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“To form a long-term portfolio, investors must first think systematically about their preferences and

about the constraints they face. · · · · · One of the most interesting challenges of the 21st century will be to

develop systems, combining the scientific knowledge of financial economists with information technology and

the human wisdom of financial planners, to help investors carry out the task of strategic asset allocation.” –

John Y. Campbell (Invited Address to AEA and AFA, January 4, 2002)

1. Introduction

Intertemporal consumption-saving and portfolio choice is a fundamental topic in modern eco-

nomics. In the real world, ordinary investors face pervasive uncertainty, and have to make consumption-

saving-investment decisions in environments in which they are not only uncertain about both the

present or future states of the world (e.g., equity returns and uninsurable labor income), but are

also concerned about the structure of the model economy. It is therefore critical for us to under-

stand how rational investors make optimal financial decisions when facing various types of risks

and uncertainty. This paper provides a tractable continuous-time constant absolute risk aversion

(CARA)-Gaussian framework to explore how investors make strategic consumption-saving-asset

allocation decisions when they face both fundamental uncertainty (e.g., labor income uncertainty

or uncertainty about the equity return) and induced uncertainty. In this paper, we define induced

uncertainty as the interaction of model uncertainty due to a preference for robustness and state

uncertainty due to limited information-processing capacity.1

For most individual investors, human wealth, the expected present value of their current and

future labor income, constitutes a major fraction of their total wealth. However, moral hazard and

adverse selection problems prevent the emergence of markets that can insure investors against

their idiosyncratic labor income. Such market incompleteness has stimulated substantial research

interest in the behavior of precautionary saving. Both theoretical and empirical studies support

that we need to take the precautionary saving motive into account when modeling consumption

and saving behavior.2 The recent empirical evidence on household portfolios in the U.S. and ma-

jor European countries has also stimulated research in generalizing the single asset precautionary

saving model to allow for portfolio choice between risky and risk-free financial assets.3 For exam-

ple, Heaton and Lucas (2000) studied how the presence of background risks influences portfolio

allocations. They found that labor income is the most important source of wealth and labor in-

come risk is weakly positively correlated with equity returns. Viceira (2001) examined the effects

of labor income risk on optimal consumption and portfolio choice for both employed and retired

investors. Campbell (2006) outlined the field of household finance and argued that some house-

1Here we label model uncertainty or state uncertainty “induced uncertainty” because it is induced by the interactions
of the preference for robustness or information-processing constraints with fundamental uncertainty.

2See, for example, Caballero (1990), Carroll and Samwick (1998), and Kennickell and Lusardi (2005).
3The empirical research on household portfolios documents that the stock market participation rate was increasing

in the U.S. and Europe and the importance of the precautionary saving motive for portfolio choice. See Guiso, Jappelli,
and Terlizzese (1996) and Luigi, Haliassos, and Jappelli (2002).
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holds make serious investment mistakes, which lead to nonparticipation in risky asset markets

and underdiversification of risky portfolios. Wang (2009) examined optimal consumption-saving

and asset allocation when consumers cannot observe their income growth.4 These studies mainly

consider two key aspects of labor income risk: the variance and persistence of labor income and

the correlation between labor income and the equity return. In the presence of labor income, there

is an income-hedging demand when the equity return is correlated with labor income.5 In addi-

tion, non-tradable labor income leads to precautionary savings by interacting with risk aversion

when it is not perfectly correlated with the equity return.

In this paper, the household portfolio choice problem is revisited by assuming that individual

investors not only face fundamental uncertainty but also face induced uncertainty (model uncer-

tainty and state uncertainty). Model uncertainty and state uncertainty arise from two major types

of incomplete information: one is incomplete information about the distribution of the state tran-

sition equation, and the other is incomplete information about the true level of the state.6 Hansen

and Sargent (1995) first introduced the preference for robustness (RB, a concern for model misspec-

ification) into linear-quadratic-Gaussian (LQG) economic models.7 In robust control problems,

agents are concerned about the possibility that their true model is misspecified in a manner that is

difficult to detect statistically; consequently, they choose their decisions as if the subjective distri-

bution over shocks was chosen by an evil agent to minimize their utility. As discussed in Hansen,

Sargent, and Tallarini (HST, 1999) and Luo and Young (2010), RB models can produce precaution-

ary savings even within the class of LQG models, which leads to analytical simplicity.8 Sims (2003)

first introduced information-processing constraint (rational inattention or RI) into economics and

argued that it is a plausible method for introducing sluggishness, randomness, and delay into

economic models. In his formulation agents have finite Shannon channel capacity, limiting their

ability to process signals about the true state. As a result, a shock to the state induces only gradual

responses by individuals. Another important implication of rational inattention is that attention is

a scarce resource that is important for productivity. Specifically, people may be less productive if

they are worrying about problems at home or distracted by other events that reduce productivity.

In other words, people would be more productive at work if they have higher income and can own

more distraction-saving goods and services at home (e.g., a good baby sitter).9 Because RI intro-

4See Campbell and Viceira (2002) for a recent survey on this topic.
5For example, if the labor income risk is positively correlated with the shock to the equity return, the equity is less

desirable because it offers a bad hedge against negative labor income shocks.
6In Section 5, I also examine the implications of another well-adopted type of imperfect state observation (incomplete

information about income) for optimal consumption-portfolio rule.
7See Hansen and Sargent (2007) for a textbook treatment on robustness.
8Luo, Nie, and Young (2012) briefly discussed the differences between CARA and RB within the discrete-time setting.

Although both RB and CARA preferences (i.e., Caballero 1990 and Wang 2004, 2009) increase the constant precautionary
savings demand, they have distinct implications for the marginal propensity to consume out of permanent income
(MPC).

9See Banerjee and Mullainathan (2008) for a discussion on the relationship among limited attention, productivity,
and income distribution.
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duces additional uncertainty, the endogenous noise due to finite capacity, into economic models,

RI by itself creates an additional demand for robustness. The distinction between these two types

of informational frictions can be seen from the following continuous-time transition equation of

the true state (st):

dst = (Ast + Bct) dt + σdBt,

where st and ct are state and control variables, respectively; A, B, and σ are constant coefficients;

and Bt is a standard Brownian motion. Under RB, agents do not know the true data generating

process driven by the random innovation (Bt), whereas agents under RI cannot observe the true

state (st) perfectly.

As the first contribution of this paper, a continuous-time theoretical framework is constructive

in which there are (i) two fundamental risks: uninsurable labor income and the equity return, (ii)

two types of induced uncertainty: model uncertainty (MU) due to the preference for robustness

and state uncertainty (SU) due to rational inattention, and (iii) CARA utility. The main reason that

I adopt the CARA utility specification is for technical convenience.10 It is shown that the models

with these features can be solved explicitly. In particular, when introducing state uncertainty due

to RI, I derive the continuous-time version of the information-processing constraint (IPC) proposed

in Sims (2003), and find the explicit expressions for the stochastic properties of the RI-induced

noise and the Kalman filtering equation. This paper is therefore closely related to the literature on

imperfect information, learning, asset allocation and asset pricing (see Gennotte 1986, Lundtofte

2008, and Wang 2009).11

Second, after solving the models explicitly, we can exactly inspect the mechanism through

which these two types of induced uncertainty interact and affect different types of demand for the

risky asset (i.e., the standard speculation demand and the income-hedging demand), the precau-

tionary saving demand, and consumption dynamics.12 In particular, I find that optimal allocation

in the risky asset and the precautionary saving demand are more sensitive to CARA than RB, and

are more sensitive to RB than RI when investors are not highly information-constrained.

Third, after calibrating the RB parameter using the detection error probabilities (DEP, or p), I

10A few papers find closed-form solutions in CARA models with uninsurable labor income. For example, Svensson
and Werner (1993) study an infinite horizon consumption-investment model with normally distributed income. It is
well known that there is no closed-form solution if we move away from the CARA specification (e.g., if we adopt the
constant relative risk aversion or CRRA utility) and explicitly model uninsurable labor income in the infinite-horizon
consumption-portfolio choice model in the vein of Merton (1969, 1971). It is also worth noting that Bliss and Pani-
girtzoglou (2004) found evidence from option prices that the CARA specification provides a better representation of
preferences than the CRRA specification.

11It is also shown that the RI model is equivalent to the traditional signal extraction (SE) model with exogenously
specified noises in the sense that they lead to the same model dynamics when the signal-to-noise ratio (SNR) and finite
capacity satisfy some restriction. In other words, we can provide a microfoundation (limited information-processing
constraint) for the exogenously specified SNR in the traditional SE models.

12Uppal and Wang (2002), Maenhout (2004, 2006), Cao, Wang, and Zhang (2005), Liu, Pan, and Wang (2005), and Liu
(2010) examined how model uncertainty affects portfolio choices and/or asset prices.
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explore how RI affects the calibrated parameter value of RB for given values of p. Specifically,

I find that in the presence of model uncertainty, the correlation between the equity return and

undiversified labor income not only affects the hedging demand for the risky asset, but also affects

its standard speculation demand. The key reason is that given the same value of p, the correlation

between labor income and the equity return increases the calibrated value of RB and thus reduces

the optimal share invested in the risky asset.

Finally, the model presented in this paper has some testable implications. As discussed in

Haliassos and Bertaut (1995), Haliassos and Michaelides (2000), and Campbell (2006), the empiri-

cal evidence on the correlation between labor income and equity returns for different population

groups is difficult to reconcile with the observed stockholding behavior. Davis and Willen (1999)

estimated that the correlation is between 0.1 and 0.3 for college-educated males and is about−0.25

for male high school dropouts. Heaton and Lucas (1999) found that the correlation between the

entrepreneurial risk and the equity return was about 0.2. Since negative correlation between earn-

ings and equity returns implies increased willingness to invest in the risky asset, less-educated

investors should be more heavily invested in the stock market while college graduates and en-

trepreneurs should put less wealth in the stock market. In contrast, the empirical evidence on

stock market participation shows a significantly positive correlation between education level and

stockholding.13 I show that incorporating induced uncertainty due to the interaction of RB and RI

can have the potential to help reconcile the model with the empirical evidence. Specifically, poorer

and less well-educated investors probably face greater induced uncertainty (state uncertainty and

model uncertainty); consequently, they rationally choose to invest less in the stock market even if

the correlation between their labor income and equity returns is negative and they have stronger

incentive to hedge against their earnings risk.

This paper contributes to the literature on incomplete-markets consumption-saving-portfolio

decisions under uncertainty, and is closely related to Maenhout (2004) and Wang (2009). Maenhout

(2004) explored how model uncertainty due to a preference for robustness affects optimal portfo-

lio choice, and showed that robustness significantly reduces the demand for the risky asset and

increases the equilibrium equity premium. Wang (2009) studied the effects of incomplete infor-

mation about the income growth rate on the agent’s consumption, saving, and portfolio choice in

an incomplete-market economy. He found that the estimation risk arising from the agent’s learn-

ing process leads to additional precautionary savings demand and the agent can partially hedge

against both the income risk and estimation risk by investing in the risky asset. Unlike Maenhout

(2004), the present paper explores how the interaction of model uncertainty and state uncertainty

affects the consumption-saving-portfolio decisions in the presence of uninsurable labor income.

The model presented in this paper can therefore be used to study the relationship between the cor-

13Haliassos and Bertaut (1995) found that the share invested in the stock market is substantially larger among those
with at least a college degree compared to those with less than high school education at all income levels.
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relation between the labor income risk and the equity return risk and the stockholding behavior.

