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ABSTRACT

Motivation: The goal of synthetic biology is to design and construct

biological systems that present a desired behavior. The construction

of synthetic gene networks implementing simple functions has

demonstrated the feasibility of this approach. However, the design of

these networks is difficult, notably because existing techniques and

tools are not adapted to deal with uncertainties on molecular

concentrations and parameter values.

Results: We propose an approach for the analysis of a class of

uncertain piecewise-multiaffine differential equation models. This

modeling framework is well adapted to the experimental data

currently available. Moreover, these models present interesting

mathematical properties that allow the development of efficient

algorithms for solving robustness analyses and tuning problems.

These algorithms are implemented in the tool RoVerGeNe, and their

practical applicability and biological relevance are demonstrated on

the analysis of the tuning of a synthetic transcriptional cascade built

in Escherichia coli.

Availability: RoVerGeNe and the transcriptional cascade model are

available at http://iasi.bu.edu/%7Ebatt/rovergene/rovergene.htm

Contact: gregory.batt@imag.fr

1 INTRODUCTION

The main goal of the nascent field of synthetic biology is to

design and construct biological systems that present a desired

behavior (Andrianantoandro et al., 2006; Endy, 2005). Synthetic

biology is foreseen to have important applications in biotech-

nology and medicine, and to contribute significantly to a better
understanding of the functioning of complex biological systems

(McDaniel and Weiss, 2005). The construction of networks of

interregulating genes, so-called genetic regulatory networks, has

demonstrated the feasibility of this approach (e.g. Gardner et al.,

2000). Still, the development of gene networks is difficult: most

newly created networks are non-functioning and need tuning.
One important reason is that the lack of precise knowledge

on molecular concentrations and on parameter values hampers

the design of synthetic networks. These uncertainties are the

consequence of current technological limitations and also of the

fluctuations of intra- and extracellular environments.
Existing solutions for the analysis of dynamical properties

of gene networks consist essentially either in qualitative
simulation of coarse-grained models or in extensive numerical

simulations of nonlinear differential equation models or

stochastic versions thereof (de Jong, 2002; Szallasi et al., 2006).

For applications in synthetic biology, these approaches are not

satisfying. For qualitative models, the predictions obtained are

generally too coarse for answering the—often quantitative—

questions of interest. For uncertain quantitative models, a

common approach is to perform many numerical simulations so

as to ‘sample’ the state and parameter spaces, often in conjunc-

tion with local sensitivity analyses. This approach provides only

a partial description of all the possible behaviors of a network. In

particular, it cannot provide the guaranty that a network

behaves as expected for all initial conditions and parameters in

given ranges.Moreover, obtaining a ‘reasonably dense’ coverage

of the state and parameter spaces quickly becomes computa-

tionally intractable when the size of the networks grows.
In this work, we demonstrate the biological relevance of

amethod specifically developed to support the design of synthetic

gene networks. This method allows to analyze dynamical

properties of uncertain, yet quantitative models of gene net-

works. More precisely, we consider piecewise-multiaffine

differential equation models in which uncertain initial condi-

tions and parameters are given by intervals. These models

capture essential aspects of genetic regulations and still allow for

efficient analyses by tailored formal verification techniques.

Dynamical properties of the network are given by temporal logic

formulas that specify temporal constraints on the state of the

system, that is, on protein concentrations. Temporal logics are

specification languages that allow to express a variety of

properties on the behavior of dynamical systems (Emerson,

1990). Then, the proposed approach allows to check automati-

cally that a network satisfies a given dynamical property for all

initial conditions and all parameter values in the given intervals.

This provides us a means to assess the robustness of the expected

behavior of a network with respect to parameter variations. In

particular, our technique does not rely on numerical simulations.

Additionally, the proposed approach has the capability to

generate constraints on parameters, and can consequently be

extended to search for parameter sets for which a given property

is satisfied. This feature allows to solve network tuning problems

by suggesting modifications of biological parameters. These

techniques are implemented in a publicly available tool called

RoVerGeNe (for Robust Verification of Gene Networks) and

their applicability and biological relevance is demonstrated on

the analysis of the tuning of a synthetic transcriptional cascade.*To whom correspondence should be addressed.
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The remainder of this article is organized as follows. In the
next section, we provide a brief description of the proposed

method and of its implementation in the computer tool
RoVerGeNe. In Section 3, we detail the application of our

method to the tuning of a synthetic transcriptional cascade built
inEscherichia coli. The results are summarized in the last section.

We refer the reader to (Batt et al., 2007a, b) for a detailed
presentation of themethod and for computational results using a

preliminary version of the transcriptional cascade model.

