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Abstract

Background: Many functional analysis tools have been developed to extract functional and mechanistic insight

from bulk transcriptome data. With the advent of single-cell RNA sequencing (scRNA-seq), it is in principle possible

to do such an analysis for single cells. However, scRNA-seq data has characteristics such as drop-out events and low

library sizes. It is thus not clear if functional TF and pathway analysis tools established for bulk sequencing can be

applied to scRNA-seq in a meaningful way.

Results: To address this question, we perform benchmark studies on simulated and real scRNA-seq data. We

include the bulk-RNA tools PROGENy, GO enrichment, and DoRothEA that estimate pathway and transcription

factor (TF) activities, respectively, and compare them against the tools SCENIC/AUCell and metaVIPER, designed for

scRNA-seq. For the in silico study, we simulate single cells from TF/pathway perturbation bulk RNA-seq experiments.

We complement the simulated data with real scRNA-seq data upon CRISPR-mediated knock-out. Our benchmarks

on simulated and real data reveal comparable performance to the original bulk data. Additionally, we show that the

TF and pathway activities preserve cell type-specific variability by analyzing a mixture sample sequenced with 13

scRNA-seq protocols. We also provide the benchmark data for further use by the community.

Conclusions: Our analyses suggest that bulk-based functional analysis tools that use manually curated footprint

gene sets can be applied to scRNA-seq data, partially outperforming dedicated single-cell tools. Furthermore, we

find that the performance of functional analysis tools is more sensitive to the gene sets than to the statistic used.
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Background
Gene expression profiles provide a blueprint of the sta-

tus of cells. Thanks to diverse high-throughput tech-

niques, such as microarrays and RNA-seq, expression

profiles can be collected relatively easily and are hence

very common. To extract functional and mechanistic in-

formation from these profiles, many tools have been de-

veloped that can, for example, estimate the status of

molecular processes such as the activity of pathways or

transcription factors (TFs). These functional analysis

tools are broadly used and belong to the standard toolkit

to analyze expression data [1–4].

Functional analysis tools typically combine prior

knowledge with a statistical method to gain functional

and mechanistic insights from omics data. In the case of

transcriptomics, prior knowledge is typically rendered as

gene sets containing genes belonging to, e.g., the same

biological process or to the same Gene Ontology (GO)

annotation. The Molecular Signature Database

(MSigDB) is one of the largest collections of curated and

annotated gene sets [5]. Statistical methods are as abun-

dant as the different types of gene sets. Among them,
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the most commonly used are over-representation ana-

lysis (ORA) [6] and Gene Set Enrichment Analysis

(GSEA) [7]. Still, there is a growing number of statistical

methods spanning from simple linear models to

advanced machine learning methods [8, 9].

Recent technological advances in single-cell RNA-seq

(scRNA-seq) enable the profiling of gene expression at

the individual cell level [10]. Multiple technologies and

protocols have been developed, and they have experi-

enced a dramatic improvement over recent years. How-

ever, single-cell data sets have a number of limitations

and biases, including low library size and drop-outs.

Bulk RNA-seq tools that focus on cell type identification

and characterization as well as on inferring regulatory

networks can be readily applied to scRNA-seq data [11].

This suggests that functional analysis tools should in

principle be applicable to scRNA-seq data as well. How-

ever, it has not been investigated yet whether these limi-

tations could distort and confound the results, rendering

the tools not applicable to single-cell data.

In this paper, we benchmarked the robustness and

applicability of various TF and pathway analysis tools

on simulated and real scRNA-seq data. We focused

on three tools for bulk and three tools for scRNA-seq

data. The bulk tools were PROGENy [12], DoRothEA

[13], and classical GO enrichment analysis, combining

GO gene sets [14] with GSEA. PROGENy estimates

the activity of 14 signaling pathways by combining

corresponding gene sets with a linear model. DoRo-

thEA is a collection of resources of TF’s targets (reg-

ulons) that can serve as gene sets for TF activity

inference. For this study, we coupled DoRothEA with

the method VIPER [15] as it incorporates the mode

of regulation of each TF-target interaction. Both

PROGENy’s and DoRothEA’s gene sets are based on

observing the transcriptomic consequences (the “foot-

print”) of the processes of interest rather than the

genes composing the process as gene sets [16]. This

approach has been shown to be more accurate and

informative in inferring the process’s activity [12, 17].

The tools specifically designed for application on

scRNA-seq data that we considered are SCENIC/

AUCell [18] and metaVIPER [19]. SCENIC is a com-

putational workflow that comprises the construction

of gene regulatory networks (GRNs) from scRNA-seq

data that are subsequently interrogated to infer TF

activity with the statistical method AUCell. In

addition, we coupled AUCell with the footprint-based

gene sets from DoRothEA and PROGENy that we

hereafter refer to as D-AUCell and P-AUCell. Using

DoRothEA with both VIPER and AUCell on scRNA-

seq for TF activity inference allowed us to compare

the underlying statistical methods more objectively.

metaVIPER is an extension of VIPER which is based

on the same statistical method but relies on multiple

GRNs such as tissue-specific networks.

We first benchmarked the tools on simulated single-

cell transcriptome profiles. We found that on this in

silico data the footprint-based gene sets from DoRothEA

and PROGENy can functionally characterize simulated

single cells. We observed that the performance of the

different tools is dependent on the used statistical

method and properties of the data, such as library size.

We then used real scRNA-seq data upon CRISPR-

mediated knock-out/knock-down of TFs [20, 21] to as-

sess the performance of TF analysis tools. The results of

this benchmark further supported our finding that TF

analysis tools can provide accurate mechanistic insights

into single cells. Finally, we demonstrated the utility of

the tools for pathway and TF activity estimation on re-

cently published data profiling a complex sample with

13 different scRNA-seq technologies [22]. Here, we

showed that summarizing gene expression into TF and

pathway activities preserves cell-type-specific informa-

tion and leads to biologically interpretable results. Col-

lectively, our results suggest that the bulk- and

footprint-based TF and pathway analysis tools DoRo-

thEA and PROGENy partially outperform the single-cell

tools SCENIC, AUCell, and metaVIPER. Although on

scRNA-seq data DoRothEA and PROGENy were less ac-

curate than on bulk RNA-seq, we were still able to ex-

tract relevant functional insight from scRNA-seq data.

Results
Robustness of bulk-based TF and pathway analysis tools

against low gene coverage

Single-cell RNA-seq profiling is hampered by low gene

coverage due to drop-out events [23]. In our first ana-

lysis, we focused solely on the low gene coverage aspect

and whether tools designed for bulk RNA-seq can deal

with it. Specifically, we aimed to explore how DoRo-

thEA, PROGENy, and GO gene sets combined with

GSEA (GO-GSEA) can handle low gene coverage in gen-

eral, independently of other technical artifacts and char-

acteristics from scRNA-seq protocols. Thus, we

conducted this benchmark using bulk transcriptome

benchmark data. In these studies, single TFs and path-

ways are perturbed experimentally, and the transcrip-

tome profile is measured before and after the

perturbation. These experiments can be used to bench-

mark tools for TF/pathway activity estimation, as they

should estimate correctly the change in the perturbed

TF or pathway. The use of these datasets allowed us to

systematically control the gene coverage (see the

“Methods” section). The workflow consisted of four

steps (Additional file 1: Figure S1a). In the first step, we

summarized all perturbation experiments into a matrix

of contrasts (with genes in rows and contrasts in
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columns) by differential gene expression analysis. Subse-

quently, we randomly replaced, independently for each

contrast, logFC values with 0 so that we obtain a prede-

fined number of “covered” genes with a logFC unequal

to zero. Accordingly, a gene with a logFC equal to 0 was

considered as missing/not covered. Then, we applied

DoRothEA, PROGENy, and GO-GSEA to the contrast

matrix, subsetted only to those experiments which are

suitable for the corresponding tool: TF perturbation for

DoRothEA and pathway perturbation for PROGENy and

GO-GSEA. We finally evaluate the global performance

of the methods with receiver operating characteristic

(ROC) and precision-recall (PR) curves (see the

“Methods” section). This process was repeated 25 times

to account for stochasticity effects during inserting zeros

in the contrast matrix (see the “Methods” section).

DoRothEA’s TFs are accompanied by an empirical

confidence level indicating the confidence in their regu-

lons, ranging from A (most confident) to E (less

confident; see the “Methods” section). For this bench-

mark, we included only TFs with confidence levels A

and B (denoted as DoRothEA (AB)) as this combination

has a reasonable tradeoff between TF coverage and per-

formance [13]. In general, the performance of DoRo-

thEA dropped as gene coverage decreased. While it

showed reasonable prediction power with all available

genes (AUROC of 0.690), it approached almost the per-

formance of a random model (AUROC of 0.5) when

only 500 genes were covered (mean AUROC of 0.547,

Fig. 1a, and similar trend with AUPRC, Additional file 1:

Figure S1b).