Unlike Wang (2009), this paper considers model uncertainty due to robustness. In addition, the

state uncertainty considered in this paper is not only from the income process but also from the

equity return. Finally, this paper is also related with the work on robust/risk-sensitive/rational

inattention permanent income models such as Hansen, Sargent, and Tallarini (1999), Luo (2008),

and Luo and Young (2010). The key difference between this paper and the papers mentioned above

is that they adopted the linear-quadratic permanent income framework with constant asset returns

to study consumption and saving dynamics and did not consider the portfolio choice problem. In

addition, they can establish the observational equivalence between the discount factor and the ro-

bustness preference. In contrast, in the present paper, this observational equivalence breaks down

in the presence of the portfolio choice.

This remainder of the paper is organized as follows. Section 2 presents the setup of a continuous-

time consumption and portfolio choice model with uninsurable labor income. Section 3 introduces

RB into the benchmark model and examines the theoretical and empirical implications of RB on

consumption-portfolio rules and precautionary savings using calibrated RB parameters. Section 4

examines how the interactions of RB and RI due to limited information-processing constraint affect

robustly strategic consumption-portfolio rules. Section 5 discusses another type of informational

frictions, incomplete information about individual income components, and compares it with the

RI hypothesis. Section 6 concludes.

2. A Continuous-time Consumption-Portfolio Choice Model with Uninsurable Labor
Income

In this paper, we follow Wang (2009) and consider a continuous-time version of the Caballero-

type model (1990) with portfolio choice. The typical consumer facing uninsurable labor income

in the model economy makes optimal consumption-saving-asset allocation decisions. Specifically,

we assume that the consumer can access: one risk-free asset and one risky asset, and also re-

ceive uninsurable labor income. Labor income (yt) is assumed to follow a continuous-time AR(1)

(Ornstein-Uhlenbeck) process:

dyt = ρ

(
µ

ρ
− yt

)
dt + σydBy,t, (1)

where the unconditional mean and variance of income are y = µ/ρ and σ2
y / (2ρ), respectively; the

persistence coefficient ρ governs the speed of convergence or divergence from the steady state;14

By,t is a standard Brownian motion on the real line R; and σy is the unconditional volatility of the

14If ρ > 0, the income process is stationary and deviations of income from the steady state are temporary; if ρ ≤ 0,
income is non-stationary. The ρ = 0 case corresponds to a simple Brownian motion without drift. The larger ρ is, the
less y tends to drift away from y. As ρ goes to ∞, the variance of y goes to 0, which means that y can never deviate from
y.
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income change over an incremental unit of time.

The agent can invest in both a risk-free asset with a constant interest rate r and a risky asset

(i.e., the market portfolio) with a risky return re
t . The instantaneous return dre

t of the risky market

portfolio over dt is given by

dre
t = (r + π) dt + σedBe,t, (2)

where π is the market risk premium; Be,t is a standard Brownian motion; and σe is the standard

deviation of the market return. Let ρye be the contemporaneous correlation between the labor in-

come process and the return of the risky asset. When ρye = 0, the labor income risk is idiosyncratic

and is uncorrelated with the risky market return; when ρye = 1, the labor income risk is perfectly

correlated with the risky market return. The agent’s financial wealth evolution is then given by

dwt = (rwt + yt − ct) dt + αt (πdt + σedBe,t) , (3)

where αt denotes the amount of wealth that the investor allocates to the market portfolio at time t.

The typical consumer is assumed to maximize the following expected lifetime utility:

E0

[ˆ ∞

t=0
exp (−δt) u(ct)dt

]
,

subject to (3). The utility function takes the CARA form: u(ct) = − exp (−γct) /γ, where γ > 0 is

the coefficient of absolute risk aversion.15 To simplify the model, we define a new state variable,

st:

st ≡ wt + ht,

where ht is human wealth at time t and is defined as the expected present value of current and

future labor income discounted at the risk-free interest rate r:

ht ≡ Et

[ˆ ∞

t
exp (−r (s− t)) ysds

]
.

For the given income process, (1), ht = 1
r+ρ yt +

µ
r(r+ρ)

.16 Following the state-space-reduction ap-

proach proposed in Luo (2008) and using this new state variable, we can rewrite (3) as

dst = (rst − ct + παt) dt + σdBt, (4)

15It is well-known that the CARA utility specification is tractable for deriving the consumption function or optimal
consumption-portfolio rules in different settings. See Merton (1969), Caballero (1990), Svensson and Werner (1993), and
Wang (2004, 2009).

16Here we need to impose the restriction that r > −ρ to guarantee below the finiteness of human wealth.
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where σdBt = σeαtdBe,t + σsdBy,t, σs = σy/ (r + ρ), and

σ =
√

σ2
e α2

t + σ2
s + 2ρyeσsσeαt (5)

is the unconditional variance of the innovation to st.17

In this benchmark full-information rational expectations (FI-RE) model, we assume that the

consumer trusts the model and observes the state perfectly, i.e., there is no model uncertainty and

no state uncertainty. The value function is denoted by J (st). The Hamilton-Jacobi-Bellman (HJB)

equation for this optimizing problem can be written as:

0 = sup
ct,αt

[
− 1

γ
exp (−γct)− δJ (st) +D J (st)

]
,

where

D J (st) = Js (rst − ct + παt) +
1
2

Jss
(
σ2

e α2
t + σ2

s + 2ρyeσsσeαt
)

. (6)

Finally, the transversality condition (TVC), limt→∞ E |exp (−δt) Jt| = 0, holds (see Appendix 7.1

for the proof). Solving the above HJB subject to (4) leads to the following optimal portfolio-

consumption rules:18

α =
π

rγσ2
e
−

ρyeσsσe

σ2
e

, (7)

and

ct = rst +
δ− r

rγ
+

π2

2rγσ2
e
−

πρyeσsσe

σ2
e

− Γ, (8)

where

Γ ≡ 1
2

rγ
(

1− ρ2
ye

)
σ2

s , (9)

is the investor’s precautionary saving demand. The first term in (7) is the standard speculation

demand for the risky asset, which is positively correlated with the risk premium of the risky asset

over the risk-free asset and is negatively correlated with the degree of risk aversion and the vari-

ance of the return to the risky asset. The second term in (7) is the labor income hedging demand of

the risky asset. When ρye 6= 0, i.e., the income shock is not purely idiosyncratic, the desirability of

the risky asset depends not only on its expected excess return relative to its variance, but also on its

ability to hedge consumption against bad realizations of labor income. Following the literature of

precautionary savings, we measure the demand for precautionary saving as the amount of saving

17The main advantage of this state-space-reduction approach is to allow us to solve the model with both model
uncertainty and state uncertainty explicitly and help better inspect the mechanism by which the informational frictions
interact and affect optimal consumption-portfolio rules. It is worth noting that if we only consider model uncertainty,
the reduced univariate model and the original multivariate model are equivalent in the sense that they lead to the same
consumption-portfolio rules. The detailed proof is available from the online appendix.

18This solution is similar to that obtained in Model I of Wang (2009).
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due to the interaction of the degree of risk aversion and non-diversifiable labor income risk.19 If

labor income is perfectly correlated with the return to the risky asset (i.e., ρye = ±1), the market is

complete and the consumer can fully hedge his or her labor income risk; consequently, his or her

demand for precautionary saving is 0.

3. Incorporating Model Uncertainty due to Robustness

3.1. Modeling Robustness

As argued in Hansen and Sargent (2007), the simplest version of robustness considers the question

of how to make optimal decisions when the decision-maker does not know the true probability

model that generates the data. The main goal of introducing robustness is to design optimal poli-

cies that not only work well when the reference (or approximating) model governing the evolution

of the state variables is the true model, but also perform reasonably well when there is some type

of model misspecification. To introduce robustness into our model proposed above, we follow the

continuous-time methodology proposed by Anderson, Hansen, and Sargent (2003) (henceforth,

AHS) and adopted in Maenhout (2004) to assume that consumers are concerned about the model

misspecifications and take Equation (4) as the approximating model.20 The corresponding distort-

ing model can thus be obtained by adding an endogenous distortion υ (st) to (4):

dst = (rst − ct + παt) dt + σ (συ (st) dt + dBt) . (10)

As shown in AHS (2003), the objective D J defined in (6) plays a crucial role in introducing robust-

ness. D J can be thought of as E [dJ] /dt and is easily obtained using Itô’s lemma. A key insight of

AHS (2003) is that this differential expectations operator reflects a particular underlying model for

the state variable. The consumer accepts the approximating model, (4), as the best approximating

model, but is still concerned that it is misspecified. He or she therefore wants to consider a range

of models (i.e., the distorted model, (10)) surrounding the approximating model when computing

the continuation payoff. A preference for robustness is then achieved by having the agent guard

against the distorting model that is reasonably close to the approximating model. The drift adjust-

ment υ (st) is chosen to minimize the sum of (i) the expected continuation payoff adjusted to reflect

the additional drift component in (10) and (ii) an entropy penalty:

inf
υ

[
D J + υ (st) σ2 Js +

1
ϑt
H
]

, (11)

19Note that hedging with the risky asset
(
ρye 6= 0

)
reduces the consumer’s precautionary saving demand.

20As argued in Hansen and Sargent (2007), the agent’s commitment technology is irrelevant under RB if the evolution
of the state is backward-looking. We therefore do not specify the commitment technology of the consumer in the RB
models of this paper.
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where the first two terms are the expected continuation payoff when the state variable follows

(10), i.e., the alternative model based on drift distortion υ (st), H = (υ (st) σs)
2 /2 is the relative

entropy or the expected log likelihood ratio between the distorted model and the approximating

model and measures the distance between the two models,21 and 1/ϑt is the weight on the entropy

penalty term.22 ϑt is fixed and state-independent in AHS (2003); whereas it is state-dependent in

Maenhout (2004). The key reason for using a state-dependent counterpart ϑt in Maenhout (2004) is

to assure the homotheticity or scale invariance of the decision problem with the CRRA utility func-

tion.23 In this paper, we also specify that ϑt is state-dependent (ϑ (st)) in the CARA-Gaussian set-

ting. The main reason for this specification is to guarantee homotheticity, which makes robustness

not diminish as the value of the total wealth increases.24 Note that the evil agent’s minimization

problem, (11), becomes invariant to the scale of total resource, st when using the state-dependent

specification of ϑt.

Applying these results in the above model yields the following HJB equation under robustness:

sup
ct,αt

inf
υt

[
− 1

γ
exp (−γct)− δJ (st) +D J (st) + υ (st) σ2 Js +

1
2ϑ (st)

υ2 (st) σ2
]

. (12)

Finally, the transversality condition (TVC), limt→∞ E |exp (−δt) Jt| = 0, holds at optimum. Solving

first for the infimization part of (12) yields:

υ∗ (st) = −ϑ (st) Js,

where ϑ (st) = −ϑ/J (st) > 0 and ϑ is a constant (see Appendix 7.1 for the derivation). Following

Uppal and Wang (2003) and Liu, Pan, and Wang (2005), here we can also define “1/J (st)” in the

ϑ (st) specification as a normalization factor that is introduced to convert the relative entropy (i.e.,

the distance between the approximating model and the distorted model) to units of utility so that

it is consistent with the units of the expected future value function evaluated with the distorted

model. It is worth noting that adopting a slightly more general specification, ϑ (st) = −ϕϑ/J (st)

where ϕ is a constant, does not affect the main results of the paper. The reason is as follows. We

can simply define a new constant, ϑ̃ = ϕϑ, and ϑ̃, rather than ϑ, will enter the decision rules. Using

21Define qt ≡ −
´ t

0 υ (st) σsdBs − 1
2
´ t

0 (υ (st) σs)
2 ds, we have the following Radon-Nikodym derivative:

dQ
dP
|Ft=qt

for each time t, where Q and P are the distributions of the distorted model and the approximating model, respectively.
22The last term in (11) is due to the consumer’s preference for robustness. Note that the ϑt = 0 case corresponds

to the standard expected utility case. This robustness specification is called the multiplier (or penalty) robust control
problem. We will discuss another closely related robustness specification, the constraint robust control problem, in the
next subsection. See AHS (2003) and Hansen, Sargent, Turmuhambetova, and Williams (2006) (henceforth, HSTW) for
detailed discussions on these two robustness specifications.

