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SUMMARY

This note derives an explicit expression for computing the robustness margin for affine systems whose real
and complex coefficients are related by an ellipsoidal constraint. The expression, which is an application of
a result by Chen, Fan, and Nett for rank-one generalized structured singular-value problems, extends and
unifies previous results on robustness margin computation for systems with ellipsoidal uncertainty. ( 1998
John Wiley & Sons, Ltd.
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INTRODUCTION

The generalized structured singular value (k) introduced by Chen et al.1,2 unified and extended
the well-known Kharitonov-like stability conditions. The Kharitonov-like stability conditions
correspond to a generalized k problem of rank one, which can be written as a convex
optimization problem that is readily computable, often as an explicit analytical expression. These
simple computations are in sharp contrast to the general robustness margin computation
problem, which is NP-hard.3

As an application of their main result,1 Chen et al. derived explicit conditions for the robustness
margins of interval and diamond polynomials whose coefficients are perturbed in an affine
fashion.2 However, ellipsoidal uncertainty descriptions are more naturally obtained from
parameter identification procedures.4 Previously derived conditions for computing robustness
margins for systems with ellipsoidal uncertainties apply only to pure real perturbations,5~8

whereas complex perturbations are needed to represent unmodelled dynamics.
Here we use the generalized structured singular value to derive an analytical expression for the

robustness margin for affine systems whose coefficients are related by an ellipsoidal constraint.
The condition unifies previous results on the robustness of systems with ellipsoidal uncertainties,
and extends these results by addressing both real and complex perturbations.
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BACKGROUND

Scalars and vectors will be represented by lower case and matrices by upper case Roman or
Greek. The set of real numbers is R; the set of complex numbers is C; the set of n]m complex
matrices in Cm]n, and I

k
is the k]k identity matrix. AT is the transpose of A, while AH is the

complex conjugate transpose of A. Define ExE
2
as the vector two-norm and EAE

2
as the induced

matrix 2-norm.
As is standard in the structured singular-value framework for robustness analysis,

perturbations are collected into a block-diagonal matrix *, whose diagonal blocks can be real
scalar times identity, complex scalar times identity, or complex full block
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For the block-diagonal matrix *"diag(*
i
), define the matrix norm appropriate for studying

systems with ellipsoidal uncertainty descriptions:
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The appropriate structured singular value is defined below.

Definition 1

The structured singular value k
%
(M) of matrix M3Cn]n for ellipsoidal uncertainty descriptions

is defined to be zero if there is no *3D such that det(I!M*)"0, and otherwise

k
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(3)

The following result provides an analytical expression for k
%
(M) for M of rank one.

Lemma 1

Suppose that M"baH, where a"[aH
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Proof. It follows from Chen et al.1 for the selection of norm on * that k
%
(M)"

inf
x|R EaL #xbK E

2
. Elementary calculus gives the result. K
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Lemma 1 provides a general analytical expression for the robustness margin for systems whose
characteristic polynomial is an affine function of parameters which satisfy an ellipsoidal
constraint, as such systems are described by k

%
(M) problems whose M matrix is rank one.1,2 The

robustness margin is equal to the maximum of (7) over the stability boundary. The expression for
the robustness margin applies for discrete-time and continuous-time systems with real and
complex uncertainties, where the stability boundary can be defined for a general open set in the
complex plane (this allows additional criteria to be met, such as sufficient damping or speed of
response).

Previously derived conditions for ellipsoidal uncertainties apply only to pure real perturbations.5~8

Latchman et al.’s result holds for only a specialized type of affine perturbations.7 In the following,
we relate Lemma 1 to these prior results.

FIR SYSTEMS WITH AFFINE ELLIPSOIDAL PERTURBATIONS

Consider a system described as a finite impulse response (FIR)
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z~k (8)

with q uncertain parameters defined by h"[h
1
, h
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,2 , h
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]T"h

0
#dh. Then the uncertain

ellipsoidal parametric uncertainty description is described by dh"h!h
0
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h
, where
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where I and J are disjoint sets of integers whose union is M1,2 , qN. Writing the unity negative
feedback system in standard M!* form,
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h
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where b"(!1/(1#[z~12 z~q]h
0
)) [121]T, and aH"[z~12 z~q]Q1@2

h
. Equation (7)

provides an explicit analytical expression for the robustness margin of this system under unity
negative feedback (after rearranging the elements of a so that those corresponding to i3I appear
first). This expression is simplified when all the perturbations are real.

Lemma 2

Assume nominal closed-loop stability. Then the unity negative feedback system with open-loop
transfer function (8) and real uncertain parameters is stable for all dh3D

h
if and only if
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Basic but somewhat tedious algebra can be used to show that Lemma 2 is equivalent to
Theorem 3 of Latchman et al.7

SYSTEMS WITH STRUCTURED AFFINE ELLIPSOIDAL PERTURBATIONS

Consider a monic polynomial of a complex variable s. Assume that its coefficients are affine
functions of a vector k whose m entries are independent real or complex parameters. This
polynomial can be written as

p(s)"sn#a
1
(k)sn~1#2#a

n
(k)"sn#[sn~1sn~22 1] (Fk#g) (14)

where F3Cn]m and g3Cn. This form of perturbations is much more general than those treated
in (8). The polynomial is stable if all of its roots are in an open set S. This definition allows us
to consider discrete time, continuous time, and more general notions of stability (for example,
stability plus a required level of damping). Assume p (s) is stable for k"0. Set k"*[12 1]T
where * has nonrepeated real or complex scalar blocks. Then
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This is of the form det(I!baH*)"0, with b"[12 1]T and aH"wT, where
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sn#[sn~1 sn~22 1] g
(18)

and s is evaluated on the stability boundary. Equation (7) provides an explicit analytical
expression for the robustness margin of this system (after rearranging the elements of a so that
those corresponding to i3I appear first). For the case where all the perturbations are real, the
expression reduces to that reported by several authors:5,6,8
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CONCLUSIONS

An analytical expression is derived for computing the robustness margin for affine systems whose
real and complex coefficients are related by an ellipsoidal constraint. The expression is an
application of a result of Chen, Fan, and Nett on computing robustness margins for rank-one
generalized structured singular value problems. The expression extends and unifies previous
results on computing robustness margins to ellipsoidal uncertainty.
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