless the input sample is marked as "challenging" by the online predictor.
In that case, the sample is processed instead by the more complex and accurate VNN4
model. This latter strategy leads to extra savings in energy consumption (2.5×) with only a
small reduction in accuracy (1.2%).

We believe that techniques such as self-learning or online learning would further im-
prove the proposed methodology by (1) removing the need for a host system and all the
required interconnections, and (2) adapting to the environment continuously. However, these
techniques required large computational and memory requirements that extra-low-power
MCUs cannot currently hold. We leave the exploration of these techniques as future work.

6. Conclusions and Future Work

We have shed light on the robustification of tinyCNN models deployed in a low-power
driving use case (image classification task). We have introduced a closed-loop learning
methodology that enables the tinyCNNs to imitate an expert, improving their robustness
to lighting conditions in the target deployment scenario. Besides, the tinyCNNs can learn
features from a fast-rate camera, doubling the system’s throughput with respect to the
original computer-vision algorithm. To meet the CNN’s inference latency requirements,
we have proposed a parallel ultra-low-power platform, which consumes as little as 3.9 µJ
for a single inference. Finally, we have introduced a online predictor to swap the CNN at
runtime, minimising the energy consumption by up to 3.2× with a modest drop in accuracy.
Overall, we envision that this methodology can be applied for other autonomous use cases,
e.g., drones, to improve the robustness and efficiency of tinyML methods. Nonetheless,
the supervision signal for the imitation learning methodology should be adapted to each
use case.

As future work, we aim to perform the CNNs’ training on-chip towards a continuous
learning scenario, removing the need for a host system (and all the interconnection that it
involves) to train the CNNs offline. Besides, it would also offer the possibility to adapt to
the environment continuously.

Author Contributions: Conceptualisation, M.d.P. and N.P.; data curation, M.d.P. and R.D.; funding

acquisition, L.B. and N.P.; investigation, M.d.P.; methodology, M.d.P.; project administration, M.d.P.

and M.R.; software, M.d.P., M.R., A.C. and R.D.; supervision, M.d.P.; validation, M.d.P., M.R., A.C.

and R.D.; visualization, M.d.P., M.R. and A.C.; writing—original draft, M.d.P. and M.R.; writing—

review and editing, M.d.P., M.R., L.B. and N.P. All authors have read and agreed to the published

version of the manuscript.

Funding: This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement number 732204 (Bonseyes). This work is supported

by the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number

16.0159. The opinions expressed and arguments employed herein do not necessarily reflect the official

views of these funding bodies.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design

of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or

in the decision to publish the results.

References

1. Palossi, D.; Loquercio, A.; Conti, F.; Flamand, E.; Scaramuzza, D.; Benini, L. A 64mW DNN-based Visual Navigation Engine for

Autonomous Nano-Drones. IEEE Internet Things J. 2019, 6, 8357–8371 . [CrossRef]

2. Bianco, S.; Cadene, R.; Celona, L.; Napoletano, P. Benchmark analysis of representative deep neural network architectures. IEEE

Access 2018, 6, 64270–64277. [CrossRef]

3. Mutlu, O. Processing data where it makes sense in modern computing systems: Enabling in-memory computation. In Proceedings

of the 2018 7th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 10–14 June 2018; pp. 8–9.

http://doi.org/10.1109/JIOT.2019.2917066
http://dx.doi.org/10.1109/ACCESS.2018.2877890

Sensors 2021, 21, 1339 15 of 16

4. TinyML. 2020. Available online: https://www.tinyml.org/summit/ (accessed on 30 December 2020).

5. Banbury, C.R.; Reddi, V.J.; Lam, M.; Fu, W.; Fazel, A.; Holleman, J.; Huang, X.; Hurtado, R.; Kanter, D.; Lokhmotov, A.; et al.

Benchmarking TinyML Systems: Challenges and Direction. arXiv 2020, arXiv:2003.04821.

6. Likas, A.; Vlassis, N.; Verbeek, J.J. The global k-means clustering algorithm. Pattern Recognit. 2003, 36, 451–461. [CrossRef]

7. Kramer, O. K-nearest neighbors. In Dimensionality Reduction with Unsupervised Nearest Neighbors; Springer: Berlin, Germany, 2013;

pp. 13–23.