23See Maenhout (2004) for detailed discussions on the appealing features of “homothetic robustness”.
24Note that the impact of robustness wears off if we assume that ϑt is constant. It is clear from the procedure of solving

the robust HJB proposed. (See Appendix 7.1 for the details.)
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a given detection error probability, we can easily calibrate the corresponding value of ϑ̃ that affects

the optimal consumption-portfolio rules.25

Because ϑ (st) > 0, the perturbation adds a negative drift term to the state transition equation

because Js > 0. Substituting for υ∗ in (12) gives:

sup
ct,αt

[
− 1

γ
exp (−γct)− δJ (st) + (rst − ct + παt) Js +

1
2

σ2 Jss −
1
2

ϑ (st) σ2 J2
s

]
. (13)

3.2. Theoretical Implications

Following the standard procedure, we can then solve (13) and obtain the optimal consumption-

portfolio rules under robustness. The following proposition summarizes the solution:

Proposition 1. Under robustness, the optimal consumption and portfolio rules are

c∗t = rst +
δ− r

rγ
+

π2

2rγ̃σ2
e
−

πρyeσsσe

σ2
e

− Γ, (14)

and

α∗ =
π

rγ̃σ2
e
−

ρyeσsσe

σ2
e

, (15)

respectively, where the effective coefficient of absolute risk aversion γ̃ is defined as: γ̃ ≡ (1 + ϑ) γ, Ψ =

(δ− r) / (rγ) captures the dissavings effect of relative impatience, and the precautionary savings demand,

Γ, is:

Γ =
1
2

rγ̃
(

1− ρ2
ye

)
σ2

s . (16)

Finally, the worst possible distortion can be written as:

υ∗ = −rγϑ. (17)

Proof. See Appendix 7.1.

From (14), it is clear that robustness does not change the marginal propensity to consume out of

permanent income (MPC), but affects the amount of precautionary savings (Γ). In other words, in

the continuous-time setting, consumption is not sensitive to unanticipated income shocks. This

conclusion is different from that obtained in the discrete-time robust-LQG permanent income

model, in which the MPC is increased via the interaction between RB and income uncertainty

and consumption is more sensitive to unanticipated shocks.26

25See Section 7.2 for the detailed procedure to calibrate the value of ϑ using the detection error probabilities.
26See HST (1999) and Luo and Young (2010) for detailed discussions on how RB affects consumption and precaution-

ary savings in the discrete-time robust-LQG models.
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Expression (15) shows that RB reduces the optimal speculation demand by a factor, 1 + ϑ, but

does not affect the hedging demand of the risky asset. In other words, RB increases the relative

importance of the income hedging demand to the speculation demand by increasing the effective

coefficient of absolute risk aversion (γ̃). Expression (16) shows that the precautionary savings

premium increases with the degree of robustness (ϑ) by increasing the value of γ̃ and interacting

with two types of fundamental uncertainty: labor income uncertainty (σ2
s ) and the correlation

between labor income and the equity return (ρye). An interesting question here is the relative

importance of RB (ϑ) and CARA (γ) in determining the precautionary savings premium, holding

other parameters constant. We can use the elasticities of precautionary saving as a measure of their

importance. Specifically, using (16), we have the following proposition:

Proposition 2. The relative sensitivity of precautionary saving to robustness (RB, ϑ) and CARA (γ) can

be measured by:

µγϑ ≡
eγ

eϑ
=

1 + ϑ

ϑ
> 1, (18)

where eϑ ≡ ∂Γ/Γ
∂ϑ/ϑ = and eγ ≡ ∂Γ/Γ

∂γ/γ are the elasticities of the precautionary saving demand to RB and CARA,

respectively. (18) means that the precautionary savings demand is more sensitive to absolute risk aversion

measured by γ than RB measured by ϑ. Note that Expression (18) can also measure the relative sensitivity

of portfolio choice to RB and CARA.

Proof. Using (15) and (16), the proof is straightforward.

Using (18), it is simple to show that ∂µγϑ/∂ϑ > 0, which means that µγϑ is increasing with

the degree of RB, ϑ. To fully explore the quantitative effects of robustness on portfolio choice and

precautionary saving, we need to calibrate ϑ using the detection error probability approach (DEP)

proposed in Hansen, Sargent, and Wang (henceforth, HSW, 2002), AHS (2003), and Hansen and

Sargent (Chapter 9, 2007). In the next subsection, we will examine the relative importance of RB to

CARA quantitatively after calibrating ϑ using the U.S. data.

Proposition 3. The observational equivalence between the discount factor and robustness established in

the discrete-time Hansen-Sargent-Tallarini (1999) does not hold in our continuous-time CARA-Gaussian

model.

Hansen, Sargent, and Tallarini (1999) (henceforth, HST) show that the discount factor and the

concern about robustness are observationally equivalent in the sense that they lead to the same con-

sumption and investment decisions in a discrete-time LQG permanent income model. The reason

is that introducing a concern about robustness increases savings in the same way as increasing the

discount factor, so that the discount factor can be changed to offset the effect of a change in RS or
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RB on consumption and investment.27 In contrast, in the continuous-time CARA-Gaussian model

with portfolio choice discussed in this section, the observational equivalence between the discount

rate and the RB parameter no longer holds. This result can be readily obtained by inspecting the

explicit expressions of consumption, precautionary savings, and portfolio choice, (14)-(16). The

main reason for this result is that the preference for robustness governed by ϑ affects the portfolio

rule, while the discount rate (δ) has no impact on the portfolio rule in this Merton-type solution.

It is well known that this type of intertemporal consumption-portfolio choice models leads to my-

opic portfolio rules, and the discount rate does not play a role in affecting asset allocation. It is

straightforward to show that once we rule out the risky asset from our model, we can re-establish

the observational equivalence between robustness and patience. Specifically, for given r and γ,

when δ = r + 0.5 (rγ)2 ϑσs, this RB model is observationally equivalent to the FI-RE model with a

lower discount rate (δ = r) in the sense that they lead to the same consumption-saving decisions.28

In summary, although both the discount rate (δ) and ϑ affect the constant term in the consumption

function, and their observational equivalence can be established in the sense that they generate the

same value of the constant term, they imply different portfolio choices and thus break down the

observational equivalence between δ and ϑ.29

Following HSTW (2006) and Hansen and Sargent (2007), we could use the following constraint

formulation of the above RB problem:

sup
ct,αt

inf
υt

[
− 1

γ
exp (−γct)− δJ (st) +D J (st) + υ (st) σ2 Js

]
, (19)

subject to
1
2
(υ (st) σ)2 ≤ η, (20)

where η > 0 measures the consumer’s tolerance for model misspecification. It is clear from the

above constraint that the worst-case distortion is:

υ∗ (st) = −
√

2η

σ
< 0.

Substituting this expression into (19), we can reduce the robust HJB equation to the following HJB

equation:

sup
ct,αt

[
− 1

γ
exp (−γct)− δJ (st) +D J (st)−

√
2ησJs

]
. (21)

27As shown in HST (1999), the two models have different implications for asset prices because continuation valuations
would change as one alters the values of the discount factor and the robustness parameter within the observational
equivalence set.

28Note that in the case without the risky asset, the consumption function and the precautionary saving demand
become c∗t = rst + Ψ− Γ and Γ = 0.5rγ̃σ2

s , respectively.
29Note that the precautionary saving demand is included in the constant term.
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However, given that σ =
√

σ2
e α2

t + σ2
s + 2ρyeσsσeαt, since both σ and σ2 appear in (21), there is no

explicit solution for (21). As argued in Lei (2001) and HSTW (2006), the risk is second-order in the

multiplier formulation because the robustness parameter interacts with the risk-aversion param-

eter, and they are multiplied by the variance σ2. In other words, the second-order risk aversion

is now enhanced by the presence of robustness measured by ϑ. In contrast, in the constraint for-

mulation, the robustness term,
√

2ησ, is proportional to the standard deviation σ. In other words,

η measures the amount of the first-order risk aversion. In the online appendix, I show that the

multiplier and constraint formulations are observationally equivalent in the sense that they lead to

the same portfolio rule and the same level of the worst-case distortion when ϑ and η satisfy some

restriction in special cases in which ρye = ±1 or σs = 0. To keep the model tractable, following the

literature I focus on the multiplier formulation of RB in the subsequent analysis.

3.3. Quantitative Implications

To fully explore how RB affects the joint behavior of portfolio choice, consumption, and labor

income, we adopt the calibration procedure outlined in HSW (2002) and AHS (2003) to calibrate the

value of the RB parameter (ϑ) that governs the degree of robustness. Specifically, we calibrate ϑ by

using the method of detection error probabilities (DEP) that is based on a statistical theory of model

selection. We can then infer what values of ϑ imply reasonable fears of model misspecification for

empirically-plausible approximating models. The model detection error probability denoted by p

is a measure of how far the distorted model can deviate from the approximating model without

being discarded; low values for this probability mean that agents are unwilling to discard many

models, implying that the cloud of models surrounding the approximating model is large. In this

case, it is easier for the consumer to distinguish the two models (see Appendix 7.2 for the detailed

calibration procedure using the value of p).

Using the data set documented in Campbell (2003), we set the parameter values for the pro-

cesses of returns, volatility, and consumption as follows: µ = 0.08, r = 0.02, δ = 0.02, and

σe = 0.156. For the labor income process, we follow Wang (2009) and set that σy = 0.1. When

ρ = 0, i.e., when labor income follows a Brownian motion, we can compute that σs = 5. Figure 1

illustrates how DEP (p) varies with the value of ϑ for different values of γ. We can see from the fig-

ure that the stronger the preference for robustness (higher ϑ), the less the p is. For example, when

γ = 2, p = 10% when ϑ = 1.4, while p = 16% when ϑ = 1.30 Both values of p are reasonable as

argued in AHS (2002), HSW (2002), Maenhout (2004), and Hansen and Sargent (Chapter 9, 2007).

Figures 2 and 3 illustrate how p varies with the value of ϑ for different values of σs and ρye,

respectively.31 These figures also show that the higher the value of ϑ, the less the p is. In addition,

30Caballero (1990) and Wang (2004) also set γ = 2.
31Note that since σs = σy/ (r + ρ), the value of σs can measure the persistence (ρ) and volatility

(
σy
)

of the labor
income process.
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to calibrate the same value of p, less values of σs (i.e., more volatile or higher persistent labor

income processes) or higher values of ρye lead to higher values of ϑ. The intuition behind this

result is that σs and ϑ have opposite effects on υ (this is clear from (64) in Appendix 7.2). To keep

the same value of p, if one parameter increases, the other one must reduce to offset its effect on

υ. As emphasized in Hansen and Sargent (2007), in the robustness model, p is the deep model

parameter governing the preference for RB, and ϑ reflects the effect of RB on the model’s behavior.