We next benchmarked pathway activities estimated by

PROGENy and GO-GSEA. In the original PROGENy

framework, 100 footprint genes are used per pathway to

compute pathway activities by default, as it has been

shown that this leads to the best performance on bulk

samples [12]. However, one can extend the footprint size

to cover more genes of the expression profiles. We rea-

soned that this might counteract low gene coverage and

implemented accordingly different PROGENy versions

(see the “Methods” section). With the default PROGENy

version (100 footprint genes per pathway), we observed

a clear drop in the global performance with decreasing

gene coverage, even though less drastic than for DoRo-

thEA (from AUROC of 0.724 to 0.636, Fig. 1b, similar

trends with AUPRC, Additional file 1: Figure S1c). As

expected, PROGENy performed the best with 100 foot-

print genes per pathway when there is complete gene

coverage. The performance differences between the vari-

ous PROGENy versions shrank with decreasing gene

coverage. This suggests that increasing the number of

footprint genes can help to counteract low gene cover-

age. To provide a fair comparison between PROGENy

and GO-GSEA, we used only those 14 GO terms that

match the 14 PROGENy pathways (Additional file 1:

Figure S1d). In general, GO-GSEA showed weaker per-

formance than PROGENy. The decrease in performance

was more prominent as gene coverage decreased (from

AUROC of 0.662 to 0.525, Fig. 1c, and similar trend with

AUPRC, Additional file 1: Figure S1e). With a gene

coverage of less than 2000 genes, GO-GSEA perform-

ance was no better than random.

As our benchmark data set comprises multiple per-

turbation experiments per pathway, we also evaluated

the performance of PROGENy and GO-GSEA at the

pathway level (Additional file 1: Figure S2a and b). The

pathway-wise evaluation supported our finding that

PROGENy outperforms GO-GSEA across all gene

Fig. 1 Testing the robustness of DoRothEA (AB), PROGENy, and GO-GSEA against low gene coverage. a DoRothEA (AB) performance (area under

ROC curve, AUROC) versus gene coverage. b PROGENy performance (AUROC) for different number of footprint genes per pathway versus gene

coverage. c Performance (AUROC) of GO-GSEA versus gene coverage. The dashed line indicates the performance of a random model. The colors

in a and c are meant only as a visual support to distinguish between the individual violin plots and jittered points
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coverages, but the performance between pathways is

variable.

In summary, this first benchmark provided insight into

the general robustness of the bulk-based tools DoRo-

thEA, PROGENy, and GO-GSEA with respect to low

gene coverage. DoRothEA performed reasonably well

down to a gene coverage of 2000 genes. The perform-

ance of all different PROGENy versions was robust

across the entire gene coverage range tested. GO-GSEA

showed a worse performance than PROGENy, especially

in the low gene coverage range. Since DoRothEA and

PROGENy showed promising performance in low gene

coverage ranges, we decided to explore them on scRNA-

seq data. Due to its poor performance, we did not in-

clude GO-GSEA in the subsequent analyses.

Benchmark on simulated single-cell RNA-seq data

For the following analyses, we expanded the set of tools

with the statistical methods AUCell that we decoupled

from the SCENIC workflow [18] and metaVIPER [19].

Both methods were developed specifically for scRNA-

seq analysis and thus allow the comparison of bulk vs

single-cell based tools on scRNA-seq data. AUCell is a

statistical method that is originally used with GRNs con-

structed by SCENIC and assesses whether gene sets are

enriched in the top quantile of a ranked gene signature

(see the “Methods” section). In this study, we combined

AUCell with DoRothEA’s and PROGENy’s gene sets (re-

ferred to as D-AUCell and P-AUCell, respectively).

metaVIPER is an extension of VIPER and requires mul-

tiple gene regulatory networks instead of a single net-

work. In our study, we coupled 27 tissue-specific gene

regulatory networks with metaVIPER, which provides a

single TF consensus activity score estimated across all

networks (see the “Methods” section). To benchmark all

these methods on single cells, ideally, we would have

scRNA-seq datasets after perturbations of TFs and path-

ways. However, these datasets, especially for pathways,

are currently very rare. To perform a comprehensive

benchmark study, we developed a strategy to simulate

samples of single cells using bulk RNA-seq samples from

TF and pathway perturbation experiments.

A major cause of drop-outs in single-cell experiments

is the abundance of transcripts in the process of reverse-

transcription of mRNA to cDNA [23]. Thus, our simula-

tion strategy was based on the assumption that genes

with low expression are more likely to result in drop-out

events.

The simulation workflow started by transforming read

counts of a single bulk RNA-seq sample to transcripts

per million (TPM), normalizing for gene length and li-

brary size. Subsequently, for each gene, we assigned a

sampling probability by dividing the individual TPM

values with the sum of all TPM values. These

probabilities are proportional to the likelihood for a

given gene not to “drop-out” when simulating a single

cell from the bulk sample. We determined the total

number of gene counts for a simulated single cell by

sampling from a normal distribution with a mean equal

to the desired library size which is specified as the first

parameter of the simulation. We refer hereafter to this

number as the library size. For every single cell, we then

sampled with replacement genes from the gene probabil-

ity vector up to the determined library size. The fre-

quency of occurrence of individual genes becomes the

new gene count in the single cell. The number of simu-

lated single cells from a single bulk sample can be speci-

fied as the second parameter of the simulation. Of note,

this parameter is not meant to reflect a realistic number

of cells, but it is rather used to investigate the loss of in-

formation: the lower the number of simulated cells, the

more information is lost from the original bulk sample

(Fig. 2a; see the “Methods” section). This simple work-

flow guaranteed that the information of the original bulk

perturbation is preserved and scRNA-seq characteristics,

such as drop-outs, low library size, and a high number

of samples/cells are introduced.

Our bulk RNA-seq samples comprised 97 single TF

perturbation experiments targeting 52 distinct TFs and

15 single pathway perturbation experiments targeting 7

distinct pathways (Additional file 1: Figure S3a and b;

see the “Methods” section). We repeated the simulation

of single cells from each bulk sample template to ac-

count for the stochasticity of the simulation procedure.

We tested our simulation strategy by comparing the

characteristics of the simulated cells to real single cells.

In this respect, we compared the count distribution

(Additional file 1: Figure S4a), the relationship of mean

and variance of gene expression (Additional file 1: Figure

S4b), and the relationship of library size to the number

of detected genes (Additional file 1: Figure S4c). These

comparisons suggested that our simulated single cells

closely resemble real single cells and are thus suitable

for benchmarking.

Unlike in our first benchmark, we applied the TF and

pathway analysis tools directly on single samples/cells

and built the contrasts between perturbed and control

samples at the level of pathway and TF activities (see the

“Methods” section). We compared the performance of

all tools to recover the perturbed TFs/pathways. We also

considered the performance on the template bulk data,

especially for the bulk-based tools DoRothEA and PRO-

GENy, as a baseline for comparison to their respective

performance on the single-cell data.

We show, as an example, the workflow of the perform-

ance evaluation for DoRothEA (Fig. 2b, 1. Step). As a

first step, we applied DoRothEA to single cells generated

for one specific parameter combination and bulk
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Fig. 2 Benchmark results of TF and pathway analysis tools on simulated scRNA-seq data. a Simulation strategy of single cells from an RNA-seq

bulk sample. b Example workflow of DoRothEA’s performance evaluation on simulated single cells for a specific parameter combination (number

of cells = 10, mean library size = 5000). 1. Step: ROC-curves of DoRothEA’s performance on single cells (25 replicates) and on bulk data including

only TFs with confidence level A. 2. Step: DoRothEA performance on single cells and bulk data summarized as AUROC vs TF coverage. TF

coverage denotes the number of distinct perturbed TFs in the benchmark dataset that are also covered by the gene set resource (see

Additional file 1: Figure S3a) Results are provided for different combinations of DoRothEA’s confidence levels (A, B, C, D, E). Error bars of AUROC

values depict the standard deviation and correspond to different simulation replicates. Step 3: Averaged difference across all confidence level

combinations between AUROC of single cells and bulk data for all possible parameter combinations. The letters within the tiles indicates which

confidence level combination performs the best on single cells. The tile marked in red corresponds to the parameter setting used for previous

plots (Steps 1 and 2). c D-AUCell and d metaVIPER performance on simulated single cells summarized as AUROC for a specific parameter

combination (number of cells = 10, mean library size = 5000) and corresponding bulk data vs TF coverage. e, f Performance results of e PROGENy

and f P-AUCell on simulated single cells for a specific parameter combination (number of cells = 10, mean library size = 5000) and corresponding

bulk data in ROC space vs number of footprint genes per pathway. c–f Plots revealing the change in performance for all possible parameter

combinations (Step 3) are available in Additional file 1: Figure S7. b–f The dashed line indicates the performance of a random model
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samples, performed differential activity analysis (see the

“Methods” section), and evaluated the performance with

ROC and PR curves including only TFs with confidence

level A. In this example, we set the number of cells to 10

as this reflects an observable loss of information of the

original bulk sample and the mean library size to 5000

as this corresponds to a very low but still realistic se-

quencing depths of scRNA-seq experiments. Each repe-

tition of the simulation is depicted by an individual ROC

curve, which shows the variance in the performance of

DoRothEA on simulated single-cell data (Fig. 2b, 1.