8. Rokach, L.; Maimon, O. Decision trees. In Data Mining and Knowledge Discovery Handbook; Springer: Berlin, Germany, 2005;

pp. 165–192.

9. Kröse, B.; Krose, B.; van der Smagt, P.; Smagt, P. An introduction to neural networks. J. Comput. Sci. 1993. Available online:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.493 (accessed on 30 December 2020).

10. A Survey on Transformer Models in Machine Learning. 2020. Available online: https://hannes-stark.com/assets/transformer_

survey.pdf (accessed on 30 December 2020).

11. Pan, Z.; Yu, W.; Yi, X.; Khan, A.; Yuan, F.; Zheng, Y. Recent progress on generative adversarial networks (GANs): A survey. IEEE

Access 2019, 7, 36322–36333. [CrossRef]

12. NXPcup. 2020. Available online: https://nxpcup.nxp.com/ (accessed on 30 December 2020).

13. NXP K64F. 2019. Available online: https://www.nxp.com (accessed on 30 December 2020).

14. Flamand, E.; Rossi, D.; Conti, F.; Loi, I.; Pullini, A.; Rotenberg, F.; Benini, L. GAP-8: A RISC-V SoC for AI at the Edge of the IoT.

In Proceedings of the 2018 IEEE 29th International Conference on Application-Specific Systems, Architectures and Processors,

Milan, Italy, 10–12 July 2018; pp. 1–4.

15. Sathya, R.; Abraham, A. Comparison of supervised and unsupervised learning algorithms for pattern classification. Int. J. Adv.

Res. Artif. Intell. 2013, 2, 34–38. [CrossRef]

16. Hastie, T.; Tibshirani, R.; Friedman, J. Overview of supervised learning. In The Elements of Statistical Learning; Springer: Berlin,

Germany, 2009; pp. 9–41.

17. Noble, W.S. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [CrossRef]

18. Kingma, D.P.; Welling, M. An introduction to variational autoencoders. arXiv 2019, arXiv:1906.02691.

19. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.

20. Watkins, C.J.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]

21. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous methods for deep

reinforcement learning. In International Conference on Machine Learning; PMLR: Cambridge, MA, USA, 2016; pp. 1928–1937.

22. Introduction to Imitation Learning. 2019. Available online: https://blog.statsbot.co/introduction-to-imitation-learning-32334c3

b1e7a (accessed on 30 December 2020).

23. ICML 2018: Imitation Learning Tutorial. 2018. Available online: https://sites.google.com/view/icml2018-imitation-learning/

(accessed o 30 December 2020).

24. Pomerleau, D.A. Alvinn: An autonomous land vehicle in a neural network. In Advances in Neural Information Processing Systems;

Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1989.

25. Bojarski, M.; Yeres, P.; Choromanska, A.; Choromanski, K.; Firner, B.; Jackel, L.; Muller, U. Explaining how a deep neural network

trained with end-to-end learning steers a car. arXiv 2017, arXiv:1704.07911.

26. Kocić, J.; Jovičić, N.; Drndarević, V. An End-to-End Deep Neural Network for Autonomous Driving Designed for Embedded

Automotive Platforms. Sensors 2019, 19, 2064. [CrossRef] [PubMed]

27. Pan, Y.; Cheng, C.A.; Saigol, K.; Lee, K.; Yan, X.; Theodorou, E.; Boots, B. Agile autonomous driving using end-to-end deep

imitation learning. Robotics: Science and systems. arXiv 2018, arXiv:1709.07174.

28. Taylor, B.; Marco, V.S.; Wolff, W.; Elkhatib, Y.; Wang, Z. Adaptive selection of deep learning models on embedded systems. arXiv

2018, arXiv:1805.04252.

29. Jin, X.B.; Yu, X.H.; Wang, X.Y.; Bai, Y.T.; Su, T.L.; Kong, J.L. Deep learning predictor for sustainable precision agriculture based on

internet of things system. Sustainability 2020, 12, 1433. [CrossRef]

30. Beruvides, G.; Quiza, R.; Rivas, M.; Castaño, F.; Haber, R.E. Online detection of run out in microdrilling of tungsten and titanium

alloys. Int. J. Adv. Manuf. Technol. 2014, 74, 1567–1575. [CrossRef]

31. Huang, S.; Cai, N.; Pacheco, P.P.; Narrandes, S.; Wang, Y.; Xu, W. Applications of support vector machine (SVM) learning in

cancer genomics. Cancer Genom.-Proteom. 2018, 15, 41–51.