Combining these facts with the expression for robust portfolio rule, (15), we can see that an increase

in ρye not only reduces the hedging demand directly, but also reduces the standard speculation

demand of the risky asset by affecting the calibrated values of ϑ using the same values of p. In

contrast, an increase in σs reduces the hedging demand, but increases the speculation demand. It

is worth noting that in the RB model p can be used to measure the amount of model uncertainty,

whereas ϑ is used to measure the degree of the agent’s preference for RB. If we keep p constant

when recalibrating ϑ for different values of other parameters, the amount of model uncertainty is

held constant, i.e., the set of distorted models with which we surround the approximating model

does not change. In contrast, if we keep ϑ constant, p will change accordingly when the values of

other parameters change. In other words, the amount of model uncertainty is “elastic” and will

change accordingly when the fundamental factors change.

From the expression for robust portfolio rule, (15), we can see that plausible values of RB can

significantly affect the share invested in the risky asset. Figure 4 shows how the robust portfolio

rule varies with the degree of RB for different values of ρye. It clearly shows that α∗ decreases with

the value of ϑ for different values of ρye. In addition, it is also clear from the same figure that α∗

decreases with ρye for a given value of ϑ. The intuition behind this result is the same as that in the

FI-RE case: When the labor income risk becomes more positively correlated with the shock to the

equity return, the equity is less desirable and the agent thus invests less in it.

Figure 4 also illustrates how the precautionary saving demand (Γ) varies with the degree of RB

for different values of ρye. It clearly shows that Γ increases with the value of ϑ for different values of

ρye and RB has a very significant impact on precautionary savings. For example, when ρye = 0.35,

Γ = 0.63 when ϑ = 1, while Γ = 0.96 when ϑ = 1.4. Furthermore, we can see that Γ decreases

with ρye for a given value of ϑ. The intuition for this result is that the higher the value of ρye, the

more important the hedging demand for the equity, and thus the less demand for precautionary

savings.

4. Incorporating State Uncertainty

4.1. Information-Processing Constraint

So far we have considered the case in which the consumer can observe the state perfectly. In this

section, we consider a situation in which the typical consumer with the preference for robust-
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ness cannot observe the state (s) perfectly due to finite information-processing capacity (rational

inattention, or RI). In other words, the typical consumer can neither observe st nor can he or she

observe the source of innovation dBt, included in the state transition equation, (4):

dst = (rst − ct + παt) dt + σdBt. (22)

Following Kasa (2006) and Reis (2011), we assume that the consumer observes only a noisy signal

containing imperfect information about st:

ds∗t = stdt + dξt, (23)

where ξt is the noise shock, and is a Brownian motion with mean 0 and variance Λ (in the RI

setting, the variance, Λ, is a choice variable for the agent). Note that here we assume that the

consumer receives signals on stdt rather than on dst. As emphasized in Sims (1998) and discussed

in Kasa (2006) and Reis (2011), the latter specification is not suitable to model state uncertainty

due to finite capacity because this specification means that in any finite interval, arbitrarily large

amounts of information can be passed through the consumer’s channel. In addition, following the

RI literature, we assume that ξt is independent of the Brownian motion governing the fundamental

shock, Bt.32

To model RI due to finite capacity, we follow Sims (2003) and impose the following constraint

on the consumer’s information-processing ability:

H (st+∆t|It)−H (st+∆t|It+∆t)≤ κ∆t, (24)

where κ is the consumer’s information channel capacity; H (st+∆t|It) denotes the entropy of the

state prior to observing the new signal at t + ∆t; andH (st+∆t|It+∆t) is the entropy after observing

the new signal. κ imposes an upper bound on the amount of information – that is, the change

in the entropy – that can be transmitted in any given period. Formally, entropy is defined as

the expectation of the negative of the (natural) log of the density function of a random variable s,

−E [ln ( f (s))]. For example, the entropy of a discrete distribution with equal weight on two points

is simply E [ln2 ( f (X))] = −0.5 ln (0.5)− 0.5 ln (0.5) = 0.69, and the unit of information contained

in this distribution is 0.69 “nats” or 1 bit.33 In this case, an agent can remove all uncertainty about

s if the capacity devoted to monitoring s is κ = 1 bit. Since imperfect observations on the state lead

to welfare losses, the information-processing constraint must be binding. In other words, rational

investors use all of their channel capacity, κ, to reduce the uncertainty upon new observations. To

32In the traditional signal extraction literature, sometimes it is assumed that the fundamental shock and the noise
shock (or measure errors) are correlated. In real systems, we do observe correlated shocks and noises. See Stengel
(Chapter 4, 1994) for a discussion on correlated process and measurement noise.

33For alternative bases for the logarithm, the unit of information differs; with log base 2 the unit of information is the
“bit” and with base 10 it is a “dit” or a “hartley.”
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apply this information constraint to the state transition equation, we first rewrite (22) in the time

interval of [t, t + ∆t]:34

st+∆t = ρ0,t + ρ1st + ρ2
√

∆tεt+∆t, (25)

where ρ0,t = (−ct + παt) (1− exp (r∆t)) / (−r∆t), ρ1 = exp (r∆t), ρ2 = σ
√
(1− exp (2r∆t)) / (−2r∆t),

and εt+∆t is the time-(t + ∆t) standard normal distributed innovation to permanent income. Tak-

ing conditional variances on both sides of (25) and substituting it into (24), we have

ln
(
ρ2

1Σt + ρ2
2
)
− ln (Σt+∆t) = 2κ∆t, (26)

which reduces to
·
Σt = 2 (r− κ)Σt + σ2,

as ∆t → 0, where Σt = Et

[
(st − ŝt)

2
]

the conditional variance at t (see Appendix 7.3 for a proof).

In the steady state in which
·
Σt = 0, the steady state conditional variance can be written as:35

Σ =
σ2

2 (κ − r)
. (27)

To make optimal decisions, the consumer is required to filter in the optimal way the value of st

using the observed s∗t . Although the setting of our CARA-Gaussian model is not a typical tracking

problem, the filtering problem in this model could be similar to the tracking problem proposed in

Sims (2003, 2010). Specifically, we may think that the model with imperfect state observations can

be decomposed into a two-stage optimization procedure:36

1. The optimal filtering problem determines the optimal evolution of the perceived (estimated)

state;

2. The optimal control problem in which the decision makers treat the perceived state as the

underlying state when making optimal decisions.

Here we assume ex post Gaussian distributions and Gaussian noise but adopt exponential or

CARA preferences. See Peng (2004), Van Nieuwerburgh and Veldkamp (2009, 2010), and Mondria

(2010) for this specification. Because both the optimality of ex post Gaussianity and the standard

Kalman filter are based on the linear-quadratic-Gaussian (LQG) specification, the applications of

these results in the RI models with CARA preferences are only approximately valid.

34Note that here we use the fact that ∆Bt = εt
√

∆t, where ∆Bt represents the increment of a Wiener process.
35Note that here we need to impose the restriction κ− r > 0. If this condition fails, the state is not stabilizable and the

conditional variance diverges.
36See Liptser and Shiryayev (2001) for a textbook treatment on this topic and an application in a precautionary saving

model in Wang (2004).
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In stage 1, consumers need to estimate the unobserved state (st) using its prior distribution and

all processed and available information (i.e., their noisy observations, Ft=
{

s∗j
}t

j=0
). Specifically,

consumers rationally compute the conditional distribution of the unobserved state and represent

the original optimization problem as a Markovian one. Given the Gaussian prior s0 ∼ N (ŝ0, Σ0),

finding the posterior distribution of st becomes a standard filtering problem that can be solved us-

ing the Kalman-Bucy filtering method. Specifically, the optimal estimate for st given Ft=
{

s∗j
}t

j=0
in the mean square sense coincides with the conditional expectation: ŝt = Et [st], where Et [·] is

based on Ft. Applying Theorem 12.1 in Liptser and Shiryaev (2001), we can obtain the filtering

differential equations for ŝt and Σt as follows:

dŝt = (rŝt − ct + παt) dt + Ktdηt, (28)
·
Σt = −ΛK2

t + 2rΣt + σ2, (29)

given s0 ∼ N (ŝ0, Σ0), where

Kt =
Σt

Λ
(30)

is the Kalman gain and

dηt =
√

ΛdB∗t , (31)

with mean E [dηt] = 0 and var (dηt) = Λdt, where B∗t is a standard Brownian motion and Λ is to

be determined. Note that ηt is a Brownian motion with mean 0. Although the Brownian variable,

ξt, is not observable, the innovation process, ηt, is observable because it is derived from observable

processes (i.e., ds∗t and (rŝt − ct + παt) dt). In this case, the path of the conditional expectation, ŝt,

is generated by the path of the innovation process, ηt. In the steady state, we have the following

proposition:

Proposition 4. Given finite capacity κ, in the steady state, the evolution of the perceived state can be written

as:

dŝt = (rŝt − ct + παt) dt + σ̂dB∗t , (32)

where

σ̂ ≡ Σ/
√

Λ = f (κ) σ, (33)

f (κ) =
√

κ
κ−r > 1 (i.e., the standard deviation of the estimated state is greater than that of the true state),

Λ =
σ2

4κ (κ − r)
(34)

is the steady state conditional variance, and

K = 2κ (35)
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is the corresponding Kalman gain.

Proof. In the steady state in which
·
Σt = 0, substituting the definition of the Kalman gain, (30), into

−ΛK2
t + 2rΣt + σ2 = 0 and using Σ = σ2

2(κ−r) , we can easily obtain that:

Λ =
σ2

4κ (κ − r)
and K = 2κ.

It is worth noting that the above RI case can be observationally equivalent to the traditional

signal extraction (SE) model with exogenously specified noises (i.e., the steady state variance of the

noise Λ or the signal-to-noise ratio (SNR) σ2/Λ are specified exogenously) in the sense that they

lead to the same model dynamics when the signal-to-noise ratio and finite capacity satisfy some

restriction.37 In other words, RI can provide a microfoundation for the exogenously specified SNR

in the traditional SE models.

In the RI literature, to explain the observed aggregate fluctuations and the effects of monetary

policy on the macroeconomy, the calibrated values of K are well below 1 (the FI-RE case). For

example, Adam (2007) found K = 0.4 bits based on the response of aggregate output to monetary

policy shocks. Luo (2008) found that if K = 0.5 bits, the otherwise standard permanent income

model generates realistic relative volatility of consumption to income.

4.2. Interaction between Model Uncertainty and State Uncertainty

In this section, we assume that the typical consumer not only cannot observe the state perfectly,

but also has concerns about the innovation to perceived permanent income. In the model with

both state uncertainty and model uncertainty, the prior variance of s, σ2, is affected by the optimal

portfolio choice, α∗, which is to be determined after solving the whole model with both model

uncertainty (ϑ) and state uncertainty (κ or SNR). Given the value of κ, the value of the variance

of the noise (Λ) should also be endogenously determined by α∗. The following is the two-stage

procedure to solve the optimization problem of the consumer under both model uncertainty (MU)

and state uncertainty (SU):

1. First, given finite SNR, we guess that the optimal portfolio choice under MU and SU is time-

invariant, i.e., αt = α. Consequently, σ =
√

σ2
e α2 + σ2

s + 2ρyeσsσeα is also time-invariant. The

consumer with imperfect information about the state (SNR > 0) understands that he or she

cannot observe st perfectly and needs to use the Kalman filter, (28), to update the perceived

state when making decisions. In other words, (28) is regarded as the approximating model

37See Appendix 7.5 for the detailed discussion.
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in this MU-SU model. The consumer solves the following HJB:

sup
ct,α

inf
υt

[
− 1

γ
exp (−γct)− δJ (ŝt) +D J (ŝt) + υ (ŝt) σ2 Js +

1
2ϑ (ŝt)

υ (ŝt)
2 σ2

]
, (36)

subject to the distorted model:

dŝt = (rŝt − ct + πα) dt + σ̂
(

σ̂υ (ŝt) dt + dB̃t

)
, (37)

where σ̂ ≡ f (κ) σ and f (κ) =
√

κ
κ−r > 1, and the transversality condition (TVC), limt→∞ E |exp (−δt) J (ŝt)| =

0, holds.