Step). The variance decreases as the library size and the

number of cells increase (which holds true for all tested

tools, Additional file 1: Figure S5a–e). The shown ROC

curves are summarized into a single AUROC value for

bulk and mean AUROC value for single cells. We per-

formed this procedure also for different TF confidence

level combinations and show the performance change in

these values in relation to the number of distinct per-

turbed TFs in the benchmark that are also covered by

the gene set resources that we refer to as TF coverage

(Fig. 2b, 2. Step). For both bulk and single cells, we ob-

serve a tradeoff between TF coverage and performance

caused by including different TF confidence level combi-

nations in the benchmark. This result is supported by

both AUROC and AUPRC (Additional file 1: Figure S6a)

and corresponds to our previous findings [13]. The per-

formance of DoRothEA on single cells does not reach

the performance on bulk, though it can still recover TF

perturbations on the simulated single cells reasonably

well. This is especially evident for the most confident

TFs (AUROC of 0.690 for confidence level A and 0.682

for the confidence level combination AB). Finally, we ex-

plore the effect of the simulation parameters library size

and the number of cells on the performance by perform-

ing the previously described analysis for all combinations

of library sizes and cell numbers. We computed the

mean difference between AUROC scores of single-cell

and bulk data across all confidence level combinations.

A negative difference indicates that the tool of inter-

est performs overall better on bulk data than on

scRNA-seq data, and a positive difference that it per-

forms better on scRNA-seq. We observed a gradually

decreasing negative difference approaching 0 when

the size of the library and the number of cells in-

crease (Fig. 2b, 3. Step, and Additional file 1: Figure

S7a). Note, however, that the number of cells and

thus the amount of lost information of the original

bulk sample has a stronger impact on the perform-

ance than the mean library size. In addition, we iden-

tified the best performing combination of DoRothEA’s

TF confidence levels for different library sizes and the

number of single cells. Thus, the results can be used

as recommendations for choosing the confidence

levels on data from an experiment with comparable

characteristics in terms of sequencing depths.

Similarly to DoRothEA, we also observed for D-

AUCell a tradeoff between TF coverage and perform-

ance on both single cells and bulk samples when using

the same parameter combination as before (Fig. 2c, simi-

lar trend with AUPRC Additional file 1: Figure S6b).

The summarized performance across all confidence level

combinations of D-AUCell on single cells slightly out-

performed its performance on bulk samples (AUROC of

0.601 on single cells and 0.597 on bulk). This trend be-

comes more evident with increasing library size and the

number of cells (Additional file 1: Figure S7b).

For the benchmark of metaVIPER, we assigned confi-

dence levels to the tissue-specific GTEx regulons based

on DoRothEA’s gene set classification. This was done for

consistency with DoRothEA and D-AUCell, even if there

is no difference in confidence among them. Hence, for

metaVIPER, we do not observe a tradeoff between TF

coverage and performance (Fig. 2d, similar trend with

AUPRC Additional file 1: Figure S6c). As opposed to D-

AUCell, metaVIPER performed clearly better on single

cells than on bulk samples across all confidence level

combinations (AUROC of 0.584 on single cells and

0.531 on bulk). This trend increased with increasing li-

brary size and number of cells (Additional file 1: Figure

S7c). However, the overall performance of metaVIPER is

worse than the performance of DoRothEA and D-

AUCell. In summary, the bulk-based tool DoRothEA

performed the best on the simulated single cells followed

by D-AUCell. metaVIPER performed slightly better than

a random model.

For the benchmark of pathway analysis tools, we ob-

served that PROGENy performed well across different

number of footprint genes per pathway, with a peak at

500 footprint genes for both single cells and bulk

(AUROC of 0.856 for bulk and 0.831 for single cells,

Fig. 2e, similar trend with AUPRC Additional file 1: Fig-

ure S6d). A better performance for single-cell analysis

with more than 100 footprint genes per pathway is in

agreement with the previous general robustness study

that suggested that a higher number of footprint genes

can counteract low gene coverage. Similarly to the

benchmark of TF analysis tools, we studied the effect of

the simulation parameters on the performance of path-

way analysis tools. We averaged for each parameter

combination the performance difference between single

cells and bulk across the different versions of PROGENy.

For the parameter combination associated with Fig. 2e

(number of cells = 10, mean library size = 5000), the

average distance is negative showing that the perform-

ance of PROGENy on bulk was, in general, better than

on single-cell data. Increasing the library size and the

number of cells improved the performance of PROGENy
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on single cells reaching almost the same performance as

on bulk samples (Additional file 1: Figure S7d). For most

parameter combinations, PROGENy with 500 or 1000

footprint genes per pathway yields the best performance.

For P-AUCell, we observed a different pattern than for

PROGENy as it worked best with 100 footprint genes

per pathway for both single cells and bulk (AUROC of

0.788 for bulk and 0.712 for single cells, Fig. 2f, similar

trends with AUPRC Additional file 1: Figure S6e). Simi-

lar to PROGENy, increasing the library size and the

number of cells improved the performance, but not to

the extent of its performance on bulk (Additional file 1:

Figure S7e). For most parameter combinations, P-

AUCell with 100 or 200 footprint genes per pathway

yielded the best performance.

In summary, both PROGENy and P-AUCell performed

well on the simulated single cells, and PROGENy per-

formed slightly better. For pathway analysis, P-AUCell

did not perform better on scRNA-seq than on bulk data.

We then went on to perform a benchmark analysis on

real scRNA-seq datasets.

Benchmark on real single-cell RNA-seq data

After showing that the footprint-based gene sets from

DoRothEA and PROGENy can handle low gene coverage

and work reasonably well on simulated scRNA-seq data

with different statistical methods, we performed a bench-

mark on real scRNA-seq data. However, single-cell tran-

scriptome profiles of TF and pathway perturbations are

very rare. To our knowledge, there are no datasets of path-

way perturbations on single-cell level comprehensive

enough for a robust benchmark of pathway analysis tools.

For tools inferring TF activities, the situation is better: re-

cent studies combined CRISPR knock-outs/knock-down

of TFs with scRNA-seq technologies [20, 21] that can

serve as potential benchmark data.

The first dataset is based on the Perturb-seq technol-

ogy, which contains 26 knock-out perturbations target-

ing 10 distinct TFs after 7 and 13 days of perturbations

(Additional file 1: Figure S8a) [20]. To explore the effect

of perturbation time, we divided the dataset into two

sub-datasets based on perturbation duration (Perturb-

seq (7d) and Perturb-seq (13d)). The second dataset is

based on CRISPRi protocol and contains 141 perturb-

ation experiments targeting 50 distinct TFs [21] (Add-

itional file 1: Figure S8a). The datasets showed a

variation in terms of drop-out rate, the number of cells,

and sequencing depths (Additional file 1: Figure S8b).

To exclude bad or unsuccessful perturbations in the

case of CRISPRi experiments, we discarded experiments

when the logFC of the targeted gene/TF was greater

than 0 (12 out of 141, Additional file 1: Figure S8c). This

quality control is important only in the case of CRISPRi,

as it works on the transcriptional level. Perturb-seq

(CRISPR knock-out) acts on the genomic level, so we

cannot expect a clear relationship between KO efficacy

and transcript level of the target. Note that the logFCs of

both Perturb-seq sub-datasets are in a narrower range in

comparison to the logFCs of the CRISPRi dataset (Add-

itional file 1: Figure S8d). The perturbation experiments

that passed this quality check were used in the following

analyses.

We also considered the SCENIC framework for TF

analysis [18]. We inferred GRNs for each sub-dataset

using this framework (see the “Methods” section). We

set out to evaluate the performance of DoRothEA, D-

AUCell, metaVIPER, and SCENIC on each benchmark

dataset individually.

To perform a fair comparison among the tools, we

pruned their gene set resources to the same set of TFs.

However, the number of TFs in the dataset-specific

SCENIC networks was very low (109 for Perturb-Seq

(7d), 126 for Perturb-Seq (13d), and 182 TFs for CRIS-

PRi), yielding a low overlap with the other gene set re-

sources. Therefore, only a small fraction of the

benchmark dataset was usable yielding low TF coverage.

Nevertheless, we found that DoRothEA performed the

best on the Perturb-seq (7d) dataset (AUROC of 0.752,

Fig. 3a) followed by D-AUCell and SCENIC with almost

identical performance (AUROC of 0.629 and 0.631, re-

spectively). metaVIPER performed just slightly better

than a random model (AUROC of 0.533). Interestingly,

all tools performed poorly on the Perturb-seq (13d)

dataset. In the CRISPRi dataset, DoRothEA and D-

AUCell performed the best with D-AUCell showing

slightly better performance than DoRothEA (AUROC of

0.626 for D-AUCell and 0.608 for DoRothEA). SCENIC

and metaVIPER performed slightly better than a random

model. Given that we included in this analysis only

shared TFs across all gene set resources, we covered

only 5 and 17 distinct TFs of the Perturb-seq and CRIS-

PRi benchmark dataset.

