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Abstract— We consider stability and robust stability of poly-
nomials with respect to a given arbitrary disjoint decomposition
C

n = Γ⊎Λ. The polynomial is called stable if it has no zeros in
the region of instability Λ and robustly stable if it is stable and
remains so under small variations of its coefficients. Inspired
by the article Robust stability of multivariate polynomials. Part 1:
Small coefficient perturbationsby V. L. Kharitonov and J. A.
Torres-Muñoz (Multidimens. Systems Signal Process., 10(1):21–
32, 1999), we generalise some of their results to arbitrary sta-
bility decompositions and develop some fundamental results on
robustly stable polynomials. Among them is a characterisation
of robust stability in terms of the stability of several other
polynomials, which yields a test for robust stability based on
stability tests. Finally, we consider the special situation that the
region of instability is a Cartesian product and recover some
results for the special situations of linear partial differential
resp. difference equation with constant coefficients.

I. I NTRODUCTION

In this article we investigate robustly stable polynomials
in several variables, i.e., a subclass of stable polynomials
featuring additional robustness properties.

Stability of a polynomial is always defined with respect
to a given disjoint decompositionCn = Γ⊎Λ of Cn into two
setsΓ and Λ, wheren denotes the number of variables. A
polynomial P ∈ C[s] = C[s1, . . . ,sn] in n variabless1, . . . ,sn

with complex coeffficients isstable with respect to this
decompositionCn = Γ⊎Λ or with respect toΛ if all of its
zeros are inΓ, i.e., if

VCn(P)⊆ Γ, or, equivalently, if VCn(P)∩Λ = /0, (1)

where VCn(P) = {z∈ Cn; P(z) = 0} denotes the zero set
of P. For this reason, the decompositionCn = Γ ⊎ Λ is
referred to as astability decomposition, the setΓ is called the
region of stabilityandΛ the region of instabilityor, in short,
just the stable and unstable region. Although the condition
VCn(P) ⊆ Γ is more common in one-dimensional systems
theory, throughout this article we will use the equivalent
condition VCn(P)∩Λ = /0, because in the important mul-
tidimensional examples the unstable region is more easily
described than the stable one.

In the univariate case (n = 1) the two most prominent
examples of stability decompositions are the ones where the
region of stability is the open left complex half plane{z∈
C; ℜ(z) < 0} resp. the open unit circle{z∈C; |z|< 1}. The
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first one is used to describe asymptotic stability of solutions
of ordinary linear differential equations with constant coeffi-
cients algebraically. For positive time, these solutions tend to
zero exactly if all the zeros of the characteristic polynomial
have real part smaller than zero. The second region of
stability serves the same purpose for ordinary difference
equations. The polynomials which are stable with respect to
these stability decompositions are called Hurwitz resp. Schur
polynomials. But the choice of the stability decomposition
depends on the application and the properties of the equations
one wants to describe. In [18, p. 2] a variation of the stability
decomposition for ordinary differntial equations is described,
where additional restrictions to the convergence speed of the
solutions are incorporated.

For systems of linear partial differntial resp. difference
equation mostly then-fold powers of the respective univariate
regions of instability are used. But also here, and even more
than in the univariate case, other stability decompositions are
of interest too. One reason for this is that in partial differen-
tial equations the variables bear different interpretations, e.g.,
in a wave equation one variable is interpreted as time, the
other ones as variables of space and there is no reason that all
the variables are to be treated the same when investigating the
equation with respect to a certain kind of stability. The wish
to treat as many different varieties of stability simultaneously
motivates the general definition above.

In applications, the coefficients of the polynomials of
interest are often the result of measurements, when analysing
a given system, or systems are constructed with a purpose
(e.g, stabilisation) according to theoretically computed spec-
ifications. Both procedures are bound to be unexact and
erroneous, nonetheless, one wishes that a system’s properties,
e.g. stability, remain the same in spite of those inaccuracies.

To account for this a polynomial is calledrobustly stable
with respect to a given stability decomposition if it is stable
with respect to the same decomposition and remains so under
small variations of its coefficients; for the formal definition
see Definition 1.

In the univariate case, a stable polynomial is automatically
also robustly stable as long as the region of instability is
a closed subset ofC, the reason for this being that the
zero set of a polynomial in one variable consists of finitely
many points and therefore is compact. The same is true,
although for a different reason, for the standard stability
decompositions for partial difference equations as we will see
in Example 21. For partial differential equations, however,
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stability does not imply robust stability. Robust stability
of bivariate differential equations involves thevery strict
Hurwitz polynomialswhich were generalised to an arbitrary
number of variables in [11].

