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Robustly Stable Signal Recovery in Compressed

Sensing with Structured Matrix Perturbation
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Abstract—The sparse signal recovery in standard compressed
sensing (CS) requires that the sensing matrix be known a priori.
The CS problem subject to perturbation in the sensing matrix
is often encountered in practice and results in the literature
have shown that the signal recovery error grows linearly with
the perturbation level. This paper assumes a structure for the
perturbation. Under mild conditions on the perturbed sensing
matrix, it is shown that a sparse signal can be recovered by �1

minimization with the recovery error being at most proportional
to the measurement noise level, similar to that in the standard CS.
The recovery is exact in the special noise free case provided that
the signal is sufficiently sparse with respect to the perturbation
level. A similar result holds for compressible signals under an
additional assumption of small perturbation. Algorithms are
proposed for implementing the �1 minimization problem and
numerical simulations are carried out that verify our analysis.

Index Terms—Compressed sensing, structured matrix pertur-
bation, robustly stable signal recovery, alternating algorithm.

I. INTRODUCTION

Compressed sensing (CS) has been a very active research

area since the pioneering works of Candès et al. [1], [2] and

Donoho [3]. In CS, a signal xo ∈ R
n of length n is called

k-sparse if it has at most k nonzero entries, and it is called

compressible if its entries obey a power law

|xo|(i) ≤ Cqi
−q, (1)

where |xo|(i) is the ith largest entry (in absolute value) of

xo (|xo|(1) ≥ |xo|(2) ≥ · · · ≥ |xo|(n)), q > 1 and Cq is a

constant that depends only on q. Let xk be the truncated vector

corresponding to the k largest entries (in absolute value) of xo.

If xo is compressible, then it can be well approximated by the

sparse signal xk in the sense that
�

�xo − xk
�

�

2
≤ C �

qk
−q+1/2 (2)

where C �

q is a constant as Cq . To obtain the knowledge of xo,

CS acquires linear measurements of xo as

y = Φxo + e, (3)

where Φ ∈ R
m×n is the sensing matrix (or linear operator)

with typically k < m � n, y ∈ R
m is the vector of

measurements, and e ∈ R
m denotes the vector of measurement

noises with bounded energy, i.e., �e�2 ≤ � for � > 0. Given
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Φ and �, the task of CS is to recover xo from a significantly

reduced number of measurements y. Candès et al. [1], [4]

show that if xo is sparse, then it can be stably recovered

under mild conditions on Φ with the recovery error being

at most proportional to the measurement noise level � by

solving an �1 minimization problem. Similarly, the largest

entries (in absolute value) of a compressible signal can be

stably recovered. More details are presented in Subsection

II-B. In addition to the �1 minimization, other approaches that

provide similar guarantees are also reported thereafter, such

as IHT [5] and greedy pursuit methods including OMP [6],

StOMP [7] and CoSaMP [8].

The sensing matrix Φ is assumed known a priori in the stan-

dard CS, which is, however, not always the case in practical

situations. For example, a matrix perturbation can be caused

by quantization during implementation. In source separation

[9], [10] the sensing matrix (or mixing system) is usually

unknown and needs to be estimated, and thus estimation

errors exist. In source localization such as direction of arrival

(DOA) estimation [11], [12] and radar imaging [13], [14], the

sensing matrix (overcomplete dictionary) is constructed via

discretizing one or more continuous parameters, and errors

exist typically in the sensing matrix since the true source

locations may not be exactly on a discretized sampling grid. As

a result, there have been recent active studies on CS where the

sensing matrix is subject to an unknown perturbation. Herman

and Strohmer [15] analyze the effect of a general matrix

perturbation and show that the signal recovery is robust to the

perturbation in the sense that the recovery error grows linearly

with the perturbation level. Similar robust recovery results are

also reported in [16], [17]. It is demonstrated in [17], [18]

that the signal recovery may suffer from a large error under

a large perturbation. In addition, the existence of recovery

error caused by the perturbed sensing matrix is independent of

the sparsity of the original signal. Algorithms have also been

proposed to deal with sensing matrix perturbations. Zhu et al.

[19] propose a sparse total least-squares approach to alleviating

the effect of perturbation where they explore the structure of

the perturbation to improve recovery performance. Yang et al.

[12] formulate the off-grid DOA estimation problem from a

sparse Bayesian inference perspective and iteratively recover

the source signal and the matrix perturbation. It should be

noted that existing algorithmic results provide no guarantees

on signal recovery performance when there exist perturbations

in the sensing matrix.

This paper is on the perturbed CS problem. A structured

matrix perturbation is studied with each column of the per-

turbation matrix being a (unknown) constant times a (known)

a
rX

iv
:1

1
1
2
.0

0
7
1
v
1
  
[c

s.
IT

] 
 1

 D
e
c
 2

0
1
1



2

vector which defines the direction of perturbation. For cer-

tain structured matrix perturbation, we provide conditions for

guaranteed signal recovery performance. Our analysis shows

that robust stability (see definition in Subsection II-A) can

be achieved for a sparse signal under similar mild condi-

tions as those for the standard CS problem by solving an

�1 minimization problem incorporated with the perturbation

structure. In the special noise free case, the recovery is exact

for a sufficiently sparse signal with respect to the perturbation

level. A similar result holds for a compressible signal under

an additional assumption of small perturbation (depending on

the number of largest entries to be recovered). To verify our

analysis, two algorithms for positive-valued and general sig-

nals respectively are proposed to solve the resulting nonconvex

�1 minimization problem. Numerical simulations confirm our

robustly stable signal recovery results.

A common approach in CS to signal recovery is solving

an optimization problem, e.g., �1 minimization. Another con-

tribution of this paper is to characterize a set of solutions

to the optimization problem that can be good estimates of

the signal to be recovered, which indicates that it is not

necessary to obtain the optimal solution to the optimization

problem. This is helpful to assess the “effectiveness” of an

algorithm (see definition in Subsection III-E), for example,

the �p (p < 1) minimization [20], [21] in the standard CS, in

solving the optimization problem as in nonconvex optimization

the output of an algorithm cannot be guaranteed to be the

optimal solution.

Notations used in this paper are as follows. Bold-case letters

are reserved for vectors and matrices. �x�
0

denotes the pseudo

�0 norm that counts the number of nonzero entries of a vector

x. �x�
1

and �x�
2

denote the �1 and �2 norms of a vector x

respectively. �A�
2

and �A�F are the spectral and Frobenius

norms of a matrix A respectively. xT is the transpose of a

vector x and AT is for a matrix A. xi is the ith entry of

a vector x. T c is the complementary set of a set T . Unless

otherwise stated, xT has entries of a vector x on an index set

T and zero entries on T c. diag (x) is a diagonal matrix with its

diagonal entries being entries of a vector x. ⊙ is the Hadamard

(elementwise) product.

The rest of the paper is organized as follows. Section II

first defines formally some terminologies used in this paper

and then introduces existing results on the standard CS and

perturbed CS. Section III presents the main results of the paper

with some discussions. Section IV introduces algorithms for

the �1 minimization problem in our considered perturbed CS

and their analysis. Section V presents a series of numerical

simulations to verify our main results. Conclusions are drawn

in Section VI. Finally, proofs of some results in Section III

and Section IV are provided in Appendices.

II. PRELIMINARY RESULTS

A. Definitions

For the purpose of clarification of expression, we define

formally some terminologies for signal recovery used in this

paper, including stability in the standard CS, robustness and

robust stability in the perturbed CS.

Definition 1 ( [1]): In the standard CS where Φ is known a

priori, consider a recovered signal x̂ of xo from measurements

y = Φxo + e with �e�
2
≤ �. We call that x̂ achieves stable

signal recovery if

�x̂ − xo�
2
≤ Cstb

1 k−q+1/2 + Cstb
2 �

holds for compressible signal xo obeying (1) and an integer

k, or if

�x̂ − xo�
2
≤ Cstb

2 �

holds for k-sparse signal xo, with nonnegative constants Cstb
1 ,

Cstb
2 .