To make better use of the benchmark dataset, we re-

peated the analysis without SCENIC, which resulted in a

higher number of shared TFs among the gene set re-

sources and a higher TF coverage. The higher TF cover-

age allowed us to investigate the performance of the

tools in terms of DoRothEA’s confidence level. For both

Perturb-seq datasets, we found consistent results with

the previous study when the TF coverage increased from

5 to 10 (Fig. 3b). However, for the CRISPRi dataset, the

performance of DoRothEA and metaVIPER remained

comparable to the previous study while the performance

of D-AUCell dropped remarkably. These trends can also

be observed in PR-space (Additional file 1: Figure S8e).

In summary, these analyses suggested that the tools

DoRothEA and D-AUCell, both interrogating the manu-

ally curated, high-quality regulons from DoRothEA, are
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the best-performing tools to recover TF perturbation at

the single-cell level of real data.

Application of TF and pathway analysis tools on samples

of heterogeneous cell type populations (PBMC+HEK293T)

In our last analysis, we wanted to test the performance

of all tested tools in a more heterogeneous system that

would illustrate a typical scRNA-seq data analysis sce-

nario where multiple cell types are present. We used a

dataset from the Human Cell Atlas project [24] that

contains scRNA-seq profiles of human peripheral blood

mononuclear cells (PBMCs) and HEK 293 T cell line

with annotated cell types [22]. This dataset was analyzed

with 13 different scRNA-seq protocols (see the

“Methods” section). In this study, no ground truth (in

contrast to the previous perturbation experiments) for

TF and pathway activities was available. To evaluate the

performance of all tools, we assessed the potential of TF

and pathway activities to cluster cells from the same cell

type together based on a priori annotated cell types. All

pathway analysis tools and the TF analysis tools DoRo-

thEA, D-AUCell, and metaVIPER were readily applicable

to the dataset, except for SCENIC, where we first had to

infer GRNs specific for each dataset (and thus experi-

mental protocol) from the respective data (e.g., Drop-seq

regulons inferred from the Drop-seq dataset; see the

“Methods” section). The overlap of all protocol-specific

SCENIC regulons comprised only 24 TFs (Add-

itional file 1: Figure S9a). Including regulons from

DoRothEA and GTEx shrank the total overlap down to

20 (Additional file 1: Figure S9b). In contrast, high-

quality regulons (confidence levels A and B) from DoRo-

thEA and GTEx alone overlapped in 113 TFs. Given the

very low regulon overlap between DoRothEA, GTEx,

and all protocol-specific SCENIC regulons, we decided

to subset DoRothEA and GTEx to their shared TFs

while using all available TFs of the protocol-specific

SCENIC regulons.

The low overlap of the SCENIC regulons motivated us

to investigate the direct functional consequences of their

usage. Theoretically, one would expect to retrieve highly

similar regulons as they were constructed from the same

biological context. We calculated the pairwise (Pearson)

correlations of TF activities between the scRNA-

seq technologies for each tool. The distribution of cor-

relation coefficients for each tool denotes the

consistency of predicted TF activity across the proto-

cols (Additional file 1: Figure S10). The tools DoRo-

thEA, D-AUCell, and metaVIPER had all a similar

median Pearson correlation coefficient of ~ 0.63 and

SCENIC of 0.34. This suggests that the predicted TF

activities via SCENIC networks are less consistent

across the protocols than the TF activities predicted

via DoRothEA, D-AUCell, and metaVIPER.

To assess the clustering capacity of TF and pathway

activities, we performed our analysis for each scRNA-seq

technology separately to identify protocol-specific and

protocol-independent trends. We assumed that the cell-

Fig. 3 Benchmark results of TF analysis tools on real scRNA-seq data. a Performance of DoRothEA, D-AUCell, metaVIPER, and SCENIC on all sub

benchmark datasets in ROC space vs TF coverage. b Performance of DoRothEA, D-AUCell, and metaVIPER on all sub benchmark datasets in ROC

vs TF coverage split up by combinations of DoRothEA’s confidence levels (A-E). a, b In both panels, the results for each tool are based on the

same but for the respective panel different set of (shared) TFs. TF coverage reflects the number of distinct perturbed TFs in the benchmark data

set that are also covered by the gene sets
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type-specific information should be preserved also on

the reduced dimension space of TF and pathway activ-

ities if these meaningfully capture the corresponding

functional processes. Hence, we assessed how well the

individual clusters correspond to the annotated cell

types by a two-step approach. First, we applied UMAP

on different input matrices, e.g., TF/pathway activities or

gene expression, and then we evaluated how well cells

from the same cell type cluster together. We considered

silhouette widths as a metric of cluster purity (see the

“Methods” section). Intuitively, each cell type should

form a distinct cluster. However, some cell types are

closely related, such as different T cells (CD4 and CD8)

or monocytes (CD14+ and FCGR3A+). Thus, we de-

cided to evaluate the cluster purity at different levels of

the cell-type hierarchy from fine-grained to coarse-

grained. We started with the hierarchy level 0 where

every cell type forms a distinct cluster and ended with

the hierarchy level 4 where all PBMC cell types and the

HEK cell line form a distinct cluster (Fig. 4a). Our main

findings rely on hierarchy level 2.

Silhouette widths derived from a set of highly variable

genes (HVGs) set the baseline for the silhouette widths

derived from pathway/TF activities. We identified the

top 2000 HVGs with Seurat [25] using the selection

method “vst” as it worked the best in our hands at four

out of five hierarchy levels (Additional file 1: Figure

S11). For both TF and pathway activity matrices, the

number of features available for dimensionality reduc-

tion using UMAP was substantially less (113 TFs for

DoRothEA/metaVIPER, up to 400 TFs for SCENIC

GRNs and 14 pathways, respectively) than for a gene ex-

pression matrix containing the top 2000 HVGs. As the

number of available features for dimensionality reduc-

tion is different between HVGs, TFs, and pathways, we

compare the cluster purity among these input features,

to a positive and negative control. The positive control

is a gene expression matrix with the top n HVGs and

the negative control is a gene expression matrix with

randomly chosen n HVGs out of the 2000 HVGs (n

equals 14 for pathway analysis and 113 for TF analysis).

It should be noted that in terms of TF analysis, the posi-

tive and negative control is only applicable to DoRo-

thEA, D-AUCell, and metaVIPER as they share the same

number of features. As the protocol-specific SCENIC

GRNs differ in size (Additional file 1: Figure S9a), each

network would require its own positive and negative

control.

To evaluate the performance of the TF activity infer-

ence methods and the utility of TF activity scores, we

determined the cluster purity derived from TF activities

predicted by DoRothEA, D-AUCell, metaVIPER, and

SCENIC, TF expression, and positive and negative con-

trols. scRNA-seq protocols and input matrices used for

dimensionality reduction affected cluster purity signifi-

cantly (two-way ANOVA p values < 2.2e−16 and 4.32e

−12, respectively, p values and estimations for corre-

sponding linear model coefficients in Additional file 1:

Figure S12a; see the “Methods” section). The cluster

purity based on TF activities inferred using DoRothEA

and D-AUCell did not differ significantly (Fig. 4b, corre-

sponding plots for all hierarchy levels in Additional file 1:

Figure S12b). In addition, the cluster purity of both tools

was not significantly worse than the purity based on all

2000 HVGs, though we observed a slight trend indicat-

ing a better cluster purity based on HVGs. This trend is

expected due to the large difference in available features

for dimensionality reduction. Instead, a comparison to

the positive and negative controls is more appropriate.

Both DoRothEA and D-AUCell performed comparably

to the positive control but significantly better than the

negative control across all scRNA-seq protocols

(TukeyHSD post-hoc-test, adj. p value of 1.26e−4 for

DoRothEA and 7.09e−4 for D-AUCell). The cluster pur-

ity derived from metaVIPER was significantly worse than

for DoRothEA (TukeyHSD post-hoc-test, adj. p value of

0.054) and tend to be worse than D-AUCell (TukeyHSD

post-hoc-test, adj. p value of 0.163) as well. metaVIPER

was not significantly better than the negative control.

The cluster purity from SCENIC was significantly better

than the negative control (TukeyHSD post-hoc-test, adj.

p value of 1.11e−6) and comparable to the positive con-

trol and thus to DoRothEA and D-AUCell. However, as

mentioned above, SCENIC is only partially comparable

to the controls and other tools due to the different num-

ber of TFs.

Regardless of the underlying TF activity tool, except

for metaVIPER, the cluster purity derived from TF activ-

ities outperformed significantly the purity derived from

TF expression (TukeyHSD post-hoc-test, adj. p value of

5.89e−6 for DoRothEA, 3.85−e5 for D-AUCell, and 4.0e

−8 for SCENIC). This underlines the advantage and rele-

vance of using TF activities over the expression of the

TF itself (Fig. 4c). With a comparable performance to a

similar number of HVG and also to 2000 HVGs, we

concluded that TF activities serve—independently of the

underlying scRNA-seq protocol—as a complementary

approach for cluster analysis that is based on generally

more interpretable cell type marker.