2. Second, after solving for optimal consumption and portfolio rules under RB and RI, we can

verify whether or not the resulting portfolio rule is time-variant. If yes, our guess in the

first step is correct and can thus rationalize the above procedure that we used to derive the

stochastic property of the endogenous noise, Λ. The key reason is that time-invariant α yields

time-invariant variance of the fundamental shock (σ).

The following proposition summarizes the solution to (36)-(37):

Proposition 5. Given ϑ and K, the optimal consumption and portfolio rules under robustness are

c∗t = rŝt +
δ− r

rγ
+

π2

2rγσ2
e
−

πρyeσsσe

σ2
e

− Γ (38)

and

α∗ =
π

rγ̃ f (κ) σ2
e
−

ρyeσsσe

σ2
e

, (39)

respectively, where ŝt is governed by (37), we use the fact that σ̂2 = f (κ)2 σ2, and γ̃ ≡ (1 + ϑ) γ, and the

precautionary savings premium, Γ, is

Γ =
1
2

rγ̃ f (κ)2
(

1− ρ2
ye

)
σ2

s . (40)

Finally, the worst possible distortion can be written as υ∗ = −rγϑ.

Proof. See Appendix 7.4.

From (38), it is clear that robustness does not change the marginal propensity to consume

(MPC) out of perceived permanent income (ŝt), but affects the amount of precautionary savings. In

other words, in the continuous-time setting, consumption is not sensitive to unanticipated income

shocks. This conclusion is different from that obtained in the discrete-time robust-LQG perma-

nent income model in which the MPC is increased via the interaction between RB and income

19



uncertainty, and consumption is more sensitive to unanticipated shocks.38

Given (38)-(40), it is straightforward to show that the observational equivalence between the

discount rate and the RB parameter no longer holds in the MU-SU model. The reason is the same

as that in the model without SU: ϑ affects optimal portfolio choice via increasing γ̃, whereas δ

does not enter the portfolio rule. In other words, although both the discount factor (exp (−δ))

and γ increase the precautionary savings premium and their observational equivalence can be

established in the sense that they generate the same value of Γ, they imply different portfolio

choices. Comparing (14) with (38), it is clear that the certainty equivalence principle holds in this

model, i.e., the consumption function under SU can be easily obtained by replacing the true state

with the perceived state.

Expression (39) shows that finite capacity (κ) affects the speculation demand invested in the

risky asset (the first term in (39)). Given that f (κ) =
√

κ/ (κ − r) > 1, we can see that SU reduces

the share invested in the risky asset. The intuition behind this result is that consumption reacts to

the income and asset return shocks gradually and with delay due to extracting useful information

about the true state from noisy observations. In other words, SU and MU affect the optimal port-

folio choice in the same direction. Figure 5 illustrates how strategic portfolio rule (α∗) varies with

the degree of SU (κ) for different plausible values of γ. It clearly shows that α∗ decreases with

the value of κ for any given value of γ. In addition, it is also clear from the same figure that α∗

decreases with γ for a given value of κ, which is consistent with the result obtained in the model

without SU.

Expression (40) shows that the precautionary savings demand increases with the degree of SU

governed by f (κ). Figure 5 also illustrates how the precautionary saving demand (Γ) varies with

the degree of SU for different plausible values of γ. It clearly shows that Γ increases with the value

of κ for different values of γ, and SU has a significant impact on precautionary savings.

As in the previous section, we use the elasticities of precautionary saving to changes in the

degrees of MU and SU as a measure of their importance. Specifically, using (40), we have the

following proposition:

Proposition 6. The relative sensitivity of precautionary saving to model uncertainty (MU, ϑ) and state

uncertainty (SU, κ) can be measured by:

µϑκ ≡ −
eϑ

eκ
=

ϑ

1 + ϑ

κ − r
r

, (41)

where eϑ ≡ ∂Γ/Γ
∂ϑ/ϑ and eκ ≡ ∂Γ/Γ

∂κ/κ are the elasticities of precautionary saving to model uncertainty and state

38See HST (1999) and Luo and Young (2010) for detailed discussions on how RB affects consumption and precaution-
ary savings in the discrete-time LQG permanent income models.
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uncertainty, respectively. Furthermore, when

κ < (≥) r
(

2 +
1
ϑ

)
,

the precautionary saving demand is more sensitive to state uncertainty than model uncertainty. In other

words, when finite capacity is sufficiently low, the precautionary saving demand becomes more sensitive to

state uncertainty.

Proof. The proof is straightforward using (41) and the facts that µϑκ ≡
(

∂Γ/Γ
∂ϑ̃/ϑ̃

∂ϑ̃/ϑ̃
∂ϑ/ϑ

)
/
(

∂Γ/Γ
∂ f / f

∂ f / f
∂κ/κ

)
,

where ϑ̃ = 1 + ϑ.

Using (41), it is straightforward to show that:

∂µϑκ

∂ϑ
> 0 and

∂µϑκ

∂κ
> 0,

which mean that µϑκ is increasing with the degree of RB, ϑ, while is decreasing with the degree of

SU (i.e., less values of κ).

Using (38) and (39), we can obtain the stochastic properties of the joint dynamics of consump-

tion, labor income, and the equity return. The following proposition summarizes the major results

on the effects of RB on the joint behavior of consumption, labor income, and the equity return:

Proposition 7. Given ϑ and κ, the expected growth of consumption is:

gc ≡
E [dc∗t ]

dt
= −δ− r

rγ
+

1
2

r f (κ)2 γ̃
(

1− ρ2
ye

)
σ2

s +
π2

2r f (κ) γ̃σ2
e

, (42)

the volatility of consumption growth is var (dc∗t ) = r2 f (κ)2 σ2, where σ is given in (5) and α∗ is given in

(39), the relative volatility of consumption growth to income growth is:

µ ≡ sd (dc∗t )
sd (dyt)

=
r f (κ)
r + ρ

√
1− ρ2

ye +

[
π (r + ρ)

γ̃σeσy

]2

, (43)

and the contemporaneous correlation between consumption growth and the equity return is:

ρcy ≡ corr (dc∗t , dyt) = f (κ)

(
1− ρ2

ye

)
σs + πρye/ (rγ̃σe)√(

1− ρ2
ye

)
σ2

s + π2/ (rγ̃σe)
2

. (44)

Proof. See Appendix 7.4.
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Expression (42) clearly shows that both RB and RI can affect the expected consumption growth

by interacting with two sources of fundamental uncertainty: (i) labor income uncertainty
(
σ2

s
)

and

(ii) asset return uncertainty
(
σ2

e
)
. Specifically, we have

∂gc

∂ϑ
> 0 if ϑ >

π

rγ
√

f (κ)3
√

1− ρ2
yeσsσe

− 1.

Using the same parameter values above, we can compute that RB can increase the expected growth

rate if ϑ is greater than 0.4 when κ = 0.1 (here we set ρye = 0.18). In contrast, RB can increase the

expected growth rate if ϑ is greater than 0.76 when κ = 0.3. Furthermore, we have

∂gc

∂κ
< 0 if κ > κ ≡ r

1−
{

π2/
[
2 (rγ̃)2

(
1− ρ2

ye

)
σ2

s σ2
e

]}−2/3 .

Because κ is negative for the plausible parameter values, SU (less κ) can always increase the ex-

pected growth rate (see Figure 6).

From Expression (43), we can see that RB reduces the relative volatility of consumption growth

to income growth by increasing γ̃ and reducing the optimal share invested in the risky asset. This

result is different from that obtained in the permanent income model in which RB increases the

relative volatility of consumption growth to income growth by strengthening the consumption

sensitivity to income shocks.39 It is also clear from (43) that SU measured by f (κ) increases the rel-

ative volatility. This effect is similar to that obtained in the discrete-time permanent income model

(see Luo (2008) for a proof on how SU due to RI increases the relative volatility of consumption

growth to income growth at the individual level). Figure 6 illustrates how gc varies with the degree

of SU (κ) for different plausible values of γ. It is clear from the figure that the quantitative impact

of SU on gc is much stronger than that of MU on gc.

Since
∣∣ρye

∣∣ ≤ 1, we have:
∂ρcy

∂ϑ
> 0,

which means that RB raises the contemporaneous correlation between consumption growth and

income growth. In addition, ρcy = 1√
1+π2/(rγ̃σsσe)

2 when labor income is purely idiosyncratic, i.e.,

ρye = 0, while ρcy = 1 when the income risk and the return risk are perfectly correlated. From (44),

it is obvious that SU increases ρcy (see Figure 6).

39See Luo and Young (2010) for a proof that RB worsens the PIH model’s prediction on the relative volatility of
consumption growth to income growth.
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4.3. Quantitative Implications

In this section, we adopt the same calibration procedure as in the last section to calibrate the value

of ϑ for a given DEP, p, in the MU-SU model.40 Using the same parameter values as in the last

section, Figure 7 illustrates how p varies with the value of ϑ for different values of κ. We can see

from the figure that the stronger the preference for robustness (higher ϑ), the less the p is. Tables

1 and 2 report how different values of κ affect calibrated values of ϑ, optimal allocation in the

risky asset (α∗), the relative importance of the income hedging demand to the speculation demand

(
∣∣α∗h∣∣ /α∗s ), and precautionary saving demand (Γ) for different values of ρye and σs, respectively.41

Specifically, for given values of σs and ρye, when κ decreases (i.e., more information-constrained),

the calibrated value of ϑ increases; consequently, the optimal share invested in the risky asset

decreases and the relative importance of the income hedging demand to the speculation demand

increases. In addition, the precautionary saving demand decreases with the value of κ.

From Table 1, we can see that for given values of κ, the precautionary saving demand decreases

with the correlation between the equity return and labor income risk (ρye), holding other factors

constant, which is consistent with what we obtained in the MU model. The intuition is that the

higher the correlation coefficient, the less demand for the risky asset and thus precautionary sav-

ing. In Table 2, we can see that as labor income becomes more volatile, the optimal allocation in

the risky asset increases and the precautionary saving demand decreases. The reason is that the

higher the value of σs, the less the calibrated value of ϑ, holding other factors fixed; consequently,

the effective coefficient of absolute risk aversion decreases, and thus the optimal share increases

and the precautionary saving demand decreases.