Definition 2: In the perturbed CS where Φ = A + E with

A known a priori and E unknown with �E�F ≤ η, consider

a recovered signal x̂ of xo from measurements y = Φxo + e

with �e�
2
≤ �. We call that x̂ achieves robust signal recovery

if

�x̂ − xo�
2
≤ Crbt

1 k−q+1/2 + Crbt
2 �+ Crbt

3 η

holds for compressible signal xo obeying (1) and an integer

k, or if

�x̂ − xo�
2
≤ Crbt

2 �+ Crbt
3 η

holds for k-sparse signal xo, with nonnegative constants Crbt
1 ,

Crbt
2 and Crbt

3 .

Definition 3: In the perturbed CS where Φ = A + E with

A known a priori and E unknown with �E�F ≤ η, consider

a recovered signal x̂ of xo from measurements y = Φxo + e

with �e�
2
≤ �. We call that x̂ achieves robustly stable signal

recovery if

�x̂ − xo�
2
≤ Crs

1 (η) k−q+1/2 + Crs
2 (η) �

holds for compressible signal xo obeying (1) and an integer

k, or if

�x̂ − xo�
2
≤ Crs

2 (η) �

holds for k-sparse signal xo, with nonnegative constants Crs
1 ,

Crs
2 depending on η.

Remark 1:

(1) In the case where xo is compressible, the defined stable,

robust, or robustly stable signal recovery is in fact for

its k largest entries (in absolute value). The first term

O
�

k−q+1/2
�

in the error bounds above represents, by (2),

the best approximation error (up to a scale) that can be

achieved when we know everything about xo and select

its k largest entries.

(2) The Frobenius norm of E, �E�F, can be replaced by any

other norm in Definitions 2 and 3 since the norms are

equivalent.

It should be noted that the stable recovery in the standard

CS and the robustly stable recovery in the perturbed CS are

exact in the noise free, sparse signal case while there is no

such a guarantee for the robust recovery in the perturbed CS.
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B. Stable Signal Recovery of Standard CS

The task of the standard CS is to recover the original signal

xo via an efficient approach given the sensing matrix Φ, ac-

quired sample y and upper bound � for the measurement noise.

This paper focuses on the �1 norm minimization approach. The

restricted isometry property (RIP) [22] has become a dominant

tool to such analysis, which is defined as follows.

Definition 4: Define the k-restricted isometry constant

(RIC) of a matrix Φ, denoted by δk (Φ), as the smallest number

such that

(1− δk (Φ)) �v�22 ≤ �Φv�22 ≤ (1 + δk (Φ)) �v�22
holds for all k-sparse vectors v. Φ is said to satisfy the k-RIP

with constant δk (Φ) if δk (Φ) < 1.

Based on the RIP, the following theorem holds.

Theorem 1 ( [4]): Assume that δ2k (Φ) <
√
2 − 1 and

�e�2 ≤ �. Then an optimal solution x∗ to the basis pursuit

denoising (BPDN) problem

min
x

�x�1 , subject to �y − Φx�2 ≤ � (4)

satisfies

�x∗ − xo�2 ≤ Cstd
0 k−1/2

�

�xo − xk
�

�

1
+ Cstd

1 � (5)

where Cstd
0 =

2[1+(
√
2−1)δ2k(Φ)]

1−(
√
2+1)δ2k(Φ)

, Cstd
1 =

4
√

1+δ2k(Φ)

1−(
√
2+1)δ2k(Φ)

.

Theorem 1 states that a k-sparse signal xo (xk = xo) can be

stably recovered by solving a computationally efficient convex

optimization problem provided δ2k (Φ) <
√
2 − 1. The same

conclusion holds in the case of compressible signal xo since

k−1/2
�

�xo − xk
�

�

1
≤ C ��

q k
−q+1/2

according to (1) and (2) with C ��
q being a constant as Cq in (1).

In the special noise free, k-sparse signal case, such a recovery

is exact. The RIP condition in Theorem 1 can be satisfied

provided m ≥ O (k log (n/k)) with a large probability if the

sensing matrix Φ is i.i.d. subgaussian distributed [23]. Note

that the RIP condition for the stable signal recovery in the

standard CS has been relaxed in [24], [25] but it is beyond

the scope of this paper.

C. Robust Signal Recovery in Perturbed CS

In the standard CS, the sensing matrix Φ is assumed to be

exactly known. Such an ideal assumption is not always the

case in practice. Consider that the true sensing matrix is Φ =
A+E where A ∈ R

m×n is the known nominal sensing matrix

and E ∈ R
m×n represents the unknown matrix perturbation.

Unlike the additive noise term e in the observation model in

(3), a multiplicative “noise” Exo is introduced in the perturbed

CS and is more difficult to analyze since it is correlated with

the signal of interest. Denote �E�(k)2 the largest spectral norm

taken over all k-column submatrices of E, and similarly define

�Φ�(k)2 . The following theorem is stated in [15].

Theorem 2 ( [15]): Assume that there exist constants ε
(k)
E,Φ,

� and �E,xo such that
�E�(k)

2

�Φ�(k)
2

≤ ε
(k)
E,Φ, �e�2 ≤ � and �Exo�2 ≤

�E,xo . Assume that δ2k (Φ) <
√
2

�

1+ε
(2k)
E,Φ

�2 − 1 and �xo�0 ≤ k.

Then an optimal solution x∗ to the BPDN problem with the

nominal sensing matrix A, denoted by N-BPDN,

min
x

�x�1 , subject to �y − Ax�2 ≤ �+ �E,xo (6)

achieves robust signal recovery with

�x∗ − xo�2 ≤ Cptb�+ Cptb�E,xo (7)

where Cptb =
4
√

1+δ2k(Φ)
�

1+ε
(2k)
E,Φ

�

1−(
√
2+1)

�

(1+δ2k(Φ))
�

1+ε
(2k)
E,Φ

�2
−1

� .

Remark 2:

(1) The relaxation of the inequality constraint in (6) from � to

�+�E,xo is to ensure that the original signal xo is a feasible

solution to N-BPDN. Theorem 2 is a little different from

that in [15], where the multiplicative “noise” Exo is

bounded using ε
(k)
E,Φ, δk (Φ) and �Φxo�2 rather than a

constant �E,xo .

(2) Theorem 2 is applicable only to the small perturbation

case where ε
(2k)
E,Φ < 4

√
2− 1 since δ2k (Φ) ≥ 0.

(3) Theorem 2 generalizes Theorem 1 for the k-sparse signal

case. As the perturbation E → 0, Theorem 2 coincides

with Theorem 1 for the k-sparse signal case.

Theorem 2 states that, for a small matrix perturbation E,

the signal recovery of N-BPDN that is based on the nominal

sensing matrix A is robust to the perturbation with the recovery

error growing at most linearly with the perturbation level.

Note that, in general, the signal recovery in Theorem 2 is

unstable according to the definition of stability in this paper

since the recovery error cannot be bounded within a constant

(independent of the noise) times the noise level as some

perturbation occurs. A result on general signals in [15] is

omitted that shows the robust recovery of a compressible

signal. The same problem is studied and similar results are

reported in [16] based on the greedy algorithm CoSaMP [8].

III. SP-CS: CS SUBJECT TO STRUCTURED PERTURBATION

A. Problem Description

In this paper we consider a structured perturbation in the

form E = B∆o where B ∈ R
m×n is known a priori, ∆o =

diag (βo) is a bounded uncertain term with βo ∈ [−r, r]
n

and

r > 0, i.e., each column of the perturbation is on a known

direction. In addition, we assume that each column of B has

unit norm to avoid the scaling problem between B and ∆
o.1

As a result, the observation model in (3) becomes

y = Φxo + e, Φ = A + B∆o (8)

with ∆
o = diag (βo), βo ∈ [−r, r]

n
and �e�2 ≤ �. Given y,

A, B, r and �, the task of SP-CS is to recover xo, possibly, as

well as βo.