To evaluate the performance of pathway inference

methods and the utility of pathway activity scores, we

determined cluster purity with pathway matrices gener-

ated by different PROGENy versions and P-AUCell. We

used 200 and 500 footprint genes per pathway for PRO-

GENy and P-AUCell, respectively, since they provided

the best performance in the previous analyses. As ob-

served already for the TF analysis tools, scRNA-seq pro-

tocols and matrices used for dimensionality reduction
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affected cluster purity significantly (two-way ANOVA p

values of 2.84e−7 and 1.13e−13, respectively, p values

and estimations for corresponding linear model coeffi-

cients in Additional file 1: Figure S13a; see the

“Methods” section). The cluster purity derived from

pathway activity matrices is not significantly different

between PROGENy and P-AUCell, while worse than all

HVGs (TukeyHSD post-hoc-test, adj. p value of 4.07e

−10 for PROGENy and 4.59e−9 for P-AUCell, Fig. 4d,

corresponding plots for all hierarchy levels in Add-

itional file 1: Figure S13b). This is expected due to the

large difference in the number of available features for

Fig. 4 Application of TF and pathway analysis tools on a representative scRNA-seq dataset of PBMCs and HEK cells. a Dendrogram showing how

cell lines/cell types are clustered together based on different hierarchy levels. The dashed line marks the hierarchy level 2, where CD4 T cells, CD8

T cells, and NK cells are aggregated into a single cluster. Similarly, CD14+ monocytes, FCGR3A+ monocytes, and dendritic cells are also

aggregated to a single cluster. The B cells and HEK cells are represented by separate, pure clusters. b, d Comparison of cluster purity (clusters are

defined by hierarchy level 2) between the top 2000 highly variable genes and b TF activity and TF expression and d pathway activities. The

dashed line in b separates SCENIC as it is not directly comparable to the other TF analysis tools and controls due to a different number of

considered TFs. c UMAP plots of TF activities calculated with DoRothEA and corresponding TF expression measured by SMART-Seq2 protocol. e

Heatmap of selected TF activities inferred with DoRothEA from gene expression data generated via Quartz-Seq2
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dimensionality reduction (2000 HVGs vs 14 pathways).

The cluster purity of both approaches was comparable

to the positive control but significantly better than the

negative control (TukeyHSD post-hoc-test, adj. p value

of 0.077 for PROGENy and 0.013 for P-AUCell vs nega-

tive control). In summary, this study indicated that the

pathway activities contain relevant and cell-type-specific

information, even though they do not capture enough

functional differences to be used for effective clustering

analysis. Overall, the cluster purity of cells represented

by the estimated pathway activities is worse than the

cluster purity of cells represented by the estimated TF

activities.

In addition, we observed that TF and pathway matrices

derived from Quartz-Seq2 protocol yielded for hierarchy

level 2 in significantly better cluster purity than all other

protocols, which is in agreement with the original study

of the PBMC + HEK293T data (Additional file 1: Figure

S12a and S13a) [22].

TF and pathway activity scores are more interpretable

than the expression of single genes. Hence, we were

interested to explore whether we could recover known

cell-type-specific TF and pathway activities from the

PBMC data. We decided to focus on the dataset mea-

sured with Quartz-Seq2 as this protocol showed in our

and in the original study superior performance over all

other protocols [22]. We calculated mean TF and path-

way activity scores for each cell type using DoRothEA,

D-AUCell, metaVIPER, and SCENIC (using only TFs

with confidence levels A and B, Fig. 4e and Add-

itional file 1: Figure S14a–c, respectively), PROGENy

with 500 and P-AUCell with 200 footprint genes per

pathway (Additional file 1: Figure S14d and e). In terms

of TF activities, we observed high RFXAP, RFXANK,

and RFX5 activity (TFs responsible for MHCII expres-

sion) in monocytes, dendritic cells, and B cells (the main

antigen-presenting cells of the investigated population

[26]) (Additional file 1: Figure S14a and b). Myeloid

lineage-specific SPI1 activity [27] was observed in mono-

cytes and dendritic cells. The high activity of repressor

TF (where regulation directionality is important) FOXP1

in T lymphocytes [28] was only revealed by DoRothEA.

Proliferative TFs like Myc and E2F4 had also high activ-

ity in HEK cells.

Regarding pathway activities, we observed across both

methods, in agreement with the literature, high activity

of NFkB and TNFa in monocytes [29] and elevated Trail

pathway activity in B cells (Additional file 1: Figure S14d

and e) [30]. HEK cells, as expected from dividing cell

lines, had higher activity of proliferative pathways

(MAPK, EGFR, and PI3K, Additional file 1: Figure

S14d). These later pathway activity changes were only

detected by PROGENy but not with AUCell, highlight-

ing the importance of directionality information.

Besides these individual examples, we analyzed the

biological relevance of the identified TF activities in

more detail. We assumed that the highly active TFs are

regulating important cellular functions, resulting in a

correlation between TF activity and essentiality. As (to

our knowledge) no gene essentiality data is available for

PBMCs, we used hematologic cancer (lymphoma and

leukemia) gene essentiality data from the DepMap pro-

ject [31]. We compared the difference between the TF

activities in lymphoid (B, T, and NK cells) and myeloid

(monocytes and dendritic cells) PBMCs with the TF

gene essentiality differences between myeloid and

lymphoid hematologic cancers. SPI1, according to its

higher activity in myeloid PBMCs, was more essential in

myeloid leukemias (Additional file 1: Figure S15a and b,

Wilcoxon-test p value = 0.038). For a more comprehen-

sive analysis, we compared the differences in TF activity

(PBMCs, lymphoid - myeloid) and the differences in TF

gene essentiality (hematologic cancers, lymphoid - mye-

loid) by calculating their Pearson correlation for all TFs.

The TF activities predicted by DoRothEA correlated best

with respective essentiality scores across all scRNA-seq

protocols (median Pearson correlation coefficient of

0.107; 0.08 for D-AUCell; 0.04 for metaVIPER; and −

0.002 for SCENIC, Additional file 1: Figure S15c). The

difference in TF activities predicted with DoRothEA

from the dataset generated by Smart-Seq2 and Quartz-

Seq2 correlated significantly with the difference in essen-

tiality (Pearson correlation, p value of 0.049 and 0.032,

respectively). Thus, TF activities predicted with DoRo-

thEA regulons correlate, albeit, weakly with gene/TF

essentiality.

In summary, the analysis of this mixture sample demon-

strated that summarizing gene expression into TF activities

can preserve cell type-specific information while drastically

reducing the number of features. Hence, TF activities could

be considered as an alternative to gene expression for clus-

tering analysis. Furthermore, they correlate, albeit weakly,

with gene/TF essentiality, suggesting the biological rele-

vance of the identified cell-type-specific TF activities.

We also showed that pathway activity matrices contain

cell-type-specific information, too, although we do not

recommend using them for clustering analysis as the

number of features is too low. In addition, we recovered

known pathway/TF cell-type associations showing the

importance of directionality and supporting the utility

and power of the functional analysis tools DoRothEA

and PROGENy.

Discussion
In this paper, we tested the robustness and applicability

of functional analysis tools on scRNA-seq data. We in-

cluded both bulk- and single-cell-based tools that esti-

mate either TF or pathway activities from gene
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expression data and for which well-defined benchmark

data exist. The bulk-based tools were DoRothEA, PRO-

GENy, and GO gene sets analyzed with GSEA (GO-

GSEA). The functional analysis tools specifically

designed for the application in single cells were SCENIC,

AUCell combined with DoRothEA (D-AUCell) and

PROGENy (P-AUCell) gene sets, and metaVIPER.

We first explored the effect of low gene coverage in

bulk data on the performance of the bulk-based tools

DoRothEA, PROGENy, and GO-GSEA. We found that

for all tools the performance dropped with decreasing

gene coverage but at a different rate. While PROGENy

was robust down to 500 covered genes, DoRothEA’s per-

formance dropped markedly at 2000 covered genes. In

addition, the results related to PROGENy suggested that

increasing the number of footprint genes per pathway

counteracted low gene coverage. GO-GSEA showed the

strongest drop and did not perform better than a ran-

dom guess below 2000 covered genes. Comparing the

global performance across all pathways of both pathway

analysis tools suggests that footprint-based gene sets are

superior over gene sets containing pathway members

(e.g., GO gene sets) in recovering perturbed pathways.

This observation is in agreement with previous studies

conducted by us and others [12, 32]. However, both

PROGENy and GO-GSEA performed poorly for some

pathways, e.g., WNT pathway. We reason that this

observation might be due to the quality of the corre-

sponding benchmark data [33]. Given this fact and that

GO-GSEA cannot handle low gene coverage (in our

hands), we concluded that this approach is not suitable

for scRNA-seq analysis. Hence, we decided to focus only

on PROGENy as bulk-based pathway analysis tool for

the following analyses.