2 ANALYSIS OF PIECEWISE-MULTIAFFINE
MODELS WITH PARAMETER UNCERTAINTY

In this section, we provide an intuitive overview of the
proposed approach by means of a simple example.

2.1 Piecewise-multiaffine models and LTL properties

Consider the cross-inhibition network represented in Figure 1.

The network is made of two genes, a and b, that code for two
repressor proteins, A and B. More specifically, protein B

represses the expression of gene a, whereas protein A represses
the expression of gene b, and at a higher concentration, the

expression of its own gene. Protein degradations are not
regulated.

This system can be modeled by differential equations as
follows.

_xa ¼ �a ra1ðxbÞ ra2ðxaÞ � �a xa, ð1Þ

_xb ¼ �b rbðxaÞ � �b xb, ð2Þ

with x ¼ ðxa, xbÞ 2 X ¼ ½0, maxa� � ½0, maxb�. The state
variables xa and xb denote the concentrations of protein

A and B. x is the vector of state variables and X is the state
space. maxa and maxb denote a maximal concentration for

proteins A and B. �’s and �’s are respectively production and
degradation rate parameters, and r’s are regulation functions.

The latter capture the regulatory effect of an effector protein
on gene expression. In contrast to most nonlinear models in

which the regulation functions are smooth sigmoidal functions
(e.g. Hill functions) (de Jong, 2002), we assume that regulation

functions are piecewise-affine (Fig. 2). These functions are

uniquely defined by their values at breakpoints, denoted by �’s.
For our example model, we used the simplest piecewise-affine

functions approximating sigmoidal curves: ramp functions.
These functions have only four break points (including

0 and maxi). The ordered set of all breakpoints associated
with the variable xi is denoted by �i. For example, we have

�a ¼ f0, �a1, �a2, �a3, �a4, maxag and �b ¼ f0, �b1, �b2, maxbg.
Products of regulation functions (involving different state

variables) can be used to capture complex genetic regulations. In
Equation (1), for example, the product of regulation functions

captures the hypothesis that in order to have a maximal
expression of gene a both proteins must be present in low

concentration (i.e. below �a3 and �b1). Because products of
piecewise-affine functions are allowed, the resulting models are

in general piecewise-multiaffine. We recall that a multiaffine
function is a polynomial with the property that the degree in any

of its variable is atmost 1 (Belta andHabets, 2006). In particular,
products of different variables are allowed. A motivation

for considering piecewise-affine regulation functions is that

piecewise-affine functions have universal approximation proper-

ties (Lin andUnbehauen, 1992), whichmeans that any nonlinear

function can be approximated by a piecewise-affine function

with arbitrary accuracy (Fig. 3). Moreover, while the analysis of

general nonlinear systems (e.g. Hill-type models) is notoriously

difficult, efficient approaches have been recently developed for

multiaffine systems (Belta and Habets, 2006).
Some parameters might be uncertain. Their values are

then given by intervals. We assume that production and/

or degradation rate parameters can be uncertain (i.e. �’s and

�’s), but that regulation functions are precisely known.

We denote by p the vector of uncertain parameters and by

P the parameter space. For the cross-inhibition network,

we assume that parameters satisfy �a 2 ½0, 30�, �b 2 ½0, 40�,

�a ¼ 1, and �b ¼ 2. So, we have p ¼ ð�a, �bÞ 2 P ¼ ½0, 30�

�½0, 40�. More generally, the models that we consider are

piecewise-multiaffine (PMA) systems � of the general form

_x ¼ f ðx, pÞ, x 2 X , p 2 P ð3Þ

where f is a piecewise-multiaffine function of the state variables

x and an affine function of the uncertain parameters p.
A number of different formalisms has been proposed to

describe gene networks (de Jong, 2002). The use of piecewise-

multiaffine models for gene networks was first proposed

by Belta et al. (2002) (see Mestl et al., 1995 for a related,

piecewise-continuous approach). The class of piecewise-

multiaffine models that we consider is also related to the class
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of piecewise-affine (PA) differential equation models proposed

by Glass and Kauffman (1973). Even if multiaffine models

do not present the monotonicity properties that make the

qualitative, symbolic analysis of PA models attractive (de Jong

et al., 2004; Ghosh and Tomlin, 2004; see also Kauffman, 1969;