Remark 3: If xo
i = 0 for some i ∈ {1, · · · , n}, then βo

i has

no contributions to the observation y and hence it is impossible

to recover βo
i . As a result, the recovery of βo in this paper

refers only to the recovery on the support of xo.

1In fact, the D-RIP condition on matrix [A,B] in Subsection III-B implies
that columns of both A and B have approximately unit norms.
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B. Main Results of This Paper

In this paper, a vector v is called 2k-duplicately (D-) sparse

if v =
�

vT1 , vT2
�T

with v1 and v2 being of the same dimension

and jointly k-sparse (each being k-sparse and sharing the same

support). The concept of duplicate (D-) RIP is defined as

follows.

Definition 5: Define the 2k-duplicate (D-) RIC of a matrix

Φ, denoted by δ̄2k (Φ), as the smallest number such that
�

1− δ̄2k (Φ)
�

�v�22 ≤ �Φv�22 ≤
�

1 + δ̄2k (Φ)
�

�v�22
holds for all 2k-D-sparse vectors v. Φ is said to satisfy the

2k-D-RIP with constant δ̄2k (Φ) if δ̄2k (Φ) < 1.

With respect to the perturbed observation model in (8), let

Ψ = [A,B]. The main results of this paper are stated in the

following theorems. The proof of Theorem 3 is provided in

Appendix A and proofs of Theorems 4 and 5 are in Appendix

B.

Theorem 3: In the noise free case where e = 0, assume

that �xo�0 ≤ k and δ̄4k (Ψ) < 1. Then an optimal solution

(x∗,β∗) to the perturbed combinatorial optimization problem

min
x∈Rn,β∈[−r,r]n

�x�0 , subject to y = (A + B∆) x (9)

with ∆ = diag (β) recovers xo and βo.

Theorem 4: Assume that δ̄4k (Ψ) <
�

�

2 (1 + r2) + 1
�−1

,

�xo�0 ≤ k and �e�2 ≤ �. Then an optimal solution (x∗,β∗)
to the perturbed (P-) BPDN problem

min
x∈Rn,β∈[−r,r]n

�x�1 , subject to �y − (A + B∆) x�2 ≤ �

(10)

achieves robustly stable signal recovery with

�x∗ − xo�2 ≤ C�, (11)

�(β∗ − βo)⊙ xo�2 ≤ C� (12)

where

C =
4
�

1 + δ̄4k (Ψ)

1−
�

�

2 (1 + r2) + 1
�

δ̄4k (Ψ)
,

C =

�

2 +
√
1 + r2 �Ψ�2 C

�

�

1− δ̄4k (Ψ)
.

Theorem 5: Assume that δ̄4k (Ψ) <
�

�

2 (1 + r2) + 1
�−1

and �e�2 ≤ �. Then an optimal solution (x∗,β∗) to the P-

BPDN problem in (10) satisfies that

�x∗ − xo�2 ≤
�

C0k
−1/2 + C1

�

�

�xo − xk
�

�

1
+ C2�,(13)

�

�(β∗ − βo)⊙ xk
�

�

2

≤
�

C0k
−1/2 + C1

�

�

�xo − xk
�

�

1
+ C2� (14)

where

C0 = 2
�

1 +
�

�

2 (1 + r2)− 1
�

δ̄4k (Ψ)
�

/a,

C1 = 2
√
2rδ̄4k (Ψ) /a,

C0 =
�

1 + r2 �Ψ�2 C0/b,

C1 =
�

�

1 + r2C1 + 2r
�

�Ψ�2 /b

with a = 1−
�

�

2 (1 + r2) + 1
�

δ̄4k (Ψ), b =
�

1− δ̄4k (Ψ)

and C2 = C, C2 = C with C, C as defined in Theorem 4.

Remark 4: In general, the robustly stable signal recovery

cannot be concluded for compressible signals since the error

bound in (13) may be very large in the case of large per-

turbation by C1 = O (r). If the perturbation is small with

r = O
�

k−1/2
�

, then the robust stability can be achieved

for compressible signals provided that the D-RIP condition

in Theorem 5 is satisfied.

C. Interpretation of the Main Results

Theorem 3 states that for a k-sparse signal xo, it can be

recovered by solving a combinatorial optimization problem

provided δ̄4k (Ψ) < 1 when the measurements are exact.

Meanwhile, βo can be recovered. Since the combinatorial

optimization problem is NP-hard and that its solution is

sensitive to measurement noise [26], a more reliable approach,

�1 minimization, is explored in Theorems 4 and 5.

Theorem 4 states the robustly stable recovery of a k-sparse

signal xo in SP-CS with the recovery error being at most

proportional to the noise level. Such robust stability is obtained

by solving an �1 minimization problem incorporated with the

perturbation structure provided that the D-RIC is sufficiently

small with respect to the perturbation level in terms of r.

Meanwhile, the perturbation parameter βo can be stably recov-

ered on the support of xo. As the D-RIP condition is satisfied

in Theorem 4, the signal recovery error of the perturbed CS

is constrained by the noise level �, and the influence of the

perturbation is limited to the coefficient before �. For example,

if δ̄4k (Ψ) = 0.2, then �x∗ − xo�2 ≤ 8.48�, 8.50�, 11.0�
corresponding to r = 0.01, 0.1, 1, respectively. In the special

noise free case, the recovery is exact. This is similar to that

in the standard CS but in contrast to the existing robust signal

recovery result in Subsection II-C where the recovery error ex-

ists once a matrix perturbation appears. Another interpretation

of the D-RIP condition in Theorem 4 is that the robustly stable

signal recovery requires that r <

�

1
2

�

δ̄4k (Ψ)
−1 − 1

�2

− 1

for a fixed matrix Ψ. Using the aforementioned example where

δ̄4k (Ψ) = 0.2, the perturbation is required to satisfy r <
√
7.

As a result, our robustly stable signal recovery result of SP-

CS applies to the case of large perturbation if the D-RIC of

Ψ is sufficiently small while the existing result does not as

demonstrated in Remark 2.

Theorem 5 considers general signals and is a generalized

form of Theorem 4. In comparison with Theorem 1 in the

standard CS, one more term C1

�

�xo − xk
�

�

1
appears in the

upper bound of the recovery error. The robust stability does

not hold generally for compressible signals as illustrated in

Remark 4 while it is true under an additional assumption r =
O
�

k−1/2
�

.

The results in this paper generalize that in the standard

CS. Without accounting for the symbolic difference between

δ2k (Φ) and δ̄4k (Ψ), the conditions in Theorems 1 and 5

coincide, as well as the upper bounds in (5) and (13) for the

recovery errors, as the perturbation vanishes or equivalently

r → 0. As mentioned before, the RIP condition for guar-

anteed stable recovery in the standard CS has been relaxed.
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Similar techniques may be adopted to possibly relax the D-

RIP condition in SP-CS. While this paper is focused on the

�1 minimization approach, it is also possible to modify other

algorithms in the standard CS and apply them to SP-CS to

provide similar recovery guarantees.

D. When is the D-RIP satisfied?

Existing works studying the RIP mainly focus on random

matrices. In the standard CS, Φ has the k-RIP with constant

δ with a large probability provided that m ≥ Cδk log (n/k)
and Φ has properly scaled i.i.d. subgaussian distributed entries

with constant Cδ depending on δ and the distribution [23]. The

D-RIP can be considered as a model-based RIP introduced

in [27]. Suppose that A, B are mutually independent and

both are i.i.d. subgaussian distributed (the true sensing matrix

Φ = A + B∆o is also i.i.d. subgaussian distributed if βo is

independent of A and B). The model-based RIP is determined

by the number of subspaces of the structured sparse signals

that are referred to as the D-sparse ones in the present paper.