Afterward, we benchmarked DoRothEA, PROGENy,

D-AUCell, P-AUCell, and metaVIPER on simulated

single cells that we sampled from bulk pathway/TF

perturbation samples. We showed that our simulated

single cells possess characteristics comparable to real

single-cell data, supporting the relevance of this strat-

egy. Different combinations of simulation parameters

can be related to different scRNA-seq technologies.

For each combination, we provide a recommendation

of how to use DoRothEA’s and PROGENy’s gene sets

(in terms of confidence level combination or number

of footprint genes per pathway) to yield the best per-

formance. It should be noted that our simulation ap-

proach, as it is now, allows only the simulation of a

homogenous cell population. This would correspond

to a single cell experiment where the transcriptome

of a cell line is profiled. In future work, this simula-

tion strategy could be adapted to account for a het-

erogeneous dataset that would resemble more realistic

single-cell datasets [34, 35].

In terms of TF activity inference, DoRothEA per-

formed best on the simulated single cells followed by

D-AUCell and then metaVIPER. Both DoRothEA and

D-AUCell shared DoRothEA’s gene set collection but

applied different statistics. Thus, we concluded that,

in our data, VIPER is more suitable to analyze

scRNA-seq data than AUCell. The tool metaVIPER

performed only slightly better than a random model,

and since it uses VIPER like DoRothEA, the weak

performance must be caused by the selection of the

gene set resource. DoRothEA’s gene sets/TF regulons

were constructed by integrating different types of evi-

dence spanning from literature curated to predicted

TF-target interactions. For metaVIPER, we used 27

tissue-specific GRNs constructed in a data-driven

manner with ARACNe [36] thus containing only pre-

dicted TF-target interactions. The finding that espe-

cially the high-confidence TF regulons from

DoRothEA outperform pure ARACNe regulons is in

agreement with previous observations [13, 37] and

emphasizes the importance of combining literature

curated resources with in silico predicted resources.

Moreover, we hypothesize based on the pairwise com-

parison that for functional analysis, the choice of gene

sets is of higher relevance than the choice of the

underlying statistical method.

As one could expect, the single-cell tools D-AUCell

metaVIPER performed better on single cells than on the

original bulk samples. This trend becomes more pro-

nounced with increasing library size and number of cells.

However, the bulk-based tools performed even better on

the simulated single cells than the scRNA specific tools.

Related to pathway analysis, both PROGENy and P-

AUCell performed well on the simulated single cells.

The original framework of PROGENy uses a linear

model that incorporates individual weights of the foot-

print genes, denoting the importance and also the sign

of the contribution (positive/negative) to the pathway ac-

tivity score. Those weights cannot be considered when

applying AUCell with PROGENy gene sets. The slightly

higher performance of PROGENy suggests that individ-

ual weights assigned to gene set members can improve

the activity estimation of biological processes.

Subsequently, we aimed to validate the functional

analysis tools on real single-cell data. While we could

not find suitable benchmark data of pathway pertur-

bations, we exploited two independent datasets of TF

perturbations to benchmark the TF analysis tools

which we extended with SCENIC. These datasets

combined CRISPR-mediated TF knock-out/knock-

down (Perturb-Seq and CRISPRi) with scRNA-seq. It

should be noted that pooled screenings of gene

knock-outs with Perturb-seq suffer from an often

faulty assignment of guide-RNA and single-cell [38].
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Those mislabeled data confound the benchmark as

the ground-truth is not reliable. In addition, our def-

inition of true-positives and true-negatives is com-

monly used for such analyses [4, 13, 37], but it might

be incorrect due to indirect and compensatory mech-

anisms [39]. These phenomena can confound the re-

sults of this type of benchmarks.

Nevertheless, we showed that DoRothEA’s gene sets

were globally effective in inferring TF activity from

single-cell data with varying performance dependent on

the used statistical method. As already shown in the in

silico benchmark, D-AUCell showed a weaker perform-

ance than DoRothEA, supporting that VIPER performs

better than AUCell. Interestingly, metaVIPER’s perform-

ance was no better than random across all datasets.

metaVIPER used the same statistical method as DoRo-

thEA but different gene set resources. This further sup-

ports our hypothesis that the selection of gene sets is

more important than the statistical method for func-

tional analysis. This trend is also apparent when com-

paring the performance of SCENIC and D-AUCell as

both rely on the statistical method AUCell but differ in

their gene set resource. SCENICs’ performance was con-

sistently weaker than D-AUCell. In addition, we found

that the gene regulatory networks inferred with the

SCENIC workflow covered only a limited number of TFs

in comparison to the relatively comprehensive regulons

from DoRothEA or GTEx.

Furthermore, the perturbation time had a profound ef-

fect on the performance of the tools: while DoRothEA

and D-AUCell worked well for a perturbation duration

of 6 (CRISPRi) and 7 days (Perturb-Seq (7d)), the per-

formance dropped markedly for 13 days. We reasoned

that, within 13 days of perturbation, compensation ef-

fects are taking place at the molecular level that con-

found the prediction of TF activities. In addition, it is

possible that cells without a gene edit outgrow cells with

a successful knock-out after 13 days as the knock-out

typically yield in a lower fitness and thus proliferation

rate.

In summary, DoRothEA subsetted to confidence levels

A and B performed the best on real scRNA-seq data but

at the cost of the TF coverage. The results of the in

silico and in vitro benchmark are in agreement. Accord-

ingly, we believe that it is reasonable to assume that also

PROGENy works on real data given the positive bench-

mark results on simulated data.

Finally, we applied our tools of interest to a mixture

sample of PBMCs and HEK cells profiled with 13 differ-

ent scRNA-seq protocols. We investigated to which ex-

tent pathway and TF matrices retain cell-type-specific

information, by evaluating how well cells belonging to

the same cell type or cell type family cluster together in

reduced dimensionality space. Given the lower numbers

of features available for dimensionality reduction using

TF and pathway activities, cell types could be recovered

equally well as when using the same number of the top

highly variable genes. In addition, we showed that cell

types could be recovered more precisely using TF activ-

ities than TF expression, which is in agreement with pre-

vious studies [19]. This suggests that summarizing gene

expression as TF and pathway activities can lead to noise

filtering, particularly relevant for scRNA-seq data,

though TF activities performed better than pathway ac-

tivities which is again attributed to the even lower num-

ber of pathways. Specifically, TF activities computed

with DoRothEA, D-AUCell, and SCENIC yielded a rea-

sonable cluster purity. It should be noted that, while

DoRothEA and D-AUCell rely on independent regulons,

the SCENIC networks are constructed from the same

dataset they are applied to. This poses the risk of overfit-

ting. Across technologies, the TF activities from SCENIC

correlated less well than those calculated with the other

tools, which is consistent with overfitting by SCENIC,

but further analysis is required.

Our analysis suggested at different points that the per-

formance of TF and pathway analysis tools is more sen-

sitive to the selection of gene sets than the statistical

methods. In particular, manually curated footprint gene

sets seem to perform generally better. This hypothesis

could be tested in the future by decoupling functional

analysis tools into gene sets and statistics. Benchmarking

all possible combinations of gene sets and statistics (i.e.,

DoRothEA gene sets with a linear model or PROGENy

gene sets with VIPER) would shed light on this question

which we believe is of high relevance for the community.

Conclusions
Our systematic and comprehensive benchmark study

suggests that functional analysis tools that rely on

manually curated footprint gene sets are effective in

inferring TF and pathway activity from scRNA-seq

data, partially outperforming tools specifically de-

signed for scRNA-seq analysis. In particular, the per-

formance of DoRothEA and PROGENy was

consistently better than all other tools. We showed

the limits of both tools with respect to low gene

coverage. We also provided recommendations on how

to use DoRothEA’s and PROGENy’s gene sets in the

best way dependent on the number of cells, reflecting

the amount of available information, and sequencing

depths. Furthermore, we showed that TF and pathway

activities are rich in cell-type-specific information

with a reduced amount of noise and provide an intui-

tive way of interpretation and hypothesis generation.

We provide our benchmark data and code to the

community for further assessment of methods for

functional analysis.
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Methods
Functional analysis tools, gene set resources, and

statistical methods

PROGENy

PROGENy is a tool that infers pathway activity for 14 sig-

naling pathways (Androgen, Estrogen, EGFR, Hypoxia,

JAK-STAT, MAPK, NFkB, PI3K, p53, TGFb, TNFa, Trail,

VEGF, and WNT) from gene expression data [12, 33]. By

default pathway activity inference is based on gene sets

comprising the top 100 most responsive genes upon cor-

responding pathway perturbation, which we refer to as

footprint genes of a pathway. Each footprint gene is

assigned a weight denoting the strength and direction of

regulation upon pathway perturbation. Pathway scores are

computed by a weighted sum of the product from expres-

sion and the weight of footprint genes.