Thomas et al., 1995, for alternative, discrete formalisms), the

use of piecewise-affine functions to represent genetic regula-

tions (instead of step functions for PA models) allows to

develop finer-grained models, better adapted to quantitative

analyses. In particular, PMA models capture the graded

response of gene expression to continuous changes in effector

(activator or repressor) concentrations.
We use Linear Temporal Logic (LTL) to express dynamical

properties of gene networks. Temporal logics have been

developed to specify the behavior of (usually discrete) dynamical

systems (Emerson, 1990). Typical properties include reachability

(the system can reach a given state), inevitability (the system will

necessarily reach a given state), invariance (a property is always

true), response (an event necessarily triggers a specific behavior)

and infinite occurrences (such as oscillations). Illustrative

examples of the expressiveness of temporal logics in systems

biology can be found inAntoniotti et al. (2003), Batt et al. (2005),

Bernot et al. (2004) and Fages et al. (2004). LTL formulas are

built using atomic propositions and LTL operators. In our

approach, atomic propositions express simple constraints

on protein concentrations and are of type ‘xi < �’ or ‘xi > �’ .1

LTL operators include the usual logical operators, such as

negation (:), logical and (^), logical or (_), and implication (!),

and specific temporal operators, such as future (F ), globally ðGÞ

and until (U ). F p, G p and pU q respectively mean that a pro-

perty p holds at some future time, holds for all future times, or

holds continuously until an other property q holds. These opera-

tors can be combined to express complex dynamical properties.

The cross-inhibition network is known to be bistable.

If the system is in a state in which the concentration of protein

A is low and the concentration of protein B is high, then it will

remain in such a state for all time. A symmetrical property

holds with the concentrations of A and B being high and low,

respectively. This property can be expressed in LTL by the

formula �1, where, for example, the first part of the property

expresses that if the concentrations of protein A and B

are respectively low (xa < �a1) and high (xb > �b2), then the

system will always (G) remain in such a state.

�1 ¼ ðxa<�a1 ^ xb>�b2 ! G ðxa<�a1 ^ xb>�b2ÞÞ

^ ðxb<�b1 ^ xa>�a3 ! G ðxb<�b1 ^ xa>�a3ÞÞ
ð4Þ

The semantics of LTL formulas is defined over executions of

transition systems (Emerson, 1990). Transition systems consist

of a (finite or infinite) set of states and of a set of transitions

between states. Transition systems define a set of executions,

which are sequences of states for which there exists a transition

from each state to its successor. So, in order to define what

it means that a PMA system � satisfies an LTL property � for a

given parameter p 2 P, we introduce an embedding transition

system, denoted by TX ðpÞ, in which the states are the points

x in X , and the transitions between two points correspond to

the existence of a solution of the differential equation (3) going
from one point to the other. Consequently, executions of TXðpÞ
correspond to solution trajectories of (3). Then, a PMA system
� satisfies an LTL property � for a given parameter p if every

execution of the associated embedding transition system TXðpÞ
satisfies the property �, denoted by TXð pÞ � �. We say that the

parameter p is valid for �. Finally, a parameter set P is valid for

� if every parameter in P is valid for �. In this work,
we consider the following two problems.

Problem Let � be a PMA system, P an hyperrectangular

parameter space, and � an LTL formula.
Problem 1. Robustness analysis: Check whether P is valid for �.
Problem 2. Tuning: Find a set P � P such that P is valid for �.

The state space associated with our two-gene example is

shown in Figure 4a. The flow and a solution trajectory passing

through three points, x1, x2 and x3, are also represented for a
given parameter p̂ ¼ ð26, 34Þ. In TX ðp̂Þ, there is for example

a transition from x1 to x2, and from x2 to x3. The solution
trajectory represented in Figure 4a can be associated with the

execution ðx1, x2, x3, . . .Þ.

2.2 Analysis of uncertain PMA systems

Problems 1 and 2 amount to prove that a given property is

satisfied for sets of initial conditions and for sets of parameters.
Consequently, these problems cannot be solved by numerical

integration, since it would require to check whether the
property holds for an infinite number of solution trajectories.

Instead, we use a combination of techniques developed for the

verification of continuous, and more generally hybrid (i.e.
continuous and discrete) dynamical systems. The principle of

the analysis is simple. Discrete abstractions (Alur et al., 2000)
are used to transpose problems defined on (infinite) continuous

state and parameter spaces into problems defined on (finite)

discrete spaces. Algorithmic analysis by model checking (Clarke
et al., 1999) is then possible.
The first step of our analysis is to define a partition of the state

space. Given the piecewise nature of the differential equation

system (3), it is natural to partition the state space into regions in
which the differential equations have a same expression. So we

consider the hyperrectangular partition defined by the break-
points in �i for every variable xi (Fig. 4a). Full-dimensional

regions of the partition are called rectangles R 2 R. For our

example network,R contains 15 rectangles:R1, . . . ,R15 (Fig. 4a).
For every parameter set P, we define the discrete abstraction

of a PMA system � as the discrete transition system TRðPÞ in

which the states are the rectangles, and the transitions between

(adjacent) rectangles correspond to the existence of solution
trajectories of (3) for some parameter in P, going from one

rectangle to the other. In Batt et al. (2007a), we have shown
that the discrete abstraction TRðPÞ captures every possible

behavior of the original system � for every parameter p 2 P.