For Ψ = [A,B], the number of 2k-dimensional subspaces for

2k-D-sparse signals is

�

n
k

�

. Consequently, Ψ has the 2k-D-

RIP with constant δ with a large probability also provided

that m ≥ Cδk log (n/k) by [27, Theorem 1] or [28, Theorem

3.3]. So, in the case of high dimensional system, the D-RIP

condition on Ψ, as r → 0, in Theorem 4 or 5 for guaranteed

robustly stable signal recovery of SP-CS can be satisfied once

the RIP condition on Φ (after proper scaling of columns) in the

standard CS is met. It means that the perturbation in SP-CS

gradually strengthens the D-RIP condition for robustly stable

signal recovery but there exists no gap between SP-CS and

the standard CS in the case of high dimensional systems.

It is noted that there is another way to stably recover the

original signal xo in SP-CS. Given the sparse signal case as

an example where xo is k-sparse. Let zo =

�

xo

βo ⊙ xo

�

, and

it is 2k-sparse. The observation model can be written as y =
Ψzo+ e. Then zo and hence, xo, can be stably recovered from

the problem2

min
z

�z�
1
, subject to �y −Ψz�

2
≤ � (15)

provided that δ4k (Ψ) <
√
2 − 1 by Theorem 1. It looks like

that we transformed the perturbation into a signal of interest.

Denote TPS-BPDN the problem in (15). In a high dimensional

system, the condition δ4k (Ψ) <
√
2− 1 requires about twice

as many as the measurements that makes the D-RIP condition

δ̄4k (Ψ) <
√
2 − 1 hold by [27, Theorem 1] corresponding

to the D-RIP condition in Theorem 4 or 5 as r → 0. As

a result, for a considerable range of perturbation level, the

D-RIP condition in Theorem 4 or 5 for P-BPDN is weaker

than that for TPS-BPDN since it varies slowly for a moderate

perturbation (as an example, δ̄4k (Ψ) < 0.414, 0.413, 0.409
corresponds to r = 0, 0.1, 0.2 respectively). Numerical simu-

lations in Subsection V can verify our conclusion.

2It is hard to incorporate the knowledge βo ∈ [−r, r]n into the problem
in (15).

Fig. 1. Illustration of Corollary 2. The shaded band area refers to the feasible
domain of BPDN. The triangular area, intersection of the feasible domain and
the �1 ball

�

x : �x�
1
≤ �xo�

1

�

, is the set of all good recoveries.

E. Relaxation of the Optimal Solution

In Theorem 5 (Theorem 4 is a special case), (x∗,β∗) is

required to be an optimal solution to P-BPDN. Naturally, we

would like to know if the requirement of the optimality is

necessary for a “good” recovery in the sense that a good

recovery validates the error bounds in (13) and (14) under

the conditions in Theorem 5. Generally speaking, the answer

is negative since, regarding the optimality of (x∗,β∗), only

�x∗�
1
≤ �xo�

1
and the feasibility of (x∗,β∗) are used in the

proof of Theorem 5 in Appendix B. Denote D the feasible

domain of P-BPDN, i.e.,

D = { (x,β) : β ∈ [−r, r]
n
,

�y − (A + B∆) x�
2
≤ � with ∆ = diag (β)}.

(16)

We have the following corollary.

Corollary 1: Under the assumptions in Theorem 5, any

(x,β) ∈ D that meets �x�
1
≤ �xo�

1
satisfies that

�x − xo�
2
≤

�

C0k
−1/2 + C1

�

�

�xo − xk
�

�

1
+ C2�,

�

�(β − βo)⊙ xk
�

�

2

≤
�

C0k
−1/2 + C1

�

�

�xo − xk
�

�

1
+ C2�

with Ci, Ci, i = 0, 1, 2, as defined in Theorem 5.

Corollary 1 generalizes Theorem 5 and its proof follows

directly that of Theorem 5. It shows that a good recovery

in SP-CS is not necessarily an optimal solution to P-BPDN.

A similar result holds in the standard CS that generalizes

Theorem 1, and the proof of Theorem 1 in [4] applies directly

to such case.

Corollary 2: Under the assumptions in Theorem 1, any x

that meets �y − Ax�
2
≤ � and �x�

1
≤ �xo�

1
satisfies that

�x − xo�
2
≤ Cstd

0
k−1/2

�

�xo − xk
�

�

1
+ Cstd

1
� (17)

with Cstd
0

, Cstd
1

as defined in Theorem 1.

An illustration of Corollary 2 is presented in Fig. 1, where

the shaded band area refers to the feasible domain of BPDN

in (4) and all points in the triangular area, intersection of the

feasible domain of BPDN and the �1 ball {x : �x�
1
≤ �xo�

1
},

are good candidates for recovery of xo. The reason why
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one seeks for the optimal solution x∗ is to guarantee that

the inequality �x�1 ≤ �xo�1 holds while �xo�1 is generally

unavailable a priori. Corollary 2 can explain why a satisfactory

recovery can be obtained in practice using some algorithm

that may not produce an optimal solution to BPDN, e.g.,

rONE-L1 [29]. Corollaries 1 and 2 are useful for checking

the effectiveness of an algorithm in the case when the output

cannot be guaranteed to be optimal.3 Namely, an algorithm is

called effective in solving some �1 minimization problem if it

can produce a feasible solution with its �1 norm no larger than

that of the original signal. Similar ideas have been adopted in

[31], [32].

IV. ALGORITHMS FOR P-BPDN

A. Special Case: Positive Signals

In general, the P-BPDN problem in (10) for SP-CS is

nonconvex and an optimal solution cannot be easily achieved.

This subsection studies a special case where the original signal

xo is positive-valued (except zero entries). Such a case has

been studied in the standard CS [34], [35]. By incorporating

the positiveness of xo, P-BPDN is modified into the positive

P-BPDN (PP-BPDN) problem

min
x,β

�x�1 , subject to







�y − (A + B∆) x�2 ≤ �,
x � 0,
r1 � β � −r1,

where � is ≥ with an elementwise operation and 0, 1 are

column vectors composed of 0, 1 respectively with proper

dimensions. It is noted that the robustly stable signal recovery

results in the present paper apply directly to the solution to PP-

BPDN in such case. This subsection shows that the nonconvex

PP-BPDN problem can be transformed into a convex one and

hence its optimal solution can be efficiently obtained. Denote

p = β ⊙ x. A new, convex problem (P1) is introduced as

follows.

(P1) min
x,p

�x�1 , subject to















�

�

�

�

y −Ψ

�

x

p

��

�

�

�

2

≤ �,

x � 0,
rx � p � −rx.

Theorem 6: Problems PP-BPDN and (P1) are equivalent in

the sense that, if (x∗,β∗) is an optimal solution to PP-BPDN,

then there exists p∗ = β∗⊙x∗ such that (x∗, p∗) is an optimal

solution to (P1), and that, if (x∗, p∗) is an optimal solution to

(P1), then there exists β∗ with β∗

i =

�

p∗i /x
∗

i ,
0,

if x∗

i > 0;
otherwise

such that (x∗,β∗) is an optimal solution to PP-BPDN.

Proof: We only prove the first part of Theorem 6 using

contradiction. The second part follows similarly. Suppose that

(x∗, p∗) with p∗ = β∗ ⊙ x∗ is not an optimal solution

to (P1). Then there exists (x�, p�) in the feasible domain

of (P1) such that �x��1 < �x∗�1. Define β� as β�

i =
�

p�i/x
�

i,
0,

if x�

i > 0;
otherwise

. It is easy to show that (x�,β�) is a

3It is common when the problem to be solved is nonconvex, such as
P-BPDN as discussed in Section IV and �p (0 ≤ p < 1) minimization
approaches [20], [21], [30] in the standard CS. In addition, Corollaries 1 and
2 can be readily extended to the �p (0 ≤ p < 1) minimization approaches.

feasible solution to PP-BPDN. By �x��1 < �x∗�1 we conclude

that (x∗,β∗) is not an optimal solution to PP-BPDN, which

leads to contradiction.