DoRothEA

DoRothEA is a gene set resource containing signed tran-

scription factor (TF)-target interactions [13]. Those in-

teractions were curated and collected from different

types of evidence such as literature curated resources,

ChIP-seq peaks, TF binding site motifs, and interactions

inferred directly from gene expression. Based on the

number of supporting evidence, each interaction is ac-

companied by an interaction confidence level ranging

from A to E, with A being the most confidence interac-

tions and E the least. In addition, a summary TF confi-

dence level is assigned (also from A to E) which is

derived from the leading confidence level of its interac-

tions (e.g., a TF is assigned confidence level A if at least

ten targets have confidence level A as well). DoRothEA

contains in total 470,711 interactions covering 1396 TFs

targeting 20,238 unique genes. We use VIPER in com-

bination with DoRothEA to estimate TF activities from

gene expression data, as described in [13].

GO-GSEA

We define GO-GSEA as an analysis tool that couples

GO-terms from MsigDB with the GSEA framework [7].

VIPER

VIPER is a statistical framework that was developed to

estimate protein activity from gene expression data using

enriched regulon analysis performed by the algorithm

aREA [15]. It requires information about interactions (if

possible signed) between a protein and its transcriptional

targets and the likelihood of their interaction. If not fur-

ther specified, this likelihood is set to 1. In the original

workflow, this regulatory network was inferred from

gene expression by the algorithm ARACNe providing

mode of regulation and likelihood for each interaction

[36]. However, it can be replaced by any other data re-

source reporting protein target interactions.

metaVIPER

metaVIPER is an extension of VIPER that uses multiple

gene regulatory networks [19]. TF activities predicted

with each individual gene regulatory network are finally

integrated to a consensus TF activity score.

SCENIC

SCENIC is a computational workflow that predicts TF ac-

tivities from scRNA-seq data [18]. Instead of interrogating

predefined regulons, individual regulons are constructed

from the scRNA-seq data. First TF-gene co-expression

modules are defined in a data-driven manner with

GENIE3. Subsequently, those modules are refined via

RcisTarget by keeping only those genes than contain the

respective transcription factor binding motif. Once the

regulons are constructed, the method AUCell scores indi-

vidual cells by assessing for each TF separately whether

target genes are enriched in the top quantile of the cell

signature.

D-AUCell/P-AUCell

The statistical method AUCell is not limited to SCENIC

regulons. In principle, it can be combined with any gene

set resources. Thus, we coupled AUCell with gene sets

from DoRothEA (D-AUCell) and PROGENy (P-AUCell).

In comparison to other statistical methods, AUCell does

not include weights of the gene set members. Thus, the

mode of regulation or the likelihood of TF-target inter-

actions or weights of the PROGENy gene sets are not

considered for the computation of TF and pathway

activities.

Application of PROGENy on single samples/cells and

contrasts

We applied PROGENy on matrices of single samples

(genes in rows and either bulk samples or single cells in

columns) containing normalized gene expression scores

or on contrast matrices (genes in rows and summarized

perturbation experiments into contrasts in columns)

containing logFCs. In the case of single sample analysis,

the contrasts were built based on pathway activity matri-

ces yielding the change in pathway activity (perturbed

samples - control sample) summarized as logFC. Inde-

pendent of the input matrix, we scaled each pathway to

have a mean activity of 0 and a standard deviation of 1.

We build different PROGENy versions by varying the

number of footprint genes per pathway (100, 200, 300,

500, 1000 or all which corresponds to ~ 29,000 genes).

Application of DoRothEA on single samples/cells and

contrasts

We applied DoRothEA in combination with the statis-

tical method VIPER on matrices of single samples (genes

in rows and either bulk samples or single cells in
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columns) containing normalized gene expression scores

scaled gene-wise to a mean value of 0 and standard devi-

ation of 1 or on contrast matrices (genes in rows and

summarized perturbation experiments into contrasts in

columns) containing logFCs. In the case of single sample

analysis, the contrasts were built based on TF activity

matrices yielding the change in TF activity (perturbed

samples - control sample) summarized as logFC. TFs

with less than four targets listed in the corresponding

gene expression matrix were discarded from the analysis.

VIPER provides a normalized enrichment score (NES)

for each TF which we consider as a metric for the activ-

ity. We used the R package viper (version 1.17.0) [15] to

run VIPER in combination with DoRothEA.

Application of GO-GSEA sets on contrasts

We applied GSEA with GO gene sets on contrast matri-

ces (genes in rows and summarized perturbation experi-

ments into contrasts in columns) containing logFCs that

serve also as gene-level statistic. We selected only those

GO terms which map to PROGENy pathways in order

to guarantee a fair comparison between both tools. For

the enrichment analysis, we used the R package fgsea

(version 1.10.0) [40] with 1000 permutations per gene

signature.

Application of metaVIPER on single samples

We ran metaVIPER with 27 tissue-specific gene regula-

tory networks which we constructed before for one of

our previous studies [13]. Those tissue-specific gene

regulatory networks were derived using ARACNe [36]

taking the database GTEx [41] as tissue-specific gene ex-

pression sample resource. We applied metaVIPER on

matrices of single samples (genes in rows and single cells

in columns) containing normalized gene expression

scores scaled gene-wise to a mean value of 0 and a

standard deviation of 1. If required, contrasts were built

based on TF activity matrices yielding the change in TF

activity (perturbed samples - control sample) summa-

rized as logFC. TFs with less than four targets listed in

the corresponding input matrix were discarded from the

analysis. metaVIPER provides a NES integrated across

all regulatory networks for each TF which we consider

as a metric for the activity. We used the R package viper

(version 1.17.0) [15] to run metaVIPER.

Application of AUCell with either SCENIC, DoRothEA, or

PROGENy gene sets on single samples

AUCell is a statistical method to determine specifically for

single cells whether a given gene set is enriched at the top

quantile of a ranked gene signature. Therefore, AUCell de-

termines the area under the recovery curve to compute

the enrichment score. We defined the top quantile as the

top 5% of the ranked gene signature. We applied this

method coupled with SCENIC, PROGENy, and DoRo-

thEA gene sets. Before applying this method with PRO-

GENy gene sets, we subsetted the footprint gene sets to

contain only genes available in the provided gene signa-

ture. This guarantees a fair comparison as for the original

PROGENy framework with a linear model, the intersec-

tion of footprint (gene set) members and signature genes

are considered. We applied AUCell with SCENIC, PRO-

GENy, and DoRothEA gene sets on matrices of single

samples (genes in rows and single cells in columns) con-

taining raw gene counts. Contrasts were built based on re-

spective TF/pathway activity matrices yielding the change

in TF/pathway activity (perturbed samples - control sam-

ple) summarized as logFC. For the AUCell analysis, we

used the R package AUCell (version 1.5.5) [18].

Induction of artificial low gene coverage in bulk

microarray data

We induce the reduction of gene coverage by inserting

zeros on the contrast level. In detail, we insert for each

contrast separately randomly zeros until we obtained a

predefined number of genes with a logFC unequal zero

which we consider as “covered”/“measured” genes. We

perform this analysis for a gene coverage of 500, 1000,

2000, 3000, 5000, 7000, 8000 and as reference all avail-

able genes. To account for stochasticity effects during

inserting randomly zero, we repeat this analysis 25 times

for each gene coverage value.

Simulation of single cells

Let C be a vector representing counts per gene for a single

bulk sample. C is normalized for gene length and library

size resulting in vector B containing TPM values per gene.

We assume that samples are obtained from homogenous

cell populations and that the probability of a dropout

event is inversely proportional to the relative TPM of each

measured gene in the bulk sample. Therefore, we define a

discrete cumulative distribution function from the vector

of gene frequencies P ¼ B
jBj. To simulate a single cell from

this distribution, we draw and aggregate L samples by in-

verse transform sampling. L corresponds to the library size

for the count vector of the simulated single cell. We draw

L from a normal distribution Nðμ;

μ

2Þ.

To benchmark the robustness of the methods, we vary

the number of cells sampled from a single bulk sample

(1, 10, 20, 30, 50, 100) and the value of μ (1000, 2000,

5000, 10.000, 20.000). To account for stochasticity ef-

fects during sampling, we repeat this analysis 25 times

for each parameter combination.

Prior to normalization, we discarded cells with a li-

brary size lower than 100. We normalized the count

matrices of the simulated cells by using the R package

scran (version 1.11.27) [42]. Contrast matrices were
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constructed by comparing cells originating from one of

the perturbation bulk samples vs cells originating from

one of the control bulk samples.