The present article is strongly motivated and influenced
by the article [11] by V. L. Kharitonov and J. A. Torres-
Muñoz. The author encountered this article while working
on BIBO stability of partial differential equations [15], [16],
where a class of recursively defined polynomials in [11] –
the robustly stable polynomials with respect to the standard
stability decomposition for partial differential equations –
were vital in the proof of a conjecture by E. I. Jury [10].
The main motivation for the research presented here was to
interpret the results of [11] geometrically and to find out
which of them and how they can be generalised to arbitrary
stability decompositions.

There exist many contributions on robust stability with
respect to the standard cases for partial differential resp.
difference equations – see Examples 20 and 21 for some
references –, but, to the knowledge of the author, only in
[13] a more general but still restricted class of stability
decompositions are considered.

Section II is the core of this article. For general stability
decompositions we show some basic properties of robustly
stable polynomials, the most important ones summarised in
Result 7, where we give three assertions which are equivalent
to the robust stability of a polynomial. Section III is of
an algorithmic nature: The knowledge gained in Section II
allows us to devise a test for robust stability and we will
explicate it in detail for the case that the region of instability
is a real semi-algebraic set, i.e., can be described by finitely
many real polynomial inequalities (identifyingCn = R2n).
Eventually, in Section IV, we will specialise the results of
Section II to the case that the region of instability is a
Cartesial product, i.e.,Λ = Λ1×·· ·×Λn for Λ1, . . . ,Λn⊆C.
We also give a test for robust stability adapted to this
particular situation. We conclude the article by focussing on
the standard stability decomposition for partial differential
resp. difference equations, thus recovering most of the results
of [11] and disclosing the connections between the two
articles.

This article is an abbreviated version and does not contain
any proofs. A complete paper containing all details will be
submitted to a journal.

II. ROBUSTLY STABLE MULTIVARIATE POLYNOMIALS

In this section we will define robust stability of polynomi-
als and establish some of their properties. In the following we
assume a stability decompositionCn = Γ⊎Λ and its derived
notion of stable polynomials.

We need the following notations: For a polynomialP =

∑µ∈Nn pµsµ ∈C[s] with coefficientspµ ∈C – all but finitely
many equal to zero – we denote by deg(P) ∈ Nn its
(component-wise) degree, i.e., the minimal tupled ∈ Nn

such thatP can be written asP = ∑µ6cwd pµsµ , where
µ 6cw d means that for eachi ∈ {1, . . . ,n} the relation

µi 6 di is satisfied. We write c(P) = (pµ)µ6cwd ∈C
d, where

d := deg(P), for the coefficient vector ofP.

Definition 1. Let P∈C[s] be a polynomial with component-
wise degreed. We call the polynomialrobustly stablewith
respect to a given stability decomposition if it is stable with
respect to the same decomposition and remains so under
small variations of its coefficient vector c(P) ∈C

d, or, more
precisely, if there exists an open neighbourhoodU ⊆ Cd of
c(P) such that all polynomials with coefficient vector inU
are stable.

Thus the robustly stable polynomials are the stable poly-
nomials featuring astability radius greater than zero. The
stability radius of a polynomialP is the greatest euclidean
ball in Cdeg(P) centred about the polynomial’s coefficient
vector such that all the polynomials with coefficient vector
in the ball are stable [13], [12, Sec. VIII].

Lemma 2. Let P∈ C[s] be robustly stable with respect to
Λ. Then P is also robustly stable with respect to the closure
clCn(Λ) of Λ in C

n.

Our next aim is a stronger version of the lemma above,
namely that for robustly stable polynomialsP the closures
of VCn(P) and Λ are disjoint even if points at infinity are
included (Theorem 4).

For this we will use the one-point-compactificationC =
C⊎ {∞}. This set is a one-dimensional complex manifold
which can be identified with the projective line overC via

P1(C)
=
←→ C

C

(
v
w

)
←→

{ v
w, if w 6= 0
∞, if w = 0.

The atlas composed of the two charts

ϕ /0 = id : C −→C, x 7−→ x and

ϕ{1} = inv: C\ {0} −→C, x 7−→ x−1 =

{
0 if x = ∞
1
x else

makesC a holomorphic manifold.
To formulate this for higher dimensions we employ the

following notations. LetX be an arbitrary set andx =
(x1, . . . ,xn) ∈ Xn. Furthermore letS⊆ [n] := {1, . . . ,n} and
S′ := [n] \S be its complement. We writexS := (xi)i∈S and
identify x = (xS,xS′) ∈ Xn = XS×XS′ .