Theorem 6 states that an optimal solution to PP-BPDN can

be efficiently obtained by solving the convex problem (P1).

B. AA-P-BPDN: Alternating Algorithm for P-BPDN

This subsection studies P-BPDN in (10) for general signals

where P-BPDN is nonconvex and the global minimum cannot

be easily obtained. A simple method is to solve a series of

BPDN problems with

x(j+1) = argmin
x

�x�1 , subject to
�

�

�
y −

�

A + B∆(j)
�

x

�

�

�

2
≤ �, (18)

β(j+1) = arg min
β∈[−r,r]n

�

�

�
y − (A + B∆) x(j+1)

�

�

�

2
(19)

starting from β(0) = 0, where the superscript (j) indicates

the jth iteration and ∆
(j) = diag

�

β(j)
�

. Denote AA-P-BPDN

the alternating algorithm defined by (18) and (19). To analyze

AA-P-BPDN, we first present the following two lemmas.

Lemma 1: For a matrix sequence
�

Φ
(j)

�∞

j=1
composed of

fat matrices, let Dj =
�

v :
�

�y − Φ
(j)v

�

�

2
≤ �

�

, j = 1, 2, · · · ,

and D∗ = {v : �y − Φ
∗v�2 ≤ �} with � > 0. If Φ

(j) → Φ
∗,

as j → +∞, then for any v ∈ D∗ there exists a sequence
�

v(j)
�∞

j=1
with v(j) ∈ D(j), j = 1, 2, · · · , such that v(j) → v,

as j → +∞.

Lemma 1 studies the variation of feasible domains Dj ,

j = 1, 2, · · · , of a series of BPDN problems whose sensing

matrices Φ
(j), j = 1, 2, · · · , converge to Φ

∗. It states that

the sequence of the feasible domains also converges to D∗ in

the sense that for any point in D∗, there exists a sequence

of points, each of which belongs to one Dj , that converges

to the point. To prove Lemma 1, we first show that it holds

for any interior point of D∗ by constructing such a sequence.

Then we show that it also holds for a boundary point of D∗ by

that for any boundary point there exists a sequence of interior

points of D∗ that converges to it. The detailed proof is given

in Appendix C.

Lemma 2: An optimal solution x∗ to the BPDN problem

in (4) satisfies that x∗ = 0, if �y�2 ≤ �, or �y − Φx∗�2 = �,

otherwise.

Proof: It is trivial for the case where �y�2 ≤ �. Consider

the other case where �y�2 > �. Note first that x∗ �= 0. We

use contradiction to show that the equality �y − Φx∗�2 = �

holds. Suppose that �y − Φx∗�2 < �. Introduce f (θ) =
�y − θΦx∗�2. Then f(0) > �, and f(1) < �. There exists

θ0, 0 < θ0 < 1, such that f (θ0) = � since f (θ) is continuous

on the interval [0, 1]. Hence, x� = θ0x∗ is a feasible solution

to BPDN in (4). We conclude that x∗ is not optimal by

�x��1 = θ0 �x∗�1 < �x∗�1, which leads to contradiction.

Lemma 2 studies the location of an optimal solution to the

BPDN problem. It states that the optimal solution locates at

the origin if the origin is a feasible solution, or at the boundary

of the feasible domain otherwise. This can be easily observed

from Fig. 1. Based on Lemmas 1 and 2, we have the following

results for AA-P-BPDN.
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Theorem 7: Any accumulation point (x∗,β∗) of the se-

quence
��

x(j),β(j)
��∞

j=1
is a stationary point of AA-P-BPDN

in the sense that

x∗ = argmin
x

�x�1 , subject to

�y − (A + B∆∗) x�2 ≤ �, (20)

β∗ = arg min
β∈[−r,r]n

�y − (A + B∆) x∗�2 (21)

with ∆
∗ = diag (β∗).

Theorem 8: An optimal solution (x∗,β∗) to P-BPDN in

(10) is a stationary point of AA-P-BPDN.

Theorem 7 studies the property of the solution
�

x(j),β(j)
�

produced by AA-P-BPDN. It shows that
�

x(j),β(j)
�

is ar-

bitrarily close to a stationary point of AA-P-BPDN as the

iteration index j is large enough.4 Hence, the output of AA-

P-BPDN can be considered as a stationary point provided that

an appropriate termination criterion is set. Theorem 8 tells that

an optimal solution to P-BPDN is a stationary point of AA-

P-BPDN. So, it is possible for AA-P-BPDN to produce an

optimal solution to P-BPDN. The proofs of Theorems 7 and

8 are provided in Appendix D and Appendix E respectively.

C. Effectiveness of AA-P-BPDN

As reported in the last subsection, it is possible for AA-

P-BPDN to produce an optimal solution to P-BPDN. But it

is not easy to check the optimality of the output of AA-P-

BPDN because of the nonconvexity of P-BPDN. Instead, we

study the effectiveness of AA-P-BPDN in solving P-BPDN in

this subsection with the concept of effectiveness as defined

in Subsection III-E. By Corollary 1, a good signal recovery

x̂ of xo is not necessarily an optimal solution. It requires

only that
�

x̂, β̂
�

, where β̂ denotes the recovery of βo, be a

feasible solution to P-BPDN and that �x̂�1 ≤ �xo�1 holds.

As shown in the proof of Theorem 7 in Appendix D, that
�

x(j),β(j)
�

for any j ≥ 1 is a feasible solution to P-BPDN and

that the sequence
�
�

�x(j)
�

�

1

�∞

j=1
is monotone decreasing and

converges. So, the effectiveness of AA-P-BPDN in solving P-

BPDN can be assessed via numerical simulations by checking

whether
�

�xAA
�

�

1
≤ �xo�1 holds with xAA denoting the output

of AA-P-BPDN. The effectiveness of AA-P-BPDN is verified

in Subsection V via numerical simulations, where we observe

that the inequality
�

�xAA
�

�

1
≤ �xo�1 holds in all experiments

(over 3700 trials).

V. NUMERICAL SIMULATIONS

This section demonstrates the robustly stable signal recov-

ery results of SP-CS in the present paper, as well as the

effectiveness of AA-P-BPDN in solving P-BPDN in (10), via

numerical simulations. AA-P-BPDN is implemented in Matlab

with problems in (18) and (19) being solved using CVX [33].

AA-P-BPDN is terminated as
|�x(j)�

1
−�x(j−1)�

1
|

�x(j−1)�
1

≤ 1× 10−6

4It is shown in the proof of Theorem 7 in Appendix D that the sequence
��

x(j),β(j)
��

∞

j=1
is bounded. And it can be shown, for example, using con-

tradiction, that for a bounded sequence {aj}
∞

j=1, there exists an accumulation

point of {aj}
∞

j=1 such that aj is arbitrarily close to it as j is large enough.

or the maximum number of iterations, set to 200, is reached.

PP-BPDN is also implemented in Matlab and solved by CVX.

We first consider general signals. The sparse signal case is

mainly studied. The variation of the signal recovery error is

studied with respect to the noise level, perturbation level and

number of measurements respectively. Besides AA-P-BPDN

for P-BPDN in SP-CS, performances of three other approaches

are also studied. The first one assumes that the perturbation is

known a priori and recovers the original signal xo by solving,

namely, the oracle (O-) BPDN problem

min
x

�x�1 , subject to �y − (A + B∆o) x�2 ≤ �.

The O-BPDN approach produces the best recovery result

of SP-CS within the scope of �1 minimization of CS since

it exploits the exact perturbation (oracle information). The

second one corresponds to the robust signal recovery of the

perturbed CS as described in Subsection II-C and solves N-

BPDN in (6) where �E,xo = �B∆oxo�2 is used though it is not

available in practice. The last one refers to the other approach

to SP-CS that seeks for the signal recovery by solving TPS-

BPDN in (15) as discussed in Subsection III-E.