4.4. Empirical Implications

As discussed in Haliassos and Michaelides (2000) and Campbell (2006), the empirical evidence on

the correlation between labor income and equity returns for different population groups is difficult

to reconcile with the observed stockholding behavior. Davis and Willen (1999) estimated that the

correlation is between 0.1 and 0.3 for college-educated males and is only about−0.25 for male high

school dropouts. Heaton and Lucas (1999) found that the correlation between the entrepreneurial

risk and the equity return was about 0.2. Since negative correlation between earnings and equity

returns implies increased willingness to invest in the risky asset, less educated investors should be

more heavily invested in the stock market while college graduates and entrepreneurs should put

less wealth in the stock market. In contrast, the empirical evidence on stock market participation

shows a significant correlation between the education level and stockholding. For example, Table

3 in Haliassos and Bertaut (1995) showed that the share invested in the stock market is substan-

40See Appendix 7.6 for the detailed calibration procedure in this case.
41Here the values of ρye are set to be 0, 0.18, and 0.35 according to Campbell and Viceira (Chapter 6, 2002), and the

values of σy are chosen to be the same as those used in Wang (2009).
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tially larger among those with at least a college degree compared to those with less than a high

school education at all income levels.42 Furthermore, for any given education group, the share in-

vested in the stock market is increasing with the income percentile. In other words, people with

the same educational attainment level and higher income invest more in the stock market. They

also mentioned that more educated groups have higher information-processing capacities.43 This

empirical evidence is consistent with our limited capacity theory. People with low income own

less distraction-saving goods and services at home (e.g., they cannot afford a good baby sitter);

consequently, they invested less in the stock market because they face greater state uncertainty.44

In addition, people with higher education may have more efficient information-processing ability

and thus face lower transition errors, which leads to higher effective channel capacity. Finally, peo-

ple with higher education probably have more and better knowledge about the model economy,

and are thus less concerned about the model specification.45

Our model with both RB and RI can have the potential to reconcile the model with the em-

pirical evidence. Specifically, poorer and less well-educated investors probably face greater state

uncertainty and model uncertainty, respectively; consequently, they rationally choose to invest less

in the stock market even if the correlation between their labor income and equity returns is neg-

ative and they have stronger incentive to hedge against their earnings risk.46 For example, the

optimal amount invested in the risky asset (α∗) of a typical well-educated investor is 26.78 when

ϑ = 1.5, κ = 1, and ρye = 0.18.47 In contrast, the optimal amount invested in the risky asset (α∗)

of a typical less well-educated investor is 22.95 when ϑ = 3, κ = 0.1, and ρye = −0.25. In other

words, although the negative correlation between earnings and equity returns increases the will-

ingness of low-educated investors to invest in the risky asset, well-educated investors invest more

wealth in the risky asset because they have more knowledge about the structure of the model and

higher information-processing capacities, and face less model uncertainty and state uncertainty.

In summary, the introduction of induced uncertainty can offer a potential explanation for the two

seemingly contradictory observations: the correlation between labor income and equity returns

and the stockholding behavior of less educated and well-educated investors.

4.5. Policy Implications

In this section, we discuss the effect of changes in the labor income tax rate on investors’ precau-

tionary saving and strategic portfolio choice under MU and SU. Elmendorf and Kimball (2000)

42Mankiw and Zeldes (1991) obtained the similar result using the PSID data.
43See their brief discussion on this in Section II.C.
44As argued in Banerjee and Mullainathan (2008), attention is a scarce resource that is important for labor productivity

and income distribution.
45Although both of the factors, education and income, affect model and state uncertainty facing investors, it seems that

education is more important in affecting model uncertainty and income is more important in affecting state uncertainty.
46As documented in Campbell (2006), there is some evidence that households understand their own limitations and

constraints, and avoid investment opportunities for which they feel unqualified.
47In this section, we also set µ = 0.08, r = 0.02, σs = 5, and σe = 0.156.
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found that given decreasing absolute prudence (e.g., CRRA utility), even when labor income risk

increases overall saving, it tends to lower investment in the risky asset. They also argued that

realistic increases in the marginal tax rate on labor income can cause large enough reductions in

the after-tax labor income risk, which leads to significant increases in investment in the risky asset.

Using the same policy experiment conducted as in their paper, we also consider the situation in

which the marginal tax rate on labor income (τ) is increased from 0 to 10%. In this case, the labor

income risk measured by (1− τ) σy is reduced from σy to 0.9σy. Using the expressions for opti-

mal portfolio choice and precautionary saving, (39) and (40), it is clear that the change in the tax

rate leads to an increase in the risky investment and a reduction in precautionary savings, holding

other parameter values fixed.

Specifically, when the labor income risk is reduced from σy to 0.9σy, the value of human wealth

is also reduced from σs to 0.9σs. Consequently, Γ is reduced from 0.5rγ̃ f (κ)2
(

1− ρ2
ye

)
σ2

s to about

0.4rγ̃ f (κ)2
(

1− ρ2
ye

)
σ2

s . The presence of induced uncertainty measured by (1 + ϑ) f (κ)2 > 1 can

amplify the impact of this taxation policy on the precautionary saving demand. For example,

when r = 0.02, ϑ = 1.5 and κ = 0.2, (1 + ϑ) f (κ)2 = 2.78. In other words, the policy impact on

precautionary saving is almost tripled under MU and SU.

From (39), it is clear that the labor income risk does not directly interact with induced uncer-

tainty due to the interaction of RB and RI because σs does not enter the standard speculation de-

mand function and the induced uncertainty term ((1 + ϑ) f (κ)) does not enter the income-hedging

demand function. However, the presence of induced uncertainty can offset the impact of the taxa-

tion policy on the optimal risky investment when ρye is positive. The reason is that the taxation pol-

icy reduces the hedging demand while the presence of induced uncertainty reduces the standard

speculation demand. Therefore, the policy impact on optimal portfolio choice can be mitigated

under MU and SU.

5. Comparison with Incomplete Information about Individual Labor Income

In this section, we consider another widely-adopted type of informational frictions: incomplete in-

formation about the income process, and compare its implications for robustly strategic consumption-

portfolio rules implications with that of RI we considered in the preceding section.48 Specifically,

following Muth (1960), Quah (1990), Pischke (1995), and Wang (2004), we assume that where there

are two individual components in the income process, agents can only observe the total income

but have no way to distinguish the two individual components. Mathematically, we assume that

labor income (yt) has two distinct components (y1,t and y2,t):

yt = y1,t + y2,t,

48Muth (1960) first considered this type of incomplete information when exploring the link between rational expecta-
tions and the geometrically declining weighted sum of past and current incomes.
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where

dy1,t = (µ1 − ρ1y1,t) dt + σ1dB1,t, (45)

dy2,t = (µ2 − ρ2y2,t) dt + ρ12σ2dB1,t +
√

1− ρ12σ2dB2,t, (46)

and ρ12 is the instantaneous correlation between the two individual components, y1,t and y2,t.49

All the other notations are similar to what we used in our benchmark model. Without a loss of

generality, we assume that ρ1 < ρ2 and σ1 > σ2. In other words, the first income component is

more persistent and volatile than the second component.50 It is straightforward to show that if

both components in the income process are observable, this model is essentially the same as our

benchmark model with a univariate income process. In this incomplete-information case, we need

to use the filtering technique to obtain the best estimates of the unobservable income components

first and then solve the optimization problem given the estimated income components. Following

the same technique adopted in Wang (2004), in the steady state in which the conditional variance-

covariance matrix is constant, we can obtain the following updating equations for the conditional

means of (y1,t, y2,t):

d

(
ŷ1,t

ŷ2,t

)
=

(
µ1 − ρ1ŷ1,t

µ2 − ρ2ŷ2,t

)
dt +

(
σ̂1

σ̂2

)
dZt, (47)

where ŷi,t = Et [yi,t] for i = 1, 2, dZt ≡ {dyt − [(µ1 + µ2) + (ρ2 − ρ1) ŷ1,t − ρ2yt] dt} /σ is a “con-

structed” innovation process using total income and the perceived individual components; Zt is

a standard Brownian motion; and σ =
√

σ2
1 + 2σ12 + σ2

2 . σ̂1 and σ̂2 are the standard deviations of

dŷ1,t and dŷ2,t respectively:

σ̂1 =
1
σ

[
(ρ2 − ρ1)Σ11 + σ2

1 + σ12
]

and σ̂2 =
1
σ

[
− (ρ2 − ρ1)Σ11 + σ2

2 + σ12
]

,

where

Σ11 =
1

(ρ2 − ρ1)
2

(√
Θ2 + σ2

1 σ2
2 (ρ2 − ρ1)

2 (1− ρ2
12

)
−Θ

)
(48)

is the steady state conditional variance of y1,t, Θ = ρ1σ2
2 + ρ2σ2

1 + (ρ1 + ρ2) σ12, and σ12 = ρ12σ1σ2.51

It is worth noting that for this bi-variate Gaussian income specification, Σ11 can fully characterize

49Muth (1960), Quah (1990), and Pischke (1995) considered a more special two-component income specification (one
component is iid, and the other component is a random walk) in a discrete-time setting. Specifically, Quah (1990)
showed that this two-component income specification provides a potential resolution to the excess smoothness puzzle
in the standard permanent income model if the relative importance of transitory to permanent components is large.

50We may think of the first and second components as the aggregate (and persistent) and idiosyncratic (and transitory)
components, respectively.

51The detailed derivation of the expression for Σ11 is similar to that in Wang (2004) and is available from the author
upon request. It is straightforward to show that when |ρ12| = 1 or ρ1 = ρ2, the values of Σ11 are constant and are
independent of the persistence and volatility parameters in the income processes.
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the estimation risk induced by partially observed income.52 Figure 8 illustrates how Σ11 varies

with ρ2 and σ2/σ1.53 It clearly shows that given the persistence and volatility coefficients of y1,t,

the estimation risk increases with the persistence and volatility of y2,t (i.e., the less ρ2 and the higher

σ2/σ1).

Following the same procedure that I used in the preceding sections, we can solve this IC model

with RB. The following proposition summarizes the solution to the above problem:

Proposition 8. Given ϑ, the optimal consumption-portfolio rules under RB and IC are:

c∗t = r
[

wt +
1

r + ρ1

(
ŷ1,t +

µ1

r

)
+

1
r + ρ2

(
ŷ2,t +

µ2

r

)]
(49)

+

[
1− 1

2

(
1 + ϑ/ (rγ)

1 + ϑ

)]
π2

r (1 + ϑ) γσ2
e
−

πρey

σe

(
σ̂1

r + ρ1
+

σ̂2

r + ρ2

)
+ Ψ− Γ,

α∗ =
π

rγ (1 + ϑ) σ2
e
−

ρeyσe

σ2
e

(
σ̂1

r + ρ1
+

σ̂2

r + ρ2

)
(50)

respectively, where Ψ = (δ− r) / (rγ) captures the dissavings effect of relative impatience, and

Γ =
1
2

rγ̃
(

1− ρ2
ey

)( σ̂1

r + ρ1
+

σ̂2

r + ρ2

)2

(51)

is the precautionary savings demand, where γ̃ ≡ γ
(

1 + ϑ
rγ

)
.

Proof. See Online Appendix.

Comparing (39) with (50), it is clear that RI and IC have distinct implications on robustly strate-

gic asset allocation. Specifically, RI affects the speculation demand invested in the risky asset via

f (κ) =
√

κ/ (κ − r) > 1, whereas IC has no impact on the speculation demand (the first term in

(50)). Furthermore, RI has no impact on the intertemporal hedging demand, whereas IC affects

this demand via changing the volatility of perceived permanent income
(

σ̂1
r+ρ1

+ σ̂2
r+ρ2

)
. The main

reason behind these results is that RI is applied to the state variable s that summarizes all of the

relevant information in the state vector (w, y). In contrast, IC is only applied to the labor income

process, and consumers under IC can observe financial wealth perfectly.