32. Beruvides, G.; Juanes, C.; Castaño, F.; Haber, R.E. A self-learning strategy for artificial cognitive control systems. In Proceedings of

the 2015 IEEE 13th International Conference on Industrial Informatics (INDIN), Cambridge, UK, 22–24 July 2015; pp. 1180–1185.

33. de Prado, M.; Mundy, A.; Saeed, R.; Denna, M.; Pazos, N.; Benini, L. Automated Design Space Exploration for optimised

Deployment of DNN on Arm Cortex-A CPUs. IEEE Trans. Comput.-Aided Des. Integr. Circuits and Syst. 2020. [CrossRef]

34. Kuutti, S.; Bowden, R.; Jin, Y.; Barber, P.; Fallah, S. A Survey of Deep Learning Applications to Autonomous Vehicle Control.

arXiv 2019, arXiv:1912.10773.

35. Auto Pilot. 2019. Available online: https://www.tesla.com/autopilot (accessed on 30 December 2020).

36. DeepRacer. Available online: https://aws.amazon.com/deepracer/ (accessed on 30 December 2020).

37. O’Kelly, M.; Sukhil, V.; Abbas, H.; Harkins, J.; Kao, C.; Pant, Y.V.; Mangharam, R.; Agarwal, D.; Behl, M.; Burgio, P.; et al. F1/10:

An Open-Source Autonomous Cyber-Physical Platform. arXiv 2019, arXiv:1901.08567.

https://www.tinyml.org/summit/
http://dx.doi.org/10.1016/S0031-3203(02)00060-2
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.493
https://hannes-stark.com/assets/transformer_survey.pdf
https://hannes-stark.com/assets/transformer_survey.pdf
http://dx.doi.org/10.1109/ACCESS.2019.2905015
https://nxpcup.nxp.com/
https://www.nxp.com
http://dx.doi.org/10.14569/IJARAI.2013.020206
http://dx.doi.org/10.1038/nbt1206-1565
http://dx.doi.org/10.1007/BF00992698
https://blog.statsbot.co/introduction-to-imitation-learning-32334c3b1e7a
https://blog.statsbot.co/introduction-to-imitation-learning-32334c3b1e7a
https://sites.google.com/view/icml2018-imitation-learning/
http://dx.doi.org/10.3390/s19092064
http://www.ncbi.nlm.nih.gov/pubmed/31058820
http://dx.doi.org/10.3390/su12041433
http://dx.doi.org/10.1007/s00170-014-6091-1
http://dx.doi.org/10.1109/TCAD.2020.3046568
https://www.tesla.com/autopilot
https://aws.amazon.com/deepracer/

Sensors 2021, 21, 1339 16 of 16

38. DonkeyCar. Available online: github.com/autorope/donkeycar (accessed on 30 December 2020).

39. Dukhan, M.; Wu, Y.; Lu, H. QNNPACK: Open Source Library for Optimized Mobile Deep Learning. Available online:

https://engineering.fb.com/ml-applications/qnnpack/ (accessed on 12 September 2019).

40. Wang, E.; Zhang, Q.; Shen, B.; Zhang, G.; Lu, X.; Wu, Q.; Wang, Y. Intel math kernel library. In High-Performance Computing on the

Intel® Xeon Phi™; Springer: Berlin, Germany, 2014; pp. 167–188.

41. Jacob, B. gemmlowp: A small self-contained low-precision GEMM library. arXiv 2017, arXiv:1903.01061.

42. STMicroelectronics. X-CUBE-AI. Available online: https://www.st.com/en/embedded-software/x-cube-ai.html (accessed on

12 September 2019).

43. Lai, L.; Suda, N.; Chandra, V. Cmsis-nn: Efficient neural network kernels for Arm cortex-m cpus. arXiv 2018, arXiv:1801.06601.

44. Zhang, Y.; Suda, N.; Lai, L.; Chandra, V. Hello edge: Keyword spotting on microcontrollers. arXiv 2017, arXiv:1711.07128.