More precisely, TRðPÞ is a conservative approximation of �, in
the sense that to every solution trajectory of (3), there exists a

corresponding execution in TRðPÞ.
2 Note however, that TRðPÞ

1Note that the assumption �2�i is made without loss of generality.

2In fact, this property holds only for almost all solution trajectories of
(3). For our biological applications, this technical restriction is of no
practical importance and is disregarded in the sequel (see Batt et al.,
2007a).
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may contain spurious executions, that is, executions corre-

sponding to no solution trajectory of the original system. For

our example network, the discrete abstraction of the system

associated with the parameter set P̂¼½20, 30��½30, 40��P

is represented in Figure 4b. For parameter p̂2 P̂, there exists a

solution reaching R6 from R1, and R11 from R6 (Fig. 4a),

so there exists transitions from R1 to R6 and from R6 to R11 in

TRðP̂Þ (Fig. 4b). The solution trajectory represented in Figure 4a

corresponds to the execution ðR1,R6,R11,R11, . . .Þ in TRðP̂Þ.

Contrary to the original, infinite system, the abstract system

being finite can be analyzed by model checking techniques.

Model checking techniques are highly efficient automatic

techniques developed for the analysis of finite transition

systems. In particular, off-the-shelf tools exist to check

whether discrete transition systems satisfy given temporal

logic properties. Using these tools, we can test whether

TRðPÞ � �, and if this holds, we can conclude that the original

system � satisfies the property � for every parameter in P using

the fact that conservative approximations weakly preserve LTL

(Browne et al., 1988): if a property is true for the abstract

system, then it holds for the original system. Note, however,

that due to the possible existence of spurious executions in the

abstract system, the converse is not necessarily true. Stated

differently, we might fail to prove some properties.
It is easy to check on the discrete transition system TRðP̂Þ

represented in Figure 4b that the network satisfies the bistability

property �1 for every parameter value in P̂. If the state

x ¼ ðxa, xbÞ of the system satisfies xa<�a1 and xb>�b2, then
x 2 R11 (Fig. 4a), and because there is no transition leaving R11

in TRðP̂Þ (Fig. 4b), the system can not leave R11. By a similar

reasoning, one can check that the second half of property �1 also

holds (the system always remains in R4 or R5, where protein A
and B concentrations are respectively high and low).
We have still not provided a means to actually compute the

discrete abstraction TRðPÞ. In fact, we need to be able to decide
whether solutions starting from a rectangle can enter an
adjacent rectangle. For general, uncertain nonlinear dynamical

system, there is no known method to solve this problem.
Fortunately, we can exploit two specific properties of the class
of models that we consider. First, because the models are

piecewise-multiaffine functions of the state variables, the
existence of transitions between two adjacent rectangles only
depends on the direction of the vector field at the vertices of

the facet that separates the two rectangles. This comes from
convexity properties of multiaffine functions in hyperrectan-
gular regions (Belta and Habets, 2006). Second, because the

models are affine functions of the uncertain parameters, the
vector field at a vertex v depends affinely on the unknown
parameters. So we can show that the set of parameters for

which there exists a transition between two rectangles
corresponds to a union of polyhedral sets in the parameter
space (Batt et al., 2007a). As a consequence, the discrete

transition system TRðPÞ can be computed by means of
polyhedral operations for a hyperrectangular, or more gene-
rally, for a polyhedral parameter set P.