52Note that the conditional variance-covariance matrix of
(

y1,t y2,t
)

can be written as:

Σ ≡
(

Σ11 Σ12
Σ21 Σ22

)
= E

[(
y1,t − ŷ1,t
y2,t − ŷ2,t

) (
y1,t − ŷ1,t y2,t − ŷ2,t

)]
=

(
1 −1
−1 1

)
Σ11.

53Here we set ρ1 = 0, σ1 = 0.05, and ρ12 = 0. In other words, the first income component is a unit root and the two
components are independent. The pattern of the figure does not change if these parameters change. The only exception
is the ρ12 = ±1 case. In this specification, Σ11 = 0 because the two components are perfectly correlted and the bivariate
income specification is essentially the same as the univariate income specification.
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Furthermore, comparing (40) with (51), we can see that RI and IC affect the precautionary sav-

ing demand via distinct channels. Specifically, RI increases precautionary savings by introducing

the f (κ) factor, whereas IC increases precautionary savings by increasing the variance of perceived

permanent income from
(

σ1
r+ρ1

)2
+ 2 ρ12σ1σ2

(r+ρ1)(r+ρ2)
+
(

σ2
r+ρ2

)2
to
(

σ̂1
r+ρ1

+ σ̂2
r+ρ2

)2
.54

6. Conclusion

This paper has developed a tractable continuous-time CARA-Gaussian framework to explore how

induced uncertainty due to the interaction of RB and RI affects strategic consumption-portfolio

rules, precautionary savings, and consumption dynamics in the presence of uninsurable labor in-

come. Specifically, I explored the relative sensitivity of strategic consumption-portfolio rules and

precautionary savings with respect to the two types of induced uncertainty: (i) model uncertainty

due to robustness and (ii) state uncertainty due to limited information-processing capacity, as well

as risk aversion. In addition, I argued that both model uncertainty and state uncertainty are impor-

tant for us to understand and design optimal household portfolios. In particular, I found that these

two types of induced uncertainty reduce the optimal share invested in the risky asset, and thus can

offer a potential explanation for two seemingly contradictory observations in the data: the nega-

tive correlation between labor income and equity returns and the low stock market participation

rate of the less educated and lower income households.

7. Appendix

7.1. Solving the RB Model

The Bellman equation associated with the optimization problem is

J (st) = sup
ct,αt

[
− 1

γ
exp (−γct) + exp (−δdt) J (st+dt)

]
,

subject to (10), where J (st) is the value function. The HJB equation for this problem is then

0 = sup
ct,αt

[
− 1

γ
exp (−γct)− δJ (st) +D J (st)

]
,

54Note that

∆ ≡
(

σ̂1
r + ρ1

+
σ̂2

r + ρ2

)2
−
[(

σ1
r + ρ1

)2
+ 2

ρ12σ1σ2
(r + ρ1) (r + ρ2)

+

(
σ2

r + ρ2

)2
]

= 2rΣ11

[
(ρ2 − ρ1)

(r + ρ1) (r + ρ2)

]2
> 0.
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where D J (st) = Js (rst − ct + παt) +
1
2 Jss

(
σ2

etα
2
t + σ2

s + 2ρyeσsσeαt
)
. Under RB, the HJB can be writ-

ten as

sup
ct,αt

inf
υt

[
− 1

γ
exp (−γct)− δJ (st) +D J (st) + υ (st) σ2 Js +

1
2ϑ (st)

υ (st)
2 σ2

]
subject to the distorting equation, (10). Solving first for the infimization part of the problem yields

υ∗ (st) = −ϑ (st) Js.

Given that ϑ (st) > 0, the perturbation adds a negative drift term to the state transition equation

because Js > 0. Substituting for υ∗ in the robust HJB equation gives:

sup
ct,αt

[
− 1

γ
exp (−γct)− δJ (st) + (rst − ct + παt) Js +

1
2

σ2 Jss −
1
2

ϑ (st) σ2 J2
s

]
. (52)

Performing the indicated optimization yields the first-order conditions for ct and αt:

ct = −
1
γ

ln (Js) , (53)

αt =
π Js + ρyeσsσe

(
Jss − ϑJ2

s
)

(ϑJ2
s − Jss) σ2

e
. (54)

Substitute (53) and (54) back into (52) to arrive at the partial differential equation

0 = − Js

γ
− δJ +

(
rst +

1
γ

ln (Js) + παt

)
Js +

1
2
(

Jss − ϑt J2
s
)

σ2, (55)

where σ2 = σ2
e α2

t + σ2
s + 2ρyeσsσeαt. Conjecture that the value function is of the form

J (st) = −
1
α1

exp (−α0 − α1st) ,

where α0 and α1 are constants to be determined. Using this conjecture, we obtain that Js =

exp (−α0 − α1st) > 0 and Jss = −α1 exp (−α0 − α1st) < 0. Further more, we guess that ϑ (st) =

− ϑ
J(st)

= α1ϑ
exp(−α0−α1st)

> 0. (55) can thus be reduced to

−δ
1
α1

= − 1
γ
+

[
rst −

(
α0

γ
+

α1

γ
st

)
+

π
(
π − ρyeσsσeα1 (1 + ϑ)

)
(1 + ϑ) α1σ2

e

]
− 1

2
α1 (1 + ϑ)

(
σ2

e α2
t + σ2

s + 2ρyeσsσeαt
)

Collecting terms, the undetermined coefficients in the value function turn out to be

α1 = rγ, (56)

α0 =
δ

r
− 1 +

π
[
π − ρyeσsσerγ (1 + ϑ)

]
(1 + ϑ) rσ2

e
− 1

2
(1 + ϑ) rγ2 (σ2

e α2
t + σ2

s + 2ρyeσsσeαt
)

, (57)
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where α∗ = π
(1+ϑ)γrσ2

e
− ρyeσsσe

σ2
e

. Substituting these back into the first-order condition (53) yields the

consumption function, (14), in the main text. Using (57) and σ2
e α2

t +σ2
s + 2ρyeσsσeαt =

(
1− ρ2

ye

)
σ2

s +

π2

(rγ̃)2σ2
e
, we can obtain the expression for the precautionary savings premium, (16), in the main text.

When ρye = 1, we have

α0

γ
=

δ

r
− 1 +

π
[
π − ρyeσsσerγ (1 + ϑ)

]
(1 + ϑ) rσ2

e
− 1

2
(1 + ϑ) rγ2 (σ2

e α2
t + σ2

s + 2ρyeσsσeαt
)

=
δ− r

rγ
+

π2

(1 + ϑ) γrσ2
e
−

πρyeσsσerγ (1 + ϑ)

(1 + ϑ) rγσ2
e

− 1
2
(1 + ϑ) rγ

(
π

(1 + ϑ) γrσe

)2

=
δ− r

rγ
+

π2

2 (1 + ϑ) γrσ2
e
− πσs

σe

Finally, we check if the investor’s transversality condition (TVC), limt→∞ E [exp (−δt) |J (st)|] =
0, is satisfied. Substituting the consumption-portfolio rules, c∗t and α∗, into the state transition

equation for st yields:

dst = Adt + σdBt,

where A = − δ−r
rγ + π2

2rγσ2
e
+ 1

2 rγ̃
(

1− ρ2
ye

)
σ2

s under the approximating model. This Brownian mo-

tion with drift can be rewritten as:

st = s0 + At + σ (Bt − B0) , (58)

where Bt − B0 ∼ N (0, t). Substituting (58) into E [exp (−δt) |J (st)|] yields:

E [exp (−δt) |J (st)|] =
1
α1

E [exp (−δt− α0 − α1st)]

=
1
α1

exp
(

E [−δ− α0 − α1st] +
1
2

var (α1st)

)
=

1
α1

exp
(
−δt− α0 − α1 (s0 + At) +

1
2

α2
1σ2t

)
= |J (s0) | exp

(
−
(

δ + α1A− 1
2

α2
1σ2
)

t
)

where |J (s0) | = 1
α1

exp (−α0 − α1s0) is a positive constant and we use the facts that st − s0 ∼
N
(

At, σ2t
)
. Therefore, the TVC is satisfied if and only if the following condition holds:

δ + α1 A− 1
2

α2
1σ2 = r +

π2

2σ2
e
+

1
2
(rγ)2

[
(1 + ϑ)

(
1− ρ2

ye

)
σ2

s −
(
σ2

e α2
t + σ2

s + 2ρyeσsσeαt
)]

> 0. (59)

In the FI-RE case in which ϑ = 0, this condition reduces to: r+π2/
(
2σ2

e
)
− (rγ)2 (ρyeσs + σeα

∗)2 /2 >

0. Using the parameter values we consider in the text, it is straightforward to show that the TVC is

always satisfied in both the FI-RE and RB models. It is straightforward to show that the TVC still
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holds under the distorted model in which A = − δ−r
rγ + π2

2rγσ2
e
+ 1

2 rγ̃
(

1− ρ2
ye

)
σ2

s − rγϑσ2.

7.2. Calibrating the Robustness Parameter

The value of p is determined by the following procedure. Let model P denote the approximating

model, (4):

dst = (rst − ct + παt) dt + σdBt,

and model Q be the distorted model, (10):

dst = (rst − ct + παt) dt + σ (συ (st) dt + dBt) .

Define pP as

pP = Prob
(

ln
(

LQ

LP

)
> 0

∣∣∣∣ P
)

, (60)

where ln
(

LQ
LP

)
is the log-likelihood ratio. When model P generates the data, pP measures the

probability that a likelihood ratio test selects model Q. In this case, we call pP the probability of

the model detection error. Similarly, when model Q generates the data, we can define pQ as

pQ = Prob
(

ln
(

LP

LQ

)
> 0

∣∣∣∣Q
)

. (61)

Given initial priors of 0.5 on each model and that the length of the sample is N, the detection error

probability, p, can be written as:

p (ϑ; N) =
1
2
(pP + pQ) , (62)

where ϑ is the robustness parameter used to generate model Q. Given this definition, we can see

that 1− p measures the probability that econometricians can distinguish the approximating model

from the distorted model.

The general idea of the calibration procedure is to find a value of ϑ such that p (ϑ; N) equals

a given value (for example, 10%) after simulating model P, (4), and model Q, (10).55 In the

continuous-time model with the iid Gaussian specification, p (ϑ; N) can be easily computed. Be-

cause both models P and Q are arithmetic Brownian motions with constant drift and diffusion

coefficients, the log-likelihood ratios are Brownian motions and are normally distributed random

variables. Specifically, the logarithm of the Radon-Nikodym derivative of the distorted model (Q)

with respect to the approximating model (P) can be written as

ln
(

LQ

LP

)
= −

ˆ N

0
υdBs −

1
2

ˆ N

0
υ2ds, (63)

55The number of periods used in the calculation, N, is set to be the actual length of the data we study. For example, if
we consider the post-war U.S. annual time series data provided by Robert Shiller from 1946− 2010, T = 65.
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where

υ ≡ υ∗σ = −rγϑ
√

σ2
e α2 + σ2

s + 2ρyeσsσeα. (64)

Similarly, the logarithm of the Radon-Nikodym derivative of the approximating model (P) with

respect to the distorted model (Q) is

ln
(

LP

LQ

)
=

ˆ N

0
υdBs +

1
2

ˆ N

0
υ2ds. (65)

Using (60)-(65), it is straightforward to derive p (ϑ; N):

p (ϑ; N) = Pr
(

x <
υ

2

√
N
)

, (66)

where x follows a standard normal distribution. From the expressions of υ, (64), and p (ϑ; N), (66),

we can show that the value of p is decreasing with the value of ϑ because ∂α∗/∂ϑ < 0.