We consider then-dimensional manifoldC
n

equipped with
the atlas formed by the charts

ϕS: VS −→C
n

x = (xS,xS′) 7−→ (x−1
S ,xS′)

together with their domains of definitionVS := (C\{0})S×
CS′ for every S⊆ [n]. We write for shortx−1

S := (x−1
i )i∈S

component-wise and, as in the one-dimensional case,∞−1 =
0. This makesC

n
a compact holomorphic manifold. Note

that the setC
n
=

(
C

)n
= P1(C)n is different to the complex

n-space Pn(C) = P(Cn+1) as well as to the one-point-
compactificationCn⊎{∞}= Cn of Cn.

We denote the closure of a subsetM of C
n

by cl
C

n(M).
Because of the compactness ofC

n
, the set cl

C
n(M) is
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compact too. Expressing cl
C

n(M) in terms of the charts, we
notice first that

cl
C

n(M) =
⋃

S⊆[n]

clVS(M∩VS),

since theVi form a covering ofC
n
. Since the chartsϕS are

bijective we get

cl
C

n(M) =
⋃

S⊆[n]

clVS(M∩VS) =
⋃

S⊆[n]

clVS(ϕ
−1
S (ϕS(M∩VS))).

Using thatϕ−1
S is a homeomorphism we arrive at

cl
C

n(M) =
⋃

S⊆[n]

ϕ−1
S (clCn(ϕS(M∩VS))).

For M ⊆ Cn which is for our purposes the most important
case we write

cl
C

n(M) =
⋃

S⊆[n]

ϕ−1
S (clCn(ϕS(M∩WS))),

whereWS := VS∩Cn = (C\{0})S×CS′

The two subsets ofCn of interest to us areM = Λ resp.
M = VCn(P). First we focus on the latter. We need a “good
description” of the set clCn(ϕS(VCn(P)∩WS)) which is part
of the following lemma.

Definition and Lemma 3. For a polynomial P∈ C[s] with
degree d and a set S⊆ [n] we define

PS(s) := sdS
S P(ϕ−1

S (s)) ∈ C[s].

The following four assertions hold:

1) VCn(PS)∩WS = ϕS(VCn(P)∩WS).
2) clCn(VCn(PS)∩WS) = VCn(PS).
3) If P is stable with respect toΛ then PS is stable with

respect toϕS(Λ∩WS).
4) If P is robustly stable with respect toΛ then PS is

robustly stable with respect toϕS(Λ∩WS).

Items 1 and 2 of the preceding lemma form the first part
of the “good description” of clCn(ϕS(VCn(P) ∩WS)). The
inclusion “⊆” in item 2 is easy to prove whereas the other
one is a little bit intricate and some results from algebraic
geometry are needed to show it.

Now we can formulate one of the main result of this
article.

Theorem 4. Let P∈ C[s] be robustly stable with respect to
the stability decompositionCn = Γ⊎Λ. Then the closures of
its vanishing set and of the unstable region inC

n
are disjoint,

i.e.,
cl

C
n(VCn(P))∩cl

C
n(Λ) = /0. (2)

Using the following lemma it is not hard to see that the
other implication is also true: If the closures of the vanishing
set of a polynomial and of the region of instability are
disjoint, then the polynomial is robustly stable.

Lemma 5. Let M1 and M2 be topological spaces and
let N1 ⊆ M1 as well as N2 ⊆ M2 be compact subsets.
Furthermore, using the product topology on M1×M2, let

U ⊆M1×M2 be an open set containing N1×N2. Then there
exist open sets G⊆M1 and H⊆M2 such that

N1×N2⊆G×H ⊆U.

Theorem 6. For d∈Nn let K⊆Cd be compact andΛ⊆Cn

be a region of instability. If all polynomials P with coefficient
vector in K satisfy

cl
C

n(VCn(P))∩cl
C

n(Λ) = /0,

then there exist open supersets U⊇ K and V ⊇ Λ such
that for all polynomials P with coefficient vector in U the
statement

cl
C

n(VCn(P))∩V = /0

is true.
In particular, if K is a set containing only one element,

this means the following: Let P∈C[s] be a polynomial such
that

cl
C

n(VCn(P))∩cl
C

n(Λ) = /0.

Then P is robustly stable with respect toΛ. Furthermore,
there exists an open superset V⊆ C

n
of cl

C
n(Λ), such that

P is robustly stable with respect to V∩Cn, i.e., the region of
instability can be slightly enlarged.

From the existence of V follows that every robustly stable
polynomial features astability margingreater than zero [6],
[19], i.e., a minimal distance between the polynomial’s zero
set and the unstable region.

We present our results up to now:

Result 7. Let Cn = Γ⊎Λ be a stability decomposition and
P∈C[s] be a polynomial. Then the following four statements
are equivalent:

1) P is robustly stable with respect toΛ.
2) The closures ofVCn(P) and ofΛ in C

n
are disjoint.

3) For all S⊆ [n] the polynomial PS is stable with respect
to clCn(ϕS(Λ∩WS)).