For the cross-inhibition network, there exists a transition
from R1 to R2 if and only if the vector field at one of the vertices
of the separating facet (of coordinates ð�a1, 0Þ

0 or ð�a1, �b1Þ
0)

points ‘to the right’ (i.e. is such that _xa > 0). It holds for both
vertices that _xa ¼ �a � �a �a1, which is positive for every
�a 2 ½20, 30� (�a ¼ 1 and �a1 ¼ 8). So there is a transition

from R1 to R2 in TRðP̂Þ. Conversely, one can show that there is
no transition from R2 to R1 in TRðP̂Þ.
We can now solve robustness problems (Problem 1) by the

following two-step procedure: first, compute the discrete
abstraction TRðPÞ by means of polyhedral operations, and
second, test on the discrete abstraction whether the property �
is true by model checking. If it is true, then we can conclude that
the property is true for all parameters in the parameter set, or
stated differently, that the parameter set P is valid for �. Note,

however, that if the discrete abstraction does not satisfy the
property, no conclusion can be drawn on the original system.
In order to deal with tuning problems (Problem 2), we use the

observation made previously that the existence of transitions in
the discrete abstractions depends on a set of affine constraints
on parameters. All these constraints define a polyhedral

partition P of the parameter space, represented in Figure 5
for our example network. All parameters in a same region
P 2 P are equivalent, in the sense that they are associated with

a same discrete abstraction.
Then, a naive approach to find solutions to Problem 2 is to

test the validity of every parameter equivalence class P 2 P of
the parameter space using the previous approach (i.e. for every

P 2 P, compute TRðPÞ and test whether TRðPÞ � �).
Every parameter set identified this way provides solutions to
the tuning problem, since it suggests a way to modify network

parameters such that the tuned system is guaranteed to satisfy
the expected property. Conversely, not all valid parameters
are guaranteed to be found by our approach. For our example

network, if we test the validity of the regions P1,P2, . . . ,P12

xa

xb

lb2

lb1

la1 la2 la3 la4

x3

x2

x1

R1 R2 R3 R4 R5

R11

R6 R7 R8 R9 R10
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R11
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Fig. 4. (a) Continuous dynamics in the state space of the cross-

inhibition network for a given parameter, p̂ ¼ ð�a, �bÞ ¼ ð26, 34Þ.

(b) Discrete abstraction TRðP̂Þ for the parameter set

P̂ ¼ ½20, 30� � ½30, 40�. Dots denote self transitions.
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represented in Figure 5, we find that P12 is a valid parameter

set. So we can conclude that the gene network is bistable

if �a > 18 and �b > 24. In fact, we have developed a more

efficient approach that allows to reason with fewer, larger

regions in parameter space, corresponding to unions of

parameter equivalence classes P 2 P (Batt et al., 2007a).

Still, computational times generally increase exponentially

with the number of genes and uncertain parameters.

Consequently, the applicability of our method is currently

limited to the analysis of networks of moderate size (i.e. having

less than a half-dozen genes) as currently encountered in most

synthetic gene networks. The analysis of future, larger synthetic

networks will require to extend our approach to exploit their

modularity (Chin, 2006).
This method has been implemented in a freely available tool

for Robust Verification of Gene Networks (RoVerGeNe),

written in Matlab on top of several other tools (MPT,

MatlabBGL, NuSMV). Additionally, RoVerGeNe supports

an extension of the method presented here, dealing with

problems specifically encountered when verifying liveness

properties (Batt et al., 2007b).

3 TUNING OF A SYNTHETIC TRANSCRIPTIONAL
CASCADE

In this section, we illustrate the practical applicability and

biological relevance of the approach presented in the previous

section for the analysis of synthetic gene networks.

3.1 Problem

We consider a cascade of transcriptional inhibitions built in

E.coli by Hooshangi et al. (2005). The network is represented in

Figure 6a. It is made of four genes: tetR, lacI, cI, and eyfp that

code respectively for three repressor proteins, TetR, LacI and CI,

and the fluorescent protein EYFP. The fluorescence of the

system, due to the protein EYFP, is the measured output.

The system can be controlled by the addition or removal of

a small diffusible molecule, aTc, in the growth media. More

precisely, aTc binds to TetR and relieves the repression of lacI.

The aTc concentration thus serves as a controllable input to the

system. It is intuitively clear that the output (i.e. the fluorescence)

of the system at steady state will be low for low inputs (i.e. aTc

concentration), and high for high inputs. Moreover, because of

the topology of the network (cascade of inhibitions), an

ultrasensitive response may be achieved: the output at steady

state undergoes a dramatic change for a moderate change of the

input in a transition region. More precisely, we would like that

the system at steady state satisfies the input/output specifications

represented in Figure 7a, in which the output of the system is

expected to remain between the two dotted lines. In particular,

this specifies that a 1000-fold increase of the output is obtained

for a 4-fold increase of the input.
Unfortunately, the actual network does not meet these

specifications (Fig. 7a). So we used our method and tool to

investigate how to tune it. In a preliminary step, we have

developed a PMA model of the network. Then, using

RoVerGeNe, we have investigated the possibility to tune the

network by modifying some of its parameters (Problem 2),

proposed parameter modifications, and evaluated computa-

tionally the robustness of the modified system (Problem 1).