The first experiment studies the signal recovery error with

respect to the noise level. We set the signal length n = 200,

sample size m = 80, sparsity level k = 10 and perturbation

parameter r = 0.1. The noise level � varies from 0.05 to 2
with interval 0.05. For each combination of (n,m, k, r, �), the

signal recovery error, as well as βo recovery error (on the

support of xo), is averaged over R = 50 trials. In each trial,

matrices A and B are generated from Gaussian distribution

and each column of them has zero mean and unit norm after

proper scaling. The sparse signal xo is composed of unit spikes

with random signs and locations. Entries of βo are uniformly

distributed in [−r, r]. The noise e is zero mean Gaussian

distributed and then scaled such that �e�2 = �. Using the same

data, the four approaches, including O-BPDN, N-BPDN, TPS-

BPDN and AA-P-BPDN for P-BPDN, are used to recover xo

respectively in each trial. The simulation results are shown in

Fig. 2. It can be seen that both signal and βo recovery errors

of AA-P-BPDN for P-BPDN in SP-CS are proportional to

the noise, which is consistent with our robustly stable signal

recovery result in the present paper. The error of N-BPDN

grows linearly with the noise but a large error still exhibits

in the noise free case. Except the ideal case of O-BPDN, our

proposed P-BPDN has the smallest error.

The second experiment studies the effect of the struc-

tured perturbation. Experiment settings are the same as those

in the first experiment except that we set (n,m, k, �) =
(200, 80, 10, 0.5) and vary r ∈ {0.05, 0.1, · · · , 1}. Fig. 3

presents our simulation results. A nearly constant error is

obtained using O-BPDN in the standard CS since the per-

turbation is assumed to be known in O-BPDN. The error of

AA-P-BPDN for P-BPDN in SP-CS slowly increases with the

perturbation level and is quite close to that of O-BPDN for

a moderate perturbation. Such a behavior is consistent with

our analysis. Besides, it can be observed that the error of N-

BPDN grows linearly with the perturbation level. Again, our

proposed P-BPDN has the smallest error except O-BPDN.



8

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

ε

S
ig

n
a
l 
re

c
o
v
e
ry

 e
rr

o
r

 

 

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

ε

β
o
 r

e
c
o
v
e
ry

 e
rr

o
r

O−BPDN

N−BPDN

TPS−BPDN

AA−P−BPDN

Fig. 2. Signal and perturbation recovery errors with respect to the noise level
� with parameter settings (n,m, k, r) = (200, 80, 10, 0.1). Both signal and
βo recovery errors of AA-P-BPDN for P-BPDN in SP-CS are proportional
to �.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

r

S
ig

n
a
l 
re

c
o
v
e
ry

 e
rr

o
r

 

 

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

r

β
o
 r

e
c
o
v
e
ry

 e
rr

o
r

O−BPDN

N−BPDN

TPS−BPDN

AA−P−BPDN

Fig. 3. Signal and perturbation recovery errors with respect to the
perturbation level in terms of r with parameter settings (n,m, k, �) =
(200, 80, 10, 0.5). The error of AA-P-BPDN for P-BPDN in SP-CS slowly
increases with the perturbation level and is quite close to that of the ideal
case of O-BPDN for a moderate perturbation.

The third experiment studies the variation of the recovery

error with the number of measurements. We set (n, k, r, �) =
(200, 10, 0.1, 0.2) and vary m ∈ {30, 35, · · · , 100}. Simula-

tion results are presented in Fig. 4. Signal recovery errors of

all four approaches decrease as the number of measurements

increases. Again, it is observed that O-BPDN of the ideal case

achieves the best result followed by our proposed P-BPDN.

For example, to obtain the signal recovery error of 0.05, about

55 measurements are needed for O-BPDN while the numbers

are, respectively, 65 for AA-P-BPDN and 95 for TPS-BPDN.

It is impossible for N-BPDN to achieve such a small error in

our observation because of the existence of the perturbation.

Another experiment result is shown in Fig. 5 for a com-

pressible signal that is generated by taking a fixed sequence
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Fig. 4. Signal and perturbation recovery errors with respect to the number of
measurements with parameter settings (n, k, r, �) = (200, 10, 0.1, 0.2). AA-
P-BPDN for P-BPDN in SP-CS has the best performance except the ideal
case of O-BPDN.
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Fig. 5. Recovery of a compressible signal from noisy measurements with
(m,n, r, �) = (200, 70, 0.1, 0.2). The performance of AA-P-BPDN for P-
BPDN in SP-CS is very close to that of the ideal O-BPDN. Black circles:
original signal; red stars: recoveries.
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Fig. 6. Exact recovery of a positive sparse signal from noise-free mea-
surements with (m,n, k, r, �) = (200, 50, 10, 0.1, 0). PP-BPDN is solved
by solving (P1). βo and its recovery are shown only on the support of x

o.
Black circles: original signal and βo; red stars: recoveries.

�

2.8843 · i−1.5
�n

i=1
with n = 200, randomly permuting it, and

multiplying by a random sign sequence (the coefficient 2.8843
is chosen such that the compressible signal has the same �2

norm as the sparse signals in the previous experiments). It

is sought to be recovered from m = 70 noisy measurements

with � = 0.2 and r = 0.1. The signal recovery error of AA-

P-BPDN for P-BPDN in SP-CS is about 0.239, while errors

of O-BPDN, N-BPDN and TPS-BPDN are about 0.234, 0.361
and 0.314 respectively (the recovery of TPS-BPDN is omitted

in Fig. 5).

For the special positive signal case, an optimal solution to

PP-BPDN can be efficiently obtained. An experiment result is

shown in Fig. 6, where a sparse signal of length n = 200,

composed of k = 10 positive unit spikes, is exactly recovered

from m = 50 noise free measurements with r = 0.1 by solving

(P1).

VI. CONCLUSION

This paper studied the CS problem in the presence of mea-

surement noise and a structured matrix perturbation. A concept

named as robust stability for signal recovery was broached. It
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was shown that the robust stability can be achieved for a sparse

signal by solving an �1 minimization problem P-BPDN under

mild conditions. In the presence of measurement noise, the

recovery error is at most proportional to the noise level and the

recovery is exact in the special noise free case. A general result

for compressible signals was also reported. An alternating

algorithm named as AA-P-BPDN was proposed to solve

the nonconvex P-BPDN problem, and numerical simulations

were carried out, verifying our theoretical analysis. A special

positive signal case was also studied and a computationally

efficient approach was proposed to find an optimal solution to

the nonconvex P-BPDN problem.

In this paper it was shown that the D-RIP condition for guar-

anteed robust stability in SP-CS can be satisfied for mutually

independent random perturbation and nominal sensing matrix.

One future work is to study practical situations where the

perturbation and the nominal sensing matrix may be correlated.

APPENDIX A

PROOF OF THEOREM 3

Denote z =

�

x

β ⊙ x

�

and similarly define zo and z∗. Then

the problem in (9) can be rewritten into

min
x∈Rn,β∈[−r,r]n

�x�0 , subject to y = Ψz. (22)

Let δ̄k = δ̄k (Ψ) hereafter for brevity.

First note that xo is k-sparse and zo is 2k-D-sparse. Since

(x∗,β∗) is a solution to the problem in (22), we have �x∗�0 ≤
�xo�0 ≤ k and, hence, z∗ is 2k-D-sparse. By y = Ψzo = Ψz∗

we obtain Ψ (zo − z∗) = 0 and thus zo − z∗ = 0 by δ̄4k < 1
and the fact that zo−z∗ is 4k-D-sparse. We complete the proof

by observing that zo − z∗ =

�

xo − x∗

βo ⊙ xo − β∗ ⊙ x∗

�

= 0.