4) There exist open sets V⊆C
n

containingcl
C

n(Λ) such
that P is stable with respect to V∩C

n.

Item 2 is a geometric characterisation of robust stability,
item 3 will be the key for deciding algorithmically whether
a polynomial is robustly stable with respect to a given region
of instability Λ.

The corollaries below follow easily, one just has to use
the appropriate equivalent statement of Result 7.

Corollary 8. If Λ ⊆ Cn is compact, thencl
C

n(Λ) = Λ.
Consequently

cl
C

n(VCn(P))∩cl
C

n(Λ) = VCn(P)∩Λ.

This signifies that a polynomial is robustly stable with respect
to a compact region of instability if and only if it is stable
with respect to the same stability decomposition.

Corollary 9. Let P ∈ C[s], S⊆ [n] and aS ∈ CS. By
P(aS,−) ∈ C[sS′ ] we denote the polynomial which remains
if we fix the variables indexed by S. Furthermore, we write
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MaS := {xS′ ∈ C
S′

;(aS,xS′) ∈M} for any set M⊆ C
n
. Then

the following two implications hold:
1) If P is stable with respect toΛ, then P(aS,−) is stable

with respect toΛaS.
2) If P is robustly stable with respect toΛ, then so is

P(aS,−) with respect toΛaS.

Corollary 9 becomes particularly powerful when the un-
stable region is a Cartesian product or even a power of a
one-dimensional complex set as in case of the standard sta-
bility decompositions for partial differential resp. difference
equations, see Section IV.

Corollary 10. The setR(Λ) ⊆ C[s] of all robustly stable
polynomials with respect to a region of instabilityΛ contains
the constant polynomial1, is multiplicatively closed and
saturated. “Saturated” signifies that if a product of some
polynomials is robustly stable, then the factors have the same
property.

III. A N ALGORITHM FOR DECIDING ROBUST STABILITY

In this section we present a method which makes it
possible to check robust stability of a polynomialP ∈ C[s]
for a large class of stability decompositions.

Exploiting the equivalence of items 1 and 3 of Result 7,
one can directly formulate the following algorithm, for which
no restrictions to the unstable regionΛ are required.

Algorithm 11. Given a region of instabilityΛ⊆Cn, one can
test if a polynomial P∈ C[s] is robustly stable with respect
to Λ by performing the following steps:

1) For all S⊆ [n] determine the imageϕS(Λ∩WS) under
the chartϕS and its closureclCn(ϕS(Λ∩WS)).

2) Now – again for all S⊆ [n] – compute the polynomial
PS and check if it is stable with respect toclCn(ϕS(Λ∩
WS)).

3) If all the PS prove stable with respect to their respective
stability decomposition, then P is stable with respect
to Λ. Conversely, if one of the PS is not stable, then P
is not robustly stable.

When implenting this algorithm, one encounters two prob-
lems: First, to be able to handle the unstable region, one has
to restrict oneself to a class of sets which contains the images
under theϕS as well as the closures of these images and is
still admissible for automated processing, and second, one
must be able to perform stability tests with sets of this class.

One possible choice are the real semi-algebraic sets, em-
bedded intoCn. We will describe in detail how the algorithms
associated with this class of sets – the theorem of Tarski-
Seidenberg and its formulation in the language of logics,
namely quantifier elimination – can be employed to handle
the problems stated above.

The quantifier elimination methods have been developed
starting around 1930; for a synopsis on their history consult
[9, p. 165f]. These methods have been in use in systems
theory since the mid-1970s, the first time in [1] for output
feedback stabilization [1, p. 72ff] and also for stability
testing with respect to the closed unit polydisc and the

nth power of the open right half-plane [1, p. 76ff]. In [9],
quantifier elimination methods were used for testing the
stability of ordinary differential and difference equations,
it contains also some elaborately explained examples. In
2002 they were employed in [19] for calculations involving
the robustness of systems, concretely for the calculations of
stability and stabilisability margins with respect to the closed
unit polydisc, amongst others.

Our approach differs from the ones in [9] and [19] insofar
as we will not assume a special stability decomposition –
as long as the unstable region is a semi-algebraic set – and,
mainly, that we will use quantifier elimination to plug the
computational holes in Algorithm 11, thus reducing robust
stability testing to stability testing.

We identifyC = R2 and assume that the region of instabil-
ity Λ is a semi-algebraic subset ofR2n, i.e., it can be written
as the solution set of a finite number of polynomial equations
and inequalities over the real numbers. More formally, we
assume that there exist finite index setsI andJi for all i ∈ I
as well as polynomialsQi, j ∈R[x,y] = R[x1, . . . ,xn,y1, . . . ,yn]
such that

Λ =
⋃

i∈I

⋂

j∈Ji

{(x,y) ∈ R
2n; Qi, j(x,y) r i, j 0} ⊆ R

2n = C
n
,

(3)
where r i, j ∈ {=, 6=,>,<,>,6}. The semi-algebraic sets
cover all the standard stability decompositions, in particular
the standard decompositions for linear partial differential
resp. difference equations, see Examples 20 and 21.