Note that it is important to perform this last step before

experimentally tuning the network in order to gain confidence

that the tuned system will behave as expected despite errors

in parameter identification, incorrect parameter modifications

or environmental fluctuations.

3.2 Modeling and specification

We have developed a piecewise-multiaffine model of the

cascade, represented in Figure 6b. The notations are similar

(a)

(b)

TetR LacI EYFPCI

tetR cI eyfp

aTc

lacI

 (5)

 (6)

(7)

(8)

(9)

xtetR = ktetR − g tetR xtetR,
⋅

xlacI = klacI,0 + klacI (rlacI,1(xtetR) + rlacI,2(uaTc) − rlacI,1(xtetR) rlacI,2(uaTc)) − glacI xlacI,
⋅

xeyfp = keyfp,0 + keyfp reyfp(xcI) − geyfp xeyfp,
⋅

xcI = kcI,0 + kcI rcI (xlacI) − gcI xcI,
⋅

uaTc = 0.⋅

Fig. 6. (a) Synthetic transcriptional cascade. TetR represses lacI , LacI represses cI , and CI represses eyfp. aTc controls the repression of lacI by

TetR. The fluorescence of the protein EYFP is the output. (b) Piecewise-multiaffine model of the cascade in (a). The concentrations of protein TetR,

LacI, CI, EYFP and of aTc are denoted by xtetR, xlacI , xcI , xeyfp and uaTc, respectively. Other notations follow those introduced in Section 2.1.
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Fig. 5. Partition of the parameter space P of the cross-inhibition

network. Valid regions are shaded.
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to those introduced in Section 2. For regulated genes,

two production terms are distinguished: a leakage term

(with subscript 0) and a regulated term. The expression in

Equation (6) for the regulation of lacI by TetR and aTc states

that the expression of lacI increases if the concentration of aTc

increases (rlacI , 2 is an increasing function since aTc is an

activator) or if the concentration of TetR decreases (rlacI , 1 is a

decreasing function since TetR is a repressor). We recall that

the function dða, bÞ ¼ aþ b� ab increases when a or b increase

and that dða, bÞ 2 ½0, 1� if a 2 ½0, 1� and b 2 ½0, 1�. It can thus

be considered as an arithmetic equivalent of the logical

or. Finally, Equation (9) states that the concentration of aTc

is constant.
Because the proteins in the cascade are relatively stable,

we neglected protein degradation and assumed that degrada-

tion rate parameters were simply equal to the dilution rate

corresponding to the observed division time of the cells (about

45 minutes). Under the assumption that the concentration at

steady state of the constitutively expressed protein TetR is

sufficient to fully repress the expression of lacI

(i.e. rlacI , 1ðx
�
tetRÞ ¼ 0), we deduce from our model that the

concentrations at steady state of the proteins LacI, CI

and EYFP satisfy the following relations.

x�lacI ¼ �lacI , 0=�lacI þ �lacI =�lacI rlacI , 2ðuaTcÞ ð10Þ

x�cI ¼ �cI , 0=�cI þ �cI =�cI rcI ðx
�
lacI Þ ð11Þ

x�eyfp ¼ �eyfp, 0=�eyfp þ �eyfp=�eyfp reyfpðx
�
cI Þ ð12Þ

Under the assumption that the concentration of the protein

EYFP corresponds to the fluorescence intensities measured for

this cascade, and that the concentrations of the intermediate

proteins of the cascade LacI and CI correspond to the

fluorescence intensities of other, shorter cascades (not shown

here, (Hooshangi et al., 2005)), experimental data is available to

describe these relations. More precisely, the relation between

x�lacI and uaTc is directly known from measurements, and the

relations between x�cI and x�lacI , and x�eyfp and x�cI can be

deduced from the experimentally-measured relations between

x�lacI and uaTc, x
�
cI and uaTc, and x�eyfp and uaTc. Then, existing

techniques for fitting piecewise-affine functions to data can be

used to identify the values of production rate parameters and

the piecewise-affine regulation functions appearing in

Equations (10)–(12) (Fig. 7b and c). We used an in-house

implementation of the algorithm proposed in (Ferrari-Trecate

et al., 2001) that imposes the identification of horizontal

plateaus. To obtain better fits, we interpolated the experimental

data with splines, and fitted the piecewise-affine functions to

the interpolated data.3 For TetR, no experimental data was

available. So, we have simply chosen a ramp function for

rlacI , 1ðxtetRÞ and parameter values that guarantee that at steady

state the concentration of TetR (x�tetR ¼ �tetR=�tetR) is sufficient
to fully repress the expression of lacI .
In order to assess the validity of the model, we compared

model predictions with experimental data. For various con-

centrations of aTc and for randomly chosen initial concentra-

tions, we computed the steady state of the network by

numerical simulation (Fig. 7a). Given the simplicity of the

model, we obtained a reasonably good fit between data and

predictions. Additionally, we simulated the network response

to the addition or removal of aTc and obtained a good

agreement with experimental data (data not shown).