45. Chowdhery, A.; Warden, P.; Shlens, J.; Howard, A.; Rhodes, R. Visual Wake Words Dataset. arXiv 2019, arXiv:1906.05721.

46. Garofalo, A.; Rusci, M.; Conti, F.; Rossi, D.; Benini, L. PULP-NN: Accelerating Quantized Neural Networks on Parallel

Ultra-Low-Power RISC-V Processors. arXiv 2019, arXiv:1908.11263.

47. Continual Learning. 2018. Available online: https://medium.com/@culurciello/continual-learning-da7995c24bca (accessed on

30 December 2020).

48. Lomonaco, V. Continual Learning with Deep Architectures. PhD Thesis, ALMA, Antofagasta, Chile, 2019.

49. Maltoni, D.; Lomonaco, V. Continuous learning in single-incremental-task scenarios. Neural Netw. 2019, 116, 56–73. [CrossRef]

[PubMed]

50. Li, Z.; Hoiem, D. Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 2935–2947. [CrossRef]

51. Pellegrini, L.; Graffieti, G.; Lomonaco, V.; Maltoni, D. Latent replay for real-time continual learning. arXiv 2019, arXiv:1912.01100.

52. LeCun, Y. LeNet-5, Convolutional Neural Networks. Available online: http://yann.lecun.com/exdb/lenet (accessed on 30

December 2020)

53. Rusci, M.; Capotondi, A.; Conti, F.; Benini, L. Work-in-progress: Quantized nns as the definitive solution for inference on

low-power arm mcus? In Proceedings of the2018 International Conference on Hardware/Software Codesign and System

Synthesis (CODES+ ISSS), Turin, Italy, 30 September–5 October 2018; pp. 1–2.

54. Rusci, M.; Capotondi, A.; Benini, L. Memory-Driven Mixed Low Precision Quantization For Enabling Deep Network Inference

On Microcontrollers. arXiv 2019, arXiv:1905.13082.

55. Prado, M.D.; Su, J.; Saeed, R.; Keller, L.; Vallez, N.; Anderson, A.; Gregg, D.; Benini, L.; Llewellynn, T.; Ouerhani, N.; et al.

Bonseyes AI Pipeline—Bringing AI to You. ACM Trans Internet Things 2020, 1, 1–25. [CrossRef]

56. Sakr, F.; Bellotti, F.; Berta, R.; De Gloria, A. Machine Learning on Mainstream Microcontrollers. Sensors 2020, 20, 2638. [CrossRef]

[PubMed]

57. STMicroelectronics STM32L476xx. 2019. Available online: https://www.st.com/resource/en/datasheet/stm32l476je.pdf

(accessed on 30 December 2020).

github.com/autorope/donkeycar
https://engineering.fb.com/ml-applications/qnnpack/
https://www.st.com/en/embedded-software/x-cube-ai.html
https://medium.com/@culurciello/continual-learning-da7995c24bca
http://dx.doi.org/10.1016/j.neunet.2019.03.010
http://www.ncbi.nlm.nih.gov/pubmed/31005851
http://dx.doi.org/10.1109/TPAMI.2017.2773081
http://yann.lecun.com/exdb/lenet
http://dx.doi.org/10.1145/3403572
http://dx.doi.org/10.3390/s20092638
http://www.ncbi.nlm.nih.gov/pubmed/32380766
https://www.st.com/resource/en/datasheet/stm32l476je.pdf

	Introduction
	Goal Specification: Robust Low-Power Autonomous Driving
	Contributions

	Related Work
	Learning Methodology
	High-Performance Autonomous Driving
	Low-Power DL deployment

	Initial Evaluation and Challenges
	Data Collection
	Training
	Lighting Condition Challenges
	Deployment

	Robust and Efficient Deployment with tinyML
	Vehicle Neural Network (VNN) Family
	System-on-Module Setup
	Closed-Loop Learning Flow
	Runtime Predictor for VNN Swapping (Online)

	Experimental Setup and Results
	Closed-Loop Learning Flow
	Runtime Predictor for VNN Swapping
	Evaluation of ML Algorithms
	VNN Swap Results

	MCU Efficient Deployment
	MCU Hardware/Software Inference Evaluation
	Energy–Accuracy–Latency Trade-off

	Robust and Efficient Deployment with tinyML Results

	Conclusions and Future Work
	References