Gene regulatory network (GRN) reconstruction using

SCENIC

We infer GRNs on individual sub-datasets using the

SCENIC (v. 1.1.2-2) workflow [18]. In brief, gene

expression was filtered using default parameters and

log2-transformed for co-expression analysis following

the recommendations by the authors. We identified po-

tential targets of transcription factors (TFs) based on

their co-expression to TFs using GENIE3 (v. 1.6.0, Ran-

dom Forest with 1000 trees). We pruned co-expression

modules to retrieve only putative direct-binding interac-

tions using RcisTarget (v. 1.4.0) and the cis-regulatory

DNA-motif databases for hg38 human genome assembly

(Version 9 - mc9nr, with distances TSS+/− 10kbp and

500bpUp100Dw, from https://resources.aertslab.org/cis-

target/) with default parameters. Only modules with a

significant motif enrichment of the TF upstream were

kept for the final GRN. While we were running the

workflow, 75 genes out of 27,091 from the first DNA-

motif database (TSS+/− 10kbp) were inconsistent, i.e.,

were not described in the second one (500bpUp100Dw),

leading to an error of the workflow execution. Thus,

these 75 genes were discarded from the database to

complete the workflow.

Benchmarking process with ROC and PR metrics

To transform the benchmark into a binary setup, all ac-

tivity scores of experiments with negative perturbation

effect (inhibition/knockdown) are multiplied by −1. This

guarantees that TFs/pathways belong to a binary class

either deregulated or not regulated and that the per-

turbed pathway/TF has in the ideal case the highest

activity.

We performed the ROC and PR analysis with the R

package yardstick (version 0.0.3; https://github.com/

tidymodels/yardstick). For the construction of ROC

and PR curves, we calculated for each perturbation

experiment pathway (or TF) activities. As each per-

turbation experiment targets either a single pathway

(or TF), only the activity score of the perturbed path-

way (or TF) is associated with the positive class (e.g.,

EGFR pathway activity score in an experiment where

EGFR was perturbed). Accordingly, the activity scores

of all non-perturbed pathways (or TFs) belong to the

negative class (e.g., EGFR pathway activity score in an

experiment where the JAK-STAT pathway was per-

turbed). Using these positive and negative classes,

Sensitivity/(1-Specificity) or Precision/Recall values

were calculated at different thresholds of activity, pro-

ducing the ROC/PR curves.

Collecting, curating, and processing of transcriptomic

data

General robustness study

We extracted single-pathway and single-TF perturbation

data profiled with microarrays from a previous study

conducted by us [33]. We followed the same procedure

of collection, curating, and processing the data as de-

scribed in the previous study.

In silico benchmark

For the simulation of single cells, we collected, curated,

and processed single TF and single pathway perturbation

data profiled with bulk RNA-seq. We downloaded basic

metadata of single TF perturbation experiments from

the ChEA3 web-server (https://amp.pharm.mssm.edu/

chea3/) [37] and refined the experiment and sample an-

notation (Additional file 2). Metadata of single pathway

perturbation experiments were manually extracted by us

from Gene Expression Omnibus (GEO) [43] (Add-

itional file 3). Count matrices for all those experiments

were downloaded from ARCHS4 (https://amp.pharm.

mssm.edu/archs4/) [44].

We normalized count matrices by first calculating

normalization factors and second transforming count

data to log2 counts per million (CPM) using the R pack-

ages edgeR (version 3.25.8) [45] and limma (version

3.39.18) [46], respectively.

In vitro benchmark

To benchmark VIPER on real single-cell data, we

inspected related literature and identified two publica-

tions which systematically measure the effects of tran-

scription factors on gene expression in single cells:

Dixit et al. introduced Perturb-seq and measured the

knockout-effects of ten transcription factors on K562

cells 7 and 13 days after transduction [20]. We down-

loaded the expression data from GEO (GSM2396858

and GSM2396859) and sgRNA-cell mappings made

available by the author upon request in the files pro-

moters_concat_all.csv (for GSM2396858) and pt2_con-

cat_all.csv (for GSM2396859) on github.com/asncd/

MIMOSCA. We did not consider the High MOI dataset

due to the expected high number of duplicate sgRNA as-

signments. Cells were quality filtered based on expres-

sion, keeping the upper half of cells for each dataset.

Only sgRNAs detected in at least 30 cells were used. For

the day 7 dataset, 16,507, and for day 13 dataset, 9634

cells remained for benchmarking.

Ryan et al. measured knockdown effects of 50 tran-

scription factors implicated in human definitive endo-

derm differentiation using a CRISPRi variant of

CROPseq in human embryonic stem cells 6 days after

transduction [21]. We obtained data of both replicates

from GEO (GSM3630200, GSM3630201), which include
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sgRNA counts next to the rest of the transcription. We

refrained from using the targeted sequencing of the

sgRNA in GSM3630202, GSM3630203 as it contained

less clear mappings due to amplification noise. Expres-

sion data lacked information on mitochondrial genes,

and therefore, no further quality filtering of cells was

performed. From this dataset, only sgRNAs detected in

at least 100 cells were used. A combined 5282 cells

remained for benchmarking.

Analysis was limited to the 10,000 most expressed

genes for all three datasets.

We normalized the count matrices for each individual

dataset (Perturb-Seq (7d), Perturb-Seq (13d), and CRIS-

PRi) separately by using the R package scran (version

1.11.27) [42].

Human Cell Atlas study

This scRNA-seq dataset originates from a benchmark

study of the Human Cell Atlas project and is available

on GEO (GSE133549) [22]. The dataset consists of

PBMCs and a HEK293T sample which was analyzed

with 13 different scRNA-seq technologies (CEL-Seq2,

MARS-Seq, Quartz-Seq2, gmcSCRB-Seq, ddSEQ,

ICELL8, C1HT-Small, C1HT-Medium, Chromium,

Chromium(sn), Drop-seq, inDrop). Most cells are an-

notated with a specific cell type/cell line (CD4 T cells,

CD8 T cells, NK cells, B cells, CD14+ monocytes,

FCGR3A+ monocytes, dendritic cells, megakaryocytes,

HEK cells). Megakaryocytes (due to their low abun-

dance) and cells without annotation were discarded

from this analysis.

We normalized the count matrices for each tech-

nology separately by using the R package scran (ver-

sion 1.11.27) [42].

Dimensionality reduction with UMAP and assessment of

cluster purity

We used the R package umap (version 0.2.0.0) calling

the Python implementation of Uniform Manifold

Approximation and Projection (UMAP) with the ar-

gument “method = ‘umap-learn’” to perform dimen-

sionality reduction on various input matrices (gene

expression matrix, pathway/TF activity matrix, etc.).

We assume that the dimensionality reduction will re-

sult in clustering of cells that corresponds well to

the cell type/cell type family. To assess the validity of

this assumption, we assigned a cell-type/cell family-

specific cluster-id to each point in the low-

dimensional space. We then defined a global cluster

purity measure based on silhouette widths [47],

which is a well-known clustering quality measure.

Given the cluster assignments, in the low-

dimensional space, for each cell, the average distance

(a) to the cells that belong to the same cluster is

calculated. Then, the smallest average distance (b) to

all cells belonging to the newest foreign cluster is

calculated. The difference, between the latter and the

former, indicates the width of the silhouette for that

cell, i.e., how well the cell is embedded in the

assigned cluster. To make the silhouette widths com-

parable, they are normalized by dividing the differ-

ence with the larger of the two average distances

s ¼ b−a
maxða;bÞ. Therefore, the possible values for the sil-

houette widths lie in the range − 1 to 1, where

higher values indicate good cluster assignment, while

lower values close to 0 indicate poor cluster assign-

ment. Finally, the average silhouette width for every

cluster is calculated, and averages are aggregated to

obtain a measure of the global purity of clusters. For

the silhouette analysis, we used the R package cluster

(version 2.0.8).

For statistical analysis of cluster quality, we fitted a

linear model score = f(scRNA-seq protocol + input

matrix), where score corresponds to average silhouette

width for a given scRNA-seq protocol - input matrix

pair. Protocol and input matrix are factors, with refer-

ence level Quartz-Seq2 and positive control, respect-

ively. We fitted two separate linear models for

transcription factor and pathway activity inference

methods. We report the estimates and p values for

the different coefficients of these linear models. Based

on these linear models, we performed a two-way

ANOVA and pairwise comparisons using TukeyHSD

post hoc test.

Comparison of PBMCs TF activity with gene essentiality

For each scRNA-seq technology and used TF analysis

tool, we calculated mean TF expression for each PBMC

type. To focus solely on PBMCs, cells classified as HEK

cells or unknown were discarded from this analysis. In

addition, we removed megakaryocytes because their

abundance was in general too low across all technolo-

gies. We used the DepMap shRNA screen [31] as gene

essentiality data. As a given TF can either increase pro-

liferation (oncogene) or decrease it (tumor suppressor),

we can expect either negative or positive correlation (re-

spectively) between gene essentiality and TF activity. To

correct for this effect, we calculated Pearson correlations

between TF expression (from CCLE data [48]) and TF

essentiality for each TF and multiplied TF essentiality

values by the sign of this correlation coefficients. For

categorizing hematologic cancers into myeloid and

lymphoid groups, we used CCLE metadata (Add-

itional file 4). Basically, we classified myeloid leukemias

as myeloid and lymphoid leukemias and lymphomas as

lymphoid cancers. Ambiguous cancer types were re-

moved from our analysis.
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