The last step was to formalize in temporal logic the desired

behavior of the network depicted in Figure 7a. This specifica-

tion can be expressed as a conjunction of three constraints

of the type: if the aTc concentration is in a given range, then the

concentration of EYFP at steady state must be in another given

range:

�2 ¼ uaTc < 100 ! FGð2:5 102 < xeyfp < 5 102Þ

^ 100 < uaTc < 400 ! FGð2:5 102 < xeyfp < 106Þ

^ uaTc > 400 ! FGð5 105 < xeyfp < 106Þ,

where to express that a property p holds at steady state, we used

FGp, meaning ‘eventually (F), property p will always (G) hold’.

3.3 Parameter tuning

Using RoVerGene, we looked for parameter modifications that

would improve the network behavior. Stated differently, we

searched for valid parameters. We have chosen to tune

production rate parameters, since recently developed techni-

ques allow to tune promoter or ribosome binding site
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Fig. 7. (a) Steady-state input/output behavior of the cascade: desired (region delimited by black dashed lines) measured (red dots) and predicted (red

line). (b and c) Relations between the concentrations of (b) LacI and aTc and (c) CI and LacI of the cascade at steady-state: experimental data (dots)

and piecewise affine fits (solid lines). Note that the curved shape of the line segments is due to the log-log representation used. (d) Valid parameters in

the parameter space as identified by RoVerGeNe (rectangular regions) or by brute-force sampling (dots). �lacI , �cI and �eyfp are production rate

parameters for protein LacI, CI and EYFP, respectively.

3In Batt et al. (2007a,b), we used the simplest piecewise-affine function
(i.e. a ramp function) to describe gene regulations. The use of more
general piecewise-affine functions allows us to obtain a more faithful
model.
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efficiencies with relative ease and precision (Hammer et al.,

2006). So, we assumed that the production rate parameters of

LacI, CI and EYFP were unconstrained, or more precisely,

were ranging in intervals spanning at least two orders of

magnitude (their original values are �lacI ¼ 875, �cI ¼ 386

and �eyfp ¼ 4048):

�lacI 2 ½70, 7000�, �cI 2 ½75, 8000� and �eyfp 2 ½30, 30000�

Using RoVerGeNe, we identified 15 valid parameter sets

(<5 h, PC, 3.4GHz processor, 1GB RAM). The analysis of

these sets, represented in the parameter space in Figure 7d,

suggests to increase by at least 50% the production rates of

LacI and CI, and to approximatively double the production

rate of EYFP. In particular, this might be achieved by tuning

ribosome-binding sites as done by Basu et al. (2004).
In order to illustrate the relevance of the constraints found,

we considered extreme parameter values in these sets

(i.e. vertices of the rectangular regions in Fig. 7d), and

computed the input/output behavior of the network at steady

state for these parameters (Fig. 8). This clearly illustrate that

relevant constraints on the parameters were found.

We recall that not all valid parameters are guaranteed to

be found by our method. So in order to evaluate the capacity

of our approach to successfully identify valid parameters,

we compared our results with those obtained by a brute-force

sampling of the parameter space using numerical simulations.

20 000 different samples were considered. For each sample, we

randomly chose parameter values and initial protein concentra-

tions. Given that possible parameter values and initial protein

concentrations span several orders of magnitude, we considered

uniform distributions in the log-transformed spaces. Then, for

four different aTc concentrations (10, 100, 400 and 20 104 nM),

we simulated the network behavior and considered that a

parameter value is valid if the concentration of EYFP at steady

state satisfies the constraints depicted in Figure 7a. Note that

‘valid’ here has not the same meaning than previously, since the

validity of a parameter is tested solely for one initial condition

and four different aTc concentrations. Out of the 20 000

different parameter values considered, we found that 2.27%

were valid (Fig. 7d). This figure should be comparedwith the fact

that the volume of the valid parameter sets found using

RoVerGeNe represents 1.8% of the volume of the (log-

transformed) parameter space. These figures indicate that

using RoVerGeNe we were able to identify a significant subset

of the set of all valid parameters.