Two of the central results of semi-algebraic geometry are
the theorem of Tarski-Seidenberg (see, e.g., [3, Thm. 2.3.4
on p. 60]) stating that the image of a semi-algebraic set under
a semi-algebraic map – in particular, under a projection – is
again semi-algebraic, and [3, Thm. 2.4.4 on p. 69], which
consists of an algorithm on how to obtain a description like
in equation (3) of the image. With this algorithm, translated
into the language of logics, one can find formulas without
quantifiers which are equivalent to given first order formulas,
with the restriction that all variables have to be real. This
motivates the namequantifier elimination method. In prac-
tice, the implementation is done usingcylindrical algebraic
decomposition. There exist several computer programmes for
the purpose of real quantifier elimination, the ones known to
the author are QEPCAD [5] and Redlog [7].

For our intended test for robust stability, we need an
algorithm to compute a description as in equation (3) for
the closure clCn(Λ) = clR2n(Λ) and another one for testing
whether a polynomialP is stable, i.e., whether VCn(P)∩Λ
is empty.

Algorithm 12. Given a semi-algebraic setΛ ⊆ R2n, its
closureclR2n(Λ) is semi-algebraic again and a presentation
of it like in equation(3) can be derived using [3, Thm 2.4.4
on p. 69].

Algorithm 13. Let P∈C[s] be a polynomial andΛ⊆Cn =
R2n be a semi-algebraic set. To test ifVCn(P)∩Λ is empty
proceed as follows:
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Decompose P into its real and imaginary part, i.e., write
P(s) = Pre(x,y)+ iPim(x,y), where sj = x j + iy j for all j ∈ [n]
and Pre,Pim ∈ R[x,y] are polynomials in2n variables over
the real numbers. Using that, one can describe the vanishing
set of P as

VCn(P) =
{
(x,y) ∈R

2n; Pre(x,y) = 0
}

∩
{

(x,y) ∈R
2n; Pim(x,y) = 0

}
⊆ R

2n
.

Since finite intersections of semi-algebraic sets are again
semi-algebraic,VCn(P) and also VCn(P) ∩ Λ are semi-
algebraic sets.

Now consider the projection

proj : R
2n−→ R

0
.

onto the setR0 consisting of only one point. The image of a
set A under this map is empty if A is empty and otherwise it
is R0. Compute the image ofVCn(P)∩Λ underproj using [3,
Thm 2.4.4 on p. 69]. The polynomial P is stable if the result
of this computation is the empty set and unstable otherwise.

Lemma 14. Let Λ ⊆ R
2n be a semi-algebraic set and

S⊆ [n]. With the notations introduced before Definition and
Lemma 3, the setϕS(Λ ∩WS) ⊆ Cn = R2n is also semi-
algebraic and a description for it as in equation(3) can
be derived.

Using Algorithms 12 and 13, as well as Lemma 14 it is
possible to test a polynomial for robust stability with respect
to a semi-algebraic region of instability in a fully automated
way. Summarising, we specialise Algorithm 11 to this case.

Algorithm 15. Let Λ⊆Cn = R2n be a semi-algebraic region
of instability. To test if a polynomial P∈ C[s] is robustly
stable, proceed as follows:

1) For all S⊆ [n] compute a representation of the form
presented in equation(3) for ϕS(Λ∩WS) and then for
clCn(ϕS(Λ∩WS)) using Lemma 14 and Algorithm 12.

2) Now – again for all S⊆ [n] – divide the polynomial PS
into its real and imaginary part and use Algorithm 13
and check if it is stable with respect toclCn(ϕS(Λ∩
WS)).

3) If all the PS prove stable with respect to their respective
stability decomposition, then P is stable with respect
to Λ. Conversely, if one of the PS is not stable, then P
is not robustly stable.

Remark 16. The novelty of the algorithm above is that
a polynomial is tested for robust stability by testing sev-
eral polynomials for stability. The main advantage of this
algorithm is that it can be applied to a great variety of
stability decompositions. It should be noted, however, that
the time complexity of stability tests based on the theorem
of Tarski-Seidenberg and implemented using cylindrical al-
gebraic decomposition is doubly exponential. This signifies,
quoting Anderson et al.: “All this is done with a finite number
of rational operations. The finiteness for many problems,
however, may be illusory from the practical point of view
[. . . ]” [1, p. 69].