APPENDIX B

PROOFS OF THEOREMS 4 AND 5

We only present the proof of Theorem 5 since Theorem 4

is a special case of Theorem 5. We first show the following

lemma.

Lemma 3: We have

|�Ψv,Ψv��| ≤ δ̄2(k+k�) �v�2 �v��2
for all 2k-D-sparse v and 2k�-D-sparse v� supported on disjoint

subsets.

Proof: Without loss of generality, assume that v and v�

are unit vectors with disjoint supports as above. Then by the

definition of D-RIP and �v ± v��22 = �v�22 + �v��22 = 2 we

have

2
�

1− δ̄2(k+k�)

�

≤ �Ψv ±Ψv��22 ≤ 2
�

1 + δ̄2(k+k�)

�

.

And thus

|�Ψv,Ψv��| ≤ 1

4

�

�

��Ψv +Ψv��22 − �Ψv −Ψv��22
�

�

� ≤ δ̄2(k+k�),

which completes the proof.

Using the notations z, zo, z∗ and δ̄k in Appendix A, P-BPDN

in (10) can be rewritten into

min
x∈Rn,β∈[−r,r]n

�x�1 , subject to �y −Ψz�2 ≤ �. (23)

Let h = x∗ − xo and decompose h into a sum of k-sparse

vectors hT0
, hT1

, hT2
, · · · , where T0 denotes the set of indices

of the k largest entries (in absolute value) of xo, T1 that of the

k largest entries of hT c
0

with T c
0 being the complementary set

of T0, T2 that of the next k largest entries of hT c
0

and so on.

We misuse notations z∗Tj
=

�

x∗
Tj

β∗
Tj

⊙ x∗Tj

�

, j = 0, 1, 2, · · · , and

similarly define zoTj
. Let f = z∗ − zo and fTj

= z∗Tj
− zoTj

for

j = 0, 1, 2, · · · . For brevity we write T01 = T0∪T1. To bound

�h�2, in the first step we show that
�

�hT c
01

�

�

2
is essentially

bounded by �hT01
�2, and then in the second step we show

that �hT01
�2 is sufficiently small.

The first step follows the proof of Theorem 1.3 in [4]. Note

that

�

�hTj

�

�

2
≤ k1/2

�

�hTj

�

�

∞
≤ k−1/2

�

�hTj−1

�

�

1
, j ≥ 2, (24)

and thus

�

�hT c
01

�

�

2
=

�

�

�

�

�

�

�

j≥2

hTj

�

�

�

�

�

�

2

≤
�

j≥2

�

�hTj

�

�

2

≤ k−1/2
�

j≥1

�

�hTj

�

�

1
≤ k−1/2

�

�hT c
0

�

�

1
.

(25)

By x∗ = xo + h is an optimal solution, we have

�xo�1 ≥ �xo + h�1 =
�

i∈T0

|xo
i + hi|+

�

i∈T c
0

|xo
i + hi|

≥
�

�xo
T0

�

�

1
− �hT0

�1 +
�

�hT c
0

�

�

1
−
�

�

�xoT c
0

�

�

�

1

(26)

and thus
�

�hT c
0

�

�

1
≤ �hT0

�1 + 2
�

�

�xoT c
0

�

�

�

1
. (27)

By (25), (27) and the inequality �hT0
�1 ≤ k1/2 �hT0

�2 we

have

�

�hT c
01

�

�

2
≤

�

j≥2

�

�hTj

�

�

2
≤ �hT0

�2 + 2k−1/2e0 (28)

with e0 ≡
�

�xo − xk
�

�

1
.

In the second step, we bound �hT01
�2 by utilizing its

relationship with
�

�fT01

�

�

2
. Note that fTj

for each j = 0, 1, · · ·
is 2k-D-sparse. By ΨfT01

= Ψf −�

j≥2 ΨfTj
we have

�

�ΨfT01

�

�

2

2
=

�

ΨfT01
,Ψf

�

−
�

j≥2

�

ΨfT01
,ΨfTj

�

≤
�

�

�

ΨfT01
,Ψf

��

�+
�

j≥2

�

�

�

�

ΨfT0
,ΨfTj

��

�

�

+
�

j≥2

�

�

�

�

ΨfT1
,ΨfTj

��

�

�

≤
�

�ΨfT01

�

�

2
· �Ψf�2 + δ̄4k

�

�fT0

�

�

2

�

j≥2

�

�

�fTj

�

�

�

2

+δ̄4k
�

�fT1

�

�

2

�

j≥2

�

�

�fTj

�

�

�

2
(29)

≤
�

�fT01

�

�

2



2�
�

1 + δ̄4k +
√
2δ̄4k

�

j≥2

�

�

�fTj

�

�

�

2



 . (30)
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We used Lemma 3 in (29). In (30), we used the D-RIP, and

inequalities
�

�fT0

�

�

2
+
�

�fT1

�

�

2
≤

√
2
�

�fT01

�

�

2
and

�Ψf�2 = �Ψ (z∗ − zo)�2 ≤ �y −Ψz∗�2 + �y −Ψzo�2 ≤ 2�.
(31)

By noting that βo,β∗ ∈ [−r, r]
n

and

f =

�

h

β∗ ⊙ h + (β∗ − βo)⊙ xo

�

(32)

we have
�

�

�
fTj

�

�

�

2
≤

�

1 + r2
�

�hTj

�

�

2
+ 2r

�

�

�
xoTj

�

�

�

2
, j = 0, 1, · · · .

(33)

Meanwhile,

�

j≥2

�

�

�
xoTj

�

�

�

2
≤

�

j≥2

�

�

�
xoTj

�

�

�

1
=

�

�

�
xo
T c
01

�

�

�

1
≤ e0. (34)

Applying the D-RIP, (30), (33) and then (28) and (34) it gives

�

1− δ̄4k
�
�

�fT01

�

�

2

2
≤

�

�ΨfT01

�

�

2

2

≤
�

�fT01

�

�

2

�

2
�

1 + δ̄4k�+
�

2 (1 + r2)δ̄4k �hT0
�2

+ 2
√
2δ̄4k

�

�

1 + r2k−1/2 + r
�

e0

�

,

and thus

�hT01
�2 ≤

�

�fT01

�

�

2

≤c1�+ c0 �hT01
�2 +

�

c2k
−1/2 + c3

�

e0

with c0 ≡
√

2(1+r2)δ̄4k

1−δ̄4k
, c1 ≡ 2

√
1+δ̄4k

1−δ̄4k
, c2 ≡ 2c0 and c3 ≡

2
√
2δ̄4kr

1−δ̄4k
. Hence, we get a bound

�hT01
�2 ≤ (1− c0)

−1
�

c1�+
�

c2k
−1/2 + c3

�

e0

�

,

which together with (28) gives

�h�2 ≤ �hT01
�2 +

�

�hT c
01

�

�

2

≤2 �hT01
�2 + 2k−1/2e0

≤ 2c1
1− c0

�+

��

2c2
1− c0

+ 2

�

k−1/2 +
2c3

1− c0

�

e0,

(35)

which concludes (13).