7.3. Deriving Continuous-time IPC

The IPC,

ln
(
ρ2

1Σt + ρ2
2
)
− ln Σt+∆t = 2κ∆t,

can be rewritten as

ln
(

exp (2r∆t)Σt +
1− exp (2r∆t)
−2r∆t

∆tσ2
)
− ln Σt+∆t = 2κ∆t,

which can be reduced to

Σt+∆t − Σt = [exp (2 (r− κ)∆t)− 1]Σt +
exp (2 (r− κ)∆t)− exp (−2κ∆t)

2r
σ2.

Dividing ∆t on both sides of this equation and letting ∆t → 0, we have the following updating

equation for Σt:
·
Σt = lim

∆t→0

Σt+∆t − Σt

∆t
= 2 (r− κ)Σt + σ2.

7.4. Solving the RB–RI Model

The Bellman equation associated with the optimization problem under SU is

J (ŝt) = sup
ct,αt

[
− 1

γ
exp (−γct) + exp (−δdt) J (ŝt+dt)

]
,
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subject to (37), where J (ŝt) is the value function. The HJB equation for this problem can thus be

written as

0 = sup
ct,αt

[
− 1

γ
exp (−γct)− δJ (ŝt) +D J (st)

]
,

where

D J (ŝt) = Jŝ (rŝt − ct + παt) +
1
2

Jŝŝ f (κ)2 (σ2
e α2

t + σ2
s + 2ρyeσsσeαt

)
.

Here we use the facts that σ̂ ≡ f (κ) σ and σ =
√

σ2
e α2 + σ2

s + 2ρyeσsσeα. Under MU and SU, the

HJB can be written as

sup
ct,αt

inf
υt

[
− 1

γ
exp (−γct)− δJ (ŝt) +D J (ŝt) + υ (ŝt) σ̂2 Jŝ +

1
2ϑ (st)

υ (ŝt)
2 σ̂2

]
subject to the distorting equation, (37). Solving first for the infimization part of the problem yields:

υ∗ (ŝt) = −ϑ (ŝt) Jŝ. Given that ϑ (ŝt) > 0, the perturbation adds a negative drift term to the state

transition equation because Jŝ > 0. Substituting for υ∗ in the robust HJB equation gives:

sup
ct,αt

[
− 1

γ
exp (−γct)− δJ (ŝt) + (rŝt − ct + παt) Jŝ +

1
2

σ̂2 Jŝŝ −
1
2

ϑ (ŝt) σ̂2 J2
ŝ

]
. (67)

Performing the indicated optimization yields the first-order conditions for ct and αt:

ct = −
1
γ

ln (Jŝ) , (68)

αt =
π Jŝ/ f (κ) + ρyeσsσe

(
Jŝŝ − ϑJ2

ŝ

)(
ϑJ2

ŝ − Jŝŝ
)

σ2
e

. (69)

Substitute (68) and (69) back into (67) to arrive at the partial differential equation

0 = − Jŝ

γ
− δJ +

(
rŝt +

1
γ

ln (Jŝ) + παt

)
Jŝ +

1
2

f (κ)2 (Jŝŝ − ϑt J2
ŝ
)

σ2.

Conjecture that the value function is of the form

J (ŝt) = −
1
α1

exp (−α0 − α1ŝt) ,

where α0 and α1 are constants to be determined. Using this conjecture, we obtain Jŝ = exp (−α0 − α1ŝt) >

0 and Jŝŝ = −α1 exp (−α0 − α1ŝt) < 0. Furthermore, we guess that ϑ (ŝt) = − ϑ
J(ŝt)

= α1ϑ
exp(−α0−α1 ŝt)

>

0. Substituting these expressions into (55) yields:

−δ
1
α1

= − 1
γ
+

{
rŝt −

(
α0

γ
+

α1

γ
ŝt

)
+

π
[
π/ f (κ)− ρyeσsσeα1 (1 + ϑ)

]
(1 + ϑ) α1σ2

e

}

− 1
2

f (κ)2 α1 (1 + ϑ)
(
σ2

e α2
t + σ2

s + 2ρyeσsσeαt
)
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Collecting terms, the undetermined coefficients in the value function turn out to be

α1 = rγ, (70)

α0 =
δ− r

r
+

π
[
π/ f (κ)− ρyeσsσerα (1 + ϑ)

]
(1 + ϑ) rσ2

e
− 1

2
r f (κ)2 (1 + ϑ) γ2 (σ2

e αt + σ2
s + 2ρyeσsσeαt

)
.

(71)

Substituting (70) and (71) into (68) and (69) yields the optimal portfolio and consumption rule,

(39) and (38), respectively, in the main text. Using (71) and that fact that σ2
e α2

t + σ2
s + 2ρyeσsσeαt =(

1− ρ2
ye

)
σ2

s +
π2

r2γ̃2 f (κ)2σ2
e
, we can obtain Expression (40) in the main text.

Using (38) and (39), we have dc∗t = rdŝt and var (dc∗t ) = r2 f (κ)2 σ2. The relative volatility of

consumption growth to income growth can thus be written as

µ ≡ sd (dc∗t )
sd (dyt)

= r f (κ)

√
1− ρ2

ye

(r + ρ)2 +
π2

γ̃2σ2
e σ2

y
.

The contemporaneous covariance between consumption growth and income growth is

cov (dc∗t , dyt) = r f (κ) cov
(

α∗σedBe,t +
1

r + ρ
σydBy,t, σydBy,t

)
= r f (κ)

(
1

r + ρ
σ2

y + α∗ρyeσeσy

)
,

which implies that

ρcy ≡ corr (dc∗t , dyt) = f (κ)
σs + α∗ρyeσe

σ
.

Substituting σ =

√(
1− ρ2

ye

)
σ2

s +
π2

(rγ̃)2 f (κ)2σ2
e

and α∗ = π

rγ̃ f (κ)2σ2
e
− ρyeσsσe

σ2
e

into this expression leads

to (44) in the main text.

Finally, using the derived consumption-portfolio rules and the value function, we can use

the same procedure as that in Appendix 7.1 to verify that the transversality condition (TVC),

limt→∞ E |exp (−δt) J (ŝt)| = 0, holds under RB and RI.

7.5. The Equivalence between Rational Inattention and Signal Extraction with Exogenous

Noises

Dividing Λ on both sides of (29), we obtain the following differential Riccati equation governing

the evolution of Kt:
·
Kt = −K2

t + 2rKt +
σ2

Λ
, (72)

where σ2/Λ is the signal-to-noise ratio (SNR) in this problem. In the steady state, we have the

following proposition for this signal extraction case with exogenous noises:

Proposition 9. Given SNR
(
σ2/Λ

)
, in the steady state, the evolution of the perceived state can be written
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as

dŝt = (rŝt − ct + παt) dt + σ̂dB∗t ,

where

σ̂ ≡ K
√

Λ = g (τ) σ, (73)

K = r +

√
r2 +

σ2

Λ
, (74)

g (τ) ≡ r
√

τ +
√

1 + r2τ > 1, and τ ≡ 1/ SNR = Λ/σ2. Furthermore, if SNR and κ satisfy the

following equality:

SNR = 4κ (κ − r) ,

then the RI and SE cases are observationally equivalent in the sense that they lead to the same model dynam-

ics.

Proof. In the steady state in which
·
Kt = 0, solving the following algebraic Riccati equation,

−K2
t + 2rKt +

σ2

Λ
= 0,

yields the steady state Kalman gain:

K = r +

√
r2 +

σ2

Λ
. (75)

and steady state conditional variance: Σ = KΛ.

7.6. Calibrating the Robustness Parameter in the RB-RI Model

In this MU-SU model, let model P denote the approximating model, (32) and model Q be the dis-

torted model, (37). Because both models P and Q are arithmetic Brownian motions with constant

drift and diffusion coefficients under MU-SU, the log-likelihood ratios are normally distributed

random variables. Consequently, the logarithm of the Radon-Nikodym derivative of the distorted

model (Q) with respect to the approximating model (P) can be written as

ln
(

LQ

LP

)
= −

ˆ N

0
υdBs −

1
2

ˆ N

0
υ2ds, (76)

where

υ ≡ υ∗σ̂ = −rγϑ
√

σ2
e α∗2 + σ2

s + 2ρyeσsσeα∗. (77)
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Similarly, the logarithm of the Radon-Nikodym derivative of the approximating model (P) with

respect to the distorted model (Q) is

ln
(

LP

LQ

)
=

ˆ N

0
υdBs +

1
2

ˆ N

0
υ2ds. (78)

Given (76) and (78), it is straightforward to derive p (ϑ; N):

p (ϑ; N) = Pr
(

x <
υ

2

√
N
)

, (79)

where x follows a standard normal distribution.
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Table 1. Implications of the correlation on α∗ and Γ under MU and SU (p = 10%, σs = 5)

ρye = 0 ρye = 0.18 ρye = 0.35
κ = 0.1 ϑ 1.455 1.475 1.536

α∗ 22.46 16.51 10.52
α∗s 22.46 22.28 21.74
α∗h 0 −5.77 −11.22∣∣α∗h∣∣ /α∗s 0 0.259 0.516
Γ 1.534 1.497 1.391

κ = 0.2 ϑ 1.418 1.437 1.495
α∗ 24.18 18.23 12.22
α∗s 24.18 23.99 23.44
α∗h 0 −5.77 −11.22∣∣α∗h∣∣ /α∗s 0 0.240 0.479
Γ 1.364 1. 31 1.216

κ = 0.5 ϑ 1.396 1.415 1.47
α∗ 25.21 19.24 13.23
α∗s 25.21 25.01 24.45
α∗h 0 −5.77 −11.22∣∣α∗h∣∣ /α∗s 0 0.231 0.459
Γ 1.279 1.217 1.129

κ = 1 ϑ 1.389 1.407 1.462
α∗ 25.54 19.58 13.57
α∗s 25.54 25.35 24.78
α∗h 0 −5.77 −11.22∣∣α∗h∣∣ /α∗s 0 0.228 0.453
Γ 1.253 1.188 1.102
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Table 2. Implications of income uncertainty on α∗ and Γ under MU and SU (p = 10%, ρye = 0.18)

σs = 4 σs = 5 σs = 6
κ = 0.1 ϑ 1.770 1.475 1.265

α∗ 15.29 16.51 17.42
α∗s 19.90 22.28 24.34
α∗h −4.62 −5.77 −6.92∣∣α∗h∣∣ /α∗s 0.232 0.259 0.284
Γ 1.675 1.497 1.370

κ = 0.2 ϑ 1.715 1.437 1.238
α∗ 16.92 18.23 19.21
α∗s 21.54 23.99 26.13
α∗h −4.62 −5.77 −6.92∣∣α∗h∣∣ /α∗s 0.214 0.240 0.265
Γ 1. 460 1. 310 1. 203

κ = 0.5 ϑ 1.682 1.415 1.222
α∗ 17.90 19.24 20.26
α∗s 22.52 25.01 27.18
α∗h −4.62 −5.77 −6. 92∣∣α∗h∣∣ /α∗s 0.205 0.231 0.255
Γ 1. 352 1.217 1.120

κ = 1 ϑ 1.671 1.407 1.216
α∗ 18.23 19.58 20.61
α∗s 22.84 25.35 27.54
α∗h −4.62 −5.77 −6.92∣∣α∗h∣∣ /α∗s 0.202 0.228 0.251
Γ 1.319 1.188 1.094
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