To draw a conclusion, if there are other stability tests for
special stability decompositions available, e.g., the Routh-
Hurwitz criterion or Jury’s stability criterion, one should
consider employing them too and not blindly use quantifier
elimination. However, if more general stability decomposi-
tions are involved, quantifier elimination seems to be the
method of choice.

Another way to reduce computing time is to make use of
structural properties of the region of instability. In the next
section, for example, we assume thatΛ is a Cartesian product
which leads to a simpler criterion for robust stability.

IV. ROBUST STABILITY FOR PRODUCTS

Here we investigate the special case that the region of
instability is a Cartesian product. In Examples 20 and 21 we
specialise further to the standard cases for partial differential
resp. difference equations. In the first example, we also
recover most of the results of [11].

For i ∈ [n] let Λi ⊂ C be arbitrary non-empty sets and let
Λ = ∏n

i=1 Λi = Λ1×·· ·×Λn. As in Section II we embedCn

into C
n

and look at the images ofΛ∩WS under the chartsϕS

for S⊆ [n]. Since the multidimensional chartsϕS are tensor
products of the one-dimensional non-trivial chart inv and the
identity map ofP1(C) from page 2, the images factorise and
we get

ϕS(Λ∩WS) = ∏
i∈S

inv(Λi \{0})︸ ︷︷ ︸
=:Λ̃i

×∏
i∈S′

Λi = Λ̃S×ΛS′ .

For a polynomialP= ∑µ6cwd pµsµ ∈C[s] with deg(P) = d
andS⊆ [n] we will use the representation

P(sS,sS′) = ∑
µS6cwdS

bS
µS

(sS′)s
µS
S ∈ C[s] = (C[sS′ ])[sS],

wherebS
µS

(sS′) = ∑
µS′6cwdS′

p(µS,µS′ )
s

µ ′S
S′ ∈ C[sS′ ].

The leading termsbS
dS

(sS′) will be of special interest to us.
The following theorem gives a further equivalence to

robust stability for the special case thatΛ is a product.

Theorem 17. Let P∈C[s] be a polynomial withdeg(P) = d,
let Λ = Λ1×·· ·×Λn be a product and denote

T := {i ∈ [n]; ∞ ∈ cl
C
(Λi)}= {i ∈ [n]; 0∈ clC(Λ̃i)}

the set of all indices for which∞ is contained in the closure of
the respective factor of the region of instability. The following
two statements are equivalent:

1) P is robustly stable with respect toΛ.
2) For all S⊆ T the polynomials bSdS

derived from P are
stable with respect tocl

CS′ (ΛS′).

Utilising Theorem 17 and Algorithm 15, we furnish a
simplified algorithm adapted to the situation of this section.

Algorithm 18. Let Λ1, . . . ,Λn ⊆ C = R2 be semi-algebraic
sets and let P∈C[s] be a polynomial with degreedeg(P)= d.
By carrying out the following three steps one can test P for
robust stability with respect toΛ = ∏ j∈[n] Λ j .
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1) For all j ∈ [n] compute semi-algebraic representations
of clC(Λi) using Algorithm 12. Determine the set T of
all indices j for whichΛ j is not bounded.

2) For all S⊆ T decompose bSdS
into its real and imag-

inary part and test it for stability with respect to
cl

CS′ (ΛS′).
3) If and only if all of them are stable, the polynomial P

is robustly stable with respect toΛ.

Remark 19. Algorithm 18 does only cover a special case,
but there it improves Algorithm 15 in several aspects:

1) The imagesϕS(ΛS∩WS) do not have to be computed
any more.

2) Only closures of sets in one complex variable resp.
two real variables have to be determined.

3) Instead of testing the 2n polynomialsPS for stability,
one needs to test only the 2|T| polynomialsbS

dS
.

Roughly spoken, one has to work with fewer polynomials in
fewer variables. Since the runtime of the algorithms based
on the theorem of Tarski-Seidenberg increases disproportion-
ately with the number of variables (see Remark 16), the
advantages of this specialised algorithm are not negligible.

In the following we will investigate the standard cases
for partial differential resp. difference equations and recover
some known results.

Example 20. In the standard situation for partial differential
equations the region of instability is then fold power of the
complex closed right half plane, i.e.,

Λ1 = · · ·= Λn = {z∈ C; ℜ(z) > 0} andΛ = Λn
1.

The polynomials which are stable with respect to thisΛ are
called (strict) Hurwitz (stable) polynomials[8, Def. 3], [4,
Def. 6.2] orstrict sense stable polynomials[11, Def. 3]. Poly-
nomials which are robustly stable with respect to this stability
decomposition were investigated by V. L. Kharitonov und
J. A. Torres-Muñoz in [11] first. The two authors of [11] use
a different terminology, they call the robustly stable poly-
nomials just “stable”. Since [11] was the main inspiration
for writing the present article, we will now regain the main
results of [11] as special cases of our results and thus show
exactly where and how the two articles are related.