3.4 Robustness of the tuned network

Before experimentally modifying network parameters as

suggested by the previous analysis, it is important to verify

that the modified network will robustly behave as expected.

So, we let all production and degradation rate parameters

range in �10% (or �20%) intervals centered at their reference

values and tested whether the property is robustly

satisfied for these parameter variations. Eleven parameters

were thus considered uncertain. For tuned parameters,

new references values were chosen in the valid parameter sets

found in the previous approach. More precisely, we chose

�lacI ¼ 1600, �cI ¼ 1400 and �eyfp ¼ 8100. Using RoVerGeNe,

we proved that the property �2 holds for every parameter in the

�10% parameter set, and we were not able to prove that the

same hold for the �20% set. This proves that the tuned

network presents the desired behavior for modest (�10%)

parameter variations, and suggests that it does not do so for

large (�20%) parameter variations. We recall that there are

two reasons for obtaining negative results with RoVerGeNe:

either because the property is false, or because our approach

fails to prove the property, due to excessive approximations.

In this case, a manual analysis of the output given by

RoVerGeNe (or more precisely of the counter-example

given by the model checker) revealed that for some parameters

(minimal production rates and maximal degradation rate

for EYFP) the concentration of EYFP at steady state is

below the minimal value allowed by the specifications (5 105).

So, as suggested by RoVerGeNe, the property is indeed not

robustly satisfied for �20% parameter variations. This analysis

again illustrates that relevant constraints on parameters have

been identified by our approach.
These results were obtained in less than 1h. Consequently,

our approach can be considered as rather efficient, especially

given the difficulty of the problem: verifying that a non-trivial

dynamical property holds for all initial conditions in a

5-dimensional state space and for all parameters in an

11-dimensional parameter space.

4 CONCLUSION

We have presented a method for the analysis of dynamical

properties of genetic regulatory networks with parameter

uncertainty. Given a PMA model, an LTL specification of a

dynamical property and intervals defining a set of uncertain

parameters, the proposed approach deals with two problems.

The first one is to test whether the property is satisfied for every

parameter in the parameter set. The second one is to find

subsets of the given parameter set such that the property is

satisfied for every parameter in these subsets. Both problems

are of practical importance in quantitative biology. The first

one amounts to assess the robustness of the behavior of a

network, in the sense that we show that the system presents

a given behavior despite environmental fluctuations or
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Fig. 8. Steady-state input/output behavior of the cascade for

extreme parameter values in the valid parameter sets represented

in Figure 7d.
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inaccurate parameter estimation. The second one suggests

parameter modifications to tune network behaviors and is

particularly important for network design, since most initial

attempts at constructing gene networks do not result in a

system exhibiting the desired behavior.
The motivation for considering uncertain piecewise-

multiaffine differential equation models is twofold. First, they

are well adapted tomodel genetic regulatory networks in the face

of incomplete quantitative information. This is of utmost

importance for applications in systems and synthetic biology,

since precise quantitative information are generally not avail-

able. Second, they present interesting mathematical properties

that allow the development of efficient, tailored algorithms

implementing a combination of techniques for the formal

verification of continuous dynamical systems, based on discrete

abstraction and model checking. These algorithms are imple-

mented in the publicly-available tool RoVerGeNe, and their

practical applicability and biological relevance are demonstrated

on the tuning of a synthetic network built in E.coli.
To the best of our knowledge, the approach presented here

is the first computational approach developed specifically for

tuning synthetic gene networks. In a different context, Kuepfer

et al. (2007) have recently developed an approach based on

semidefinite programming for partitioning the parameter space

of polynomial differential equation models into so-called

feasible and infeasible regions. It should be noted that in this

approach, ‘feasible’ simply refers to the existence of a steady

state of the system. In contrast, our approach allows to find

parameter sets for which the system presents a particular

behavior, expressed in the rich language of temporal logics.
Finally, the most promising direction for future applications

seems to be the use of the proposed methods to support

the modular design of large gene networks (Chin, 2006).

In this perspective, the behavior of each module (i.e. sub-

network) could be described by a temporal logic property that

holds for sets of parameters, initial conditions and inputs.

These properties could then be viewed as certificates of the

robust behavior of the modules and could be used to support

module assemblage on a sound basis. In particular, this would

pave the way for the approach advocated by Collins and

colleagues (Kobayashi et al., 2004) in which biologists use

network modules as ‘plug-and-play’ devices to build complex

synthetic systems.
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