By (31), (32), (35) and the RIP we have

[1− δk (B)]
1/2 �

�

�

β∗
T0

− βo
T0

�

⊙ xo
T0

�

�

2

≤
�

�B
��

β∗
T0

− βo
T0

�

⊙ xo
T0

�
�

�

2

=

�

�

�

�

Ψ

�

0
�

β∗
T0

− βo
T0

�

⊙ xoT0

�
�

�

�

�

2

=

�

�

�

�

�

Ψ

�

f −
�

h

β∗ ⊙ h

�

−
�

0
�

β∗
T c
0

− βo
T c
0

�

⊙ xoT c
0

��
�

�

�

�

�

2

≤�Ψf�2 +
�

�

�

�

Ψ

�

h

β∗ ⊙ h

�
�

�

�

�

2

+
�

�

�
B
��

β∗
T c
0

− βo
T c
0

�

⊙ xoT c
0

�
�

�

�

2

≤2�+
�

1 + r2 �Ψ�2 �h�2 + 2r �B�2 e0
≤c4�+

�

c5k
−1/2 + c6

�

e0

with δk (B) ≤ δ2k (B) ≤ δ̄4k, c4 ≡ 2 +
2
√
1+r2�Ψ�

2
c1

1−c0
, c5 ≡

√
1 + r2

�

2c2
1−c0

+ 2
�

�Ψ�2 and c6 ≡
�

2
√
1+r2c3
1−c0

+ 2r
�

�Ψ�2,

and thus
�

�

�

β∗
T0

− βo
T0

�

⊙ xo
T0

�

�

2

≤ 1
�

1− δ̄4k

�

c4�+
�

c5k
−1/2 + c6

�

e0

�

,

which concludes (14). We complete the proof by noting that

the above results make sense if c0 < 1, i.e.,

δ̄4k <
1

�

2 (1 + r2) + 1
.

APPENDIX C

PROOF OF LEMMA 1

We first consider the case where v is an interior point of

D
∗, i.e., it holds that �y − Φ

∗v�2 = �0 < �. Let η = � − �0.

Construct a sequence
�

v(j)
�∞
j=1

such that
�

�v(j) − v
�

�

2
≤ 1/j.

It is obvious that v(j) → v. We next show that v(j) ∈ D
j

as j is large enough. By Φ
(j) → Φ

∗, v(j) → v and that the

sequence
�

v(j)
�∞
j=1

is bounded, there exists a positive integer

j0 such that, as j ≥ j0,
�

�

�
Φ

∗ − Φ
(j)

�

�

�

2

�

�

�
v(j)

�

�

�

2
≤ η/2

�Φ∗�2
�

�

�
v − v(j)

�

�

�

2
≤ η/2.

Hence, as j ≥ j0,
�

�

�
y − Φ

(j)v(j)
�

�

�

2

=
�

�

�
(y − Φ

∗v) +
�

Φ
∗ − Φ

(j)
�

v(j) + Φ
∗
�

v − v(j)
�
�

�

�

2

≤�y − Φ
∗v�2 +

�

�

�

�

Φ
∗ − Φ

(j)
�

v(j)
�

�

�

2
+
�

�

�
Φ

∗
�

v − v(j)
�
�

�

�

2

≤�y − Φ
∗v�2 +

�

�

�
Φ

∗ − Φ
(j)

�

�

�

2

�

�

�
v(j)

�

�

�

2
+ �Φ∗�2

�

�

�
v − v(j)

�

�

�

2

≤�0 + η/2 + η/2 = �,

from which we have v(j) ∈ D
j for j ≥ j0. By re-selecting

arbitrary v(j) ∈ D
j for j < j0 we obtain the conclusion.

For the other case where v is a boundary point of D∗, there

exists a sequence
�

v(l)
�∞
l=1

⊂ D
∗ with all v(l) being interior

points of D
∗ such that v(l) → v, as l → +∞. According to

the first part of the proof, for each l = 1, 2, · · · , there exists

a sequence
�

v
(j)
(l)

�∞

j=1
with v

(j)
(l) ∈ D

j , j = 1, 2, · · · , such that

v
(j)
(l) → v(l), as j → +∞. The sequence

�

v
(j)
(j)

�∞

j=1
is what we

expected since
�

�

�
v
(j)
(j) − v

�

�

�

2
≤

�

�

�
v
(j)
(j) − v(j)

�

�

�

2
+
�

�v(j) − v
�

�

2
→ 0,

as j → +∞.

APPENDIX D

PROOF OF THEOREM 7

We first show the existence of an accumulation point. It

follows the inequality
�

�

�
y −

�

A + B∆(j)
�

x(j)
�

�

�

2
≤

�

�

�
y −

�

A + B∆(j−1)
�

x(j)
�

�

�

2
≤ �
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that x(j) is a feasible solution to the problem in (18), and

thus
�

�x(j+1)
�

�

1
≤

�

�x(j)
�

�

1
for j = 1, 2, · · · . Then we have

�

�x(j)
�

�

1
≤

�

�x(1)
�

�

1
≤

�

�

�
A†y

�

�

�

1
for j = 1, 2, · · · , since A†y is

a feasible solution to the problem in (18) at the first iteration

with the superscript † denoting the pseudo-inverse operator.

This together with β(j) ∈ [−r, r]
n

, j = 1, 2, · · · , leads that

the sequence
��

x(j),β(j)
��∞

j=1
is bounded. Thus, there exists

an accumulation point (x∗,β∗) of
��

x(j),β(j)
��∞

j=1
.

For the accumulation point (x∗,β∗) there exists a sub-

sequence
��

x(jl),β(jl)
��∞

l=1
of

��

x(j),β(j)
��∞

j=1
such that

�

x(jl),β(jl)
�

→ (x∗,β∗), as l → +∞. By (19), we have,

for all β ∈ [−r, r]
n

,
�

�

�
y −

�

A + B∆(jl)
�

x(jl)
�

�

�

2
≤

�

�

�
y − (A + B∆) x(jl)

�

�

�

2
,

at both sides of which by taking l → +∞, we have, for all

β ∈ [−r, r]
n

,

�y − (A + B∆∗) x∗�2 ≤ �y − (A + B∆) x∗�2 ,

which concludes (21).

For (20), we first point out that
�

�x(j)
�

�

1
→ �x∗�1,

as j → +∞, since
��

�x(j)
�

�

1

�∞

j=1
is decreasing and

x∗ is one of its accumulation points. As in Lemma 1,

let Dj =
�

x :
�

�y −
�

A + B∆(j)
�

x
�

�

2
≤ �

�

and D∗ =

{x : �y − (A + B∆∗) x�2 ≤ �}. By A + B∆(jl) → A + B∆∗,

as l → +∞, and Lemma 1, for any x ∈ D∗ there exists a

sequence
�

x(l)
�

∞

l=1
with x(l) ∈ Djl , l = 1, 2, · · · , such that

x(l) → x, as l → +∞. By (18), we have, for l = 1, 2, · · · ,
�

�

�
x(jl+1)

�

�

�

1
≤

�

�x(l)
�

�

1
,

at both sides of which by taking l → +∞, we have

�x∗�1 ≤ �x�1 (36)

since
�

�x(j)
�

�

1
→ �x∗�1, as j → +∞, and x(l) → x, as l →

+∞. Finally, (20) is concluded as (36) holds for arbitrary

x ∈ D∗.

APPENDIX E

PROOF OF THEOREM 8

We need to show that an optimal solution (x∗,β∗) satisfies

(20) and (21). It is obvious for (20). For (21), we discuss

two cases based on Lemma 2. If �y�2 ≤ �, then x∗ = 0

and, hence, (21) holds for any β∗ ∈ [−r, r]
n

. If �y�2 > �,

�y − (A + B∆∗) x∗�2 = � holds by (20) and Lemma 2. Next

we use contradiction to show that (21) holds in such case.

Suppose that (21) does not hold as �y�2 > �. That is, there

exists β� ∈ [−r, r]
n

such that

�y − (A + B∆�) x∗�2 < �y − (A + B∆∗) x∗�2 = �

holds with ∆
� = diag (β�). Then by Lemma 2 we see that x∗

is a feasible but not optimal solution to the problem

min
x

�x�1 , subject to �y − (A + B∆�) x�2 ≤ �. (37)

Hence, �x��1 < �x∗�1 holds for an optimal solution x� to the

problem in (37). Meanwhile, (x�,β�) is a feasible solution to

the P-BPDN problem in (10). Thus (x∗,β∗) is not an optimal

solution to the P-BPDN problem in (10) by �x��1 < �x∗�1,

which leads to contradiction.
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