The Hurwitz stability decomposition has the property that

Λ̃i = inv(Λi \{0}) = Λi \{0}

and thus clCn(Λ̃i) = Λi for all i ∈ [n]. Since 0∈ Λi for all
i ∈ [n] the assertion of Theorem 17 in this special case is
that a polynomialP ∈ C[s] is a robust Hurwitz polynomial
in n variables if and only if for allS⊆ [n] the associated
polynomial bS

deg(P)S
∈ C[sS′ ] is an Hurwitz polynomial in

n− |S| variables. Kharitonov and Torres-Muñoz use the
latter statement for defining robustly stable polynomials
[11, Def. 4] and thus our definition is one of their main
results. In [11, Thm. 19] they show that polynomialsP for
which all thebS

deg(P)S
are Hurwitz polynomials are robustly

stable. The other direction is proven indirectly for bivariate
(n = 2) polynomials. This argument holds also for a general

number of variables since a robust Hurwitz polynomial in
n variables posesses the same property if considered as
a polynomial in more thann variables, which is easy to
see. The bivariate robustly stable Hurwitz polynomials are
found in the literature under the namevery strict Hurwitz
polynomials[11, Rem. 3], [12, Rem. 13].

A weaker form of our result that if a polynomialP is
robustly stable with respect to an unstable regionΛ then there
exists an open superset of the closure ofΛ in C

n
such thatP

is stable with respect to that superset (Result 7, implication
from item 1 to item 4) can be found in [11, Thm. 23], the
full implication is proven in [15, Thm. 9].

Kharitonov and Torres-Muñoz also investigatedwide sense
stablepolynomials, i.e., polynomials featuring no zero in the
n fold power of theopenright half plane{z∈C; ℜ(z) > 0}n,
see [11, Def. 1]. The authors show in [11, Lem. 6] how to
derive from a wide sense stable polynomial which is not strict
sense stable by an arbitrarily small variation of its coefficient
vector an unstable polynomial. This corresponds to Lemma 2
of this article.

Other results of [11] seem to be specific for the Hurwitz
situation, e.g., that the partial derivatives of a robustly stable
polynomial are robustly stable again [11, Thm. 20] and that
for a robustly stable polynomialP∈R[s] with real coefficient
vector all the coefficients have the same sign [11, Thm. 22].

Example 21. The standard stability decomposition for sys-
tems of partial difference equations is given by

Λ1 = · · ·= Λn = {z∈ C; |z|> 1} andΛ = Λn
1.

The image of these factors under the chart inv areΛ̃i = {z∈
C; |z|6 1, z 6= 0} and their closure is

clC(Λ̃i) = {z∈ C; |z|6 1},

the closed unit disc. Since none of theΛi , i ∈ [n], is bounded,
testing a polynomialP for robust stability by Algorithm 18
would consist of checking for allS⊆ [n] the polynomials
bS

deg(P)S
for stability. However, it suffices to test only one

polynomial.
Thecomponent-wise orderof a polynomialP 6= 0, denoted

ord(P), is the maximal tupler ∈Nn such that the polynomial
can be written asP = ∑µ>cwr pµsµ . It gives the maximal
power ofs which is a factor ofP, i.e.,P= sord(P)R with R∈
C[s] andR relatively prime to all thes1, . . . ,sn. Consequently,
ord(R) = 0.

Let P ∈ C[s] be a polynomial andR be such thatP =
sord(P)R. It is easily seen that powers ofs are robustly stable
with respect toΛ. Since the setR(Λ) of all polynomials
which are robustly stable with respect toΛ is multiplicatively
closed and saturated (Corollary 10), the polynomialP is
robustly stable with respect toΛ exactly if R shows the same
property.

Now we consider the chartϕ[n], where all the variables
are inverted. Denote

Ξ := clCn(ϕ[n](Λ∩W[n])) = {z∈C; |z|6 1}n
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the closed unit polydiscand let Q := R[n], i.e., Q(s) =

sdeg(R)R(s−1). Lemma 3, item 4, states that robust stability of
R with respect toΛ implies robust stability ofQ with respect
to Ξ, and one can show that the converse holds too.

Summing up,P is robustly stable with respect toΛ if
and only if Q ∈ R(Ξ) and this is the case exactly ifQ is
stable with respect toΞ, since the closed unit polydisc is a
compact subset ofCn, compare Corollary 8. This signifies
that checkingP for robust stability with respect toΛ can be
done by testingQ = R[n] with P= sord(P)R for stability with
respect to the closed unit polydisc.

The common formulation of this result is that a polynomial
P which is stable with respect toΛ resp. the associated
polynomialQ which is stable with respect to the closed unit
polydisc have a stability radius or margin which is greater
than zero [19, Remark after Def. 1].

In the literature, sometimes the polynomials devoid of
zeros inΛ are the stable ones [17, Def. 3], [14, p. 1468],
[16, Sec. 5], and sometimes the stable polynomials are the
ones with no zeros in the closed unit polydiscΞ [1], [2,
Sec. II], [6], see the introduction of [17] for a discussion
and further references. In contrast to the direct approach used
in the present article, in [2] as well as in [17] the authors
used a Möbius transform to transport their results from the
continuous to the discrete case.

V. CONCLUSION

In this article we have defined robustly stable polynomials
with respect to an arbitrary stability decomposition and de-
rived some fundamental results for this class of polynomials.
They allowed us to devise a test for robust stability which can
be performed in an automated fashion if the region of insta-
bility is a semi-algebraic set. Finally, we have investigated
the important case that the unstable region is a Cartesian
product, in particular the standard stability decompositions
for partial differential resp. difference equations.

REFERENCES

[1] B. D. O. Anderson, N. K. Bose, and E. I. Jury. Output feedback
stabilization and related problems – solution via decision methods. In

N. K. Bose, editor,Multidimensional systems: theory and applications,
pages 66–79. IEEE Press, New York, 1979.

[2] S. Basu and A. Fettweis. New results on stable multidimensional
polynomials – Part II: Discrete case.IEEE Trans. Circuits and
Systems, 34(11):1264–1274, 1987.

[3] R. Benedetti and J.-J. Risler.Real algebraic and semi-algebraic sets.
Hermann, Paris, 1990.

[4] N. K. Bose, B. Buchberger, and J. P. Guiver.Multidimensional systems
theory and applications. Kluwer Academic Publishers, Dordrecht,
second edition, 2003.

[5] C. W. Brown. QEPCAD – quantifier elimination by cylindrical
algebraic decomposition.http://www.usna.edu/Users/cs/
qepcad/, 2010.

[6] E. Curtin and S. Saba. Stability and margin of stability tests
for multidimensional filters. IEEE Trans. Circuits and Systems I,
46(7):806–809, 1999.

[7] A. Dolzmann. The Redlog home page.http://redlog.
dolzmann.de/, 2009.

[8] A. Fettweis and S. Basu. New results on stable multidimensional
polynomials – Part I: Continuous case.IEEE Trans. Circuits and
Systems, 34(10):1221–1232, 1987.

[9] H. Hong, R. Liska, and S. Steinberg. Testing stability by quantifier
elimination. J. Symbolic Comput., 24(2):161–187, 1997.

[10] E. I. Jury. Stability of multidimensional systems and related problems.
In S. G. Tzafestas, editor,Multidimensional Systems. Techniques and
Applications, pages 89–159. Marcel Dekker, New York, 1986.

[11] V. L. Kharitonov and J. A. Torres Muñoz. Robust stability of multivari-
ate polynomials. Part 1: Small coefficient perturbations.Multidimens.
Systems Signal Process., 10(1):7–20, 1999.

[12] V. L. Kharitonov and J. A. Torres-Muñoz. Recent results on the
robust stability of multivariate polynomials.IEEE Trans. Circuits and
Systems I, 49(6):715–724, 2002.

[13] J. Kogan. Computation of stability radius for families of bivariate
polynomials. Multidimens. Systems Signal Process., 4(2):151–165,
1993.

[14] U. Oberst. Stability and stabilization of multidimensional input/output
systems.SIAM J. Control Optim., 45(4):1467–1507, 2006.

[15] M. Scheicher. A generalisation of Jury’s conjecture to arbitrary
dimensions and its proof.Math. Control Signals Syst., 20(4):305–319,
2008.

[16] M. Scheicher and U. Oberst. Multidimensional BIBO stability and
Jury’s conjecture.Math. Control Signal Systems, 20(1):81–109, 2008.

[17] J. A. Torres-Muñoz, E. Rodríguez-Angeles, and V. L. Kharitonov.
On Schur stable multivariate polynomials.IEEE Trans. Circuits and
Systems I, 53(3):1166–1173, 2006.

[18] M. Vidyasagar.Control system synthesis – a factorization approach.
MIT Press, Cambridge, MA, 1985.

[19] J.-Q. Ying, L. Xu, and M. Kawamata. Robust stability and stabilization
of n-D systems. InProceedings of the MTNS 2002, South Bend,
2002. Published online:http://www.nd.edu/~mtns/papers/
17971_1.pdf.

Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems – MTNS 2010 •  5–9 July, 2010 • Budapest, Hungary

105


