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Robustness and lethality in multilayer biological
molecular networks
Xueming Liu 1,5✉, Enrico Maiorino2,5, Arda Halu2,5, Kimberly Glass2, Rashmi B. Prasad 3,

Joseph Loscalzo 2, Jianxi Gao 4✉ & Amitabh Sharma2✉

Robustness is a prominent feature of most biological systems. Most previous related studies

have been focused on homogeneous molecular networks. Here we propose a comprehensive

framework for understanding how the interactions between genes, proteins and metabolites

contribute to the determinants of robustness in a heterogeneous biological network. We

integrate heterogeneous sources of data to construct a multilayer interaction network

composed of a gene regulatory layer, a protein–protein interaction layer, and a metabolic

layer. We design a simulated perturbation process to characterize the contribution of each

gene to the overall system’s robustness, and find that influential genes are enriched in

essential and cancer genes. We show that the proposed mechanism predicts a higher vul-

nerability of the metabolic layer to perturbations applied to genes associated with metabolic

diseases. Furthermore, we find that the real network is comparably or more robust than

expected in multiple random realizations. Finally, we analytically derive the expected

robustness of multilayer biological networks starting from the degree distributions within and

between layers. These results provide insights into the non-trivial dynamics occurring in the

cell after a genetic perturbation is applied, confirming the importance of including the cou-

pling between different layers of interaction in models of complex biological systems.
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T
he recent development of high-throughput omics tech-
nologies has facilitated the extensive profiling of the dif-
ferent molecular strata comprising living organisms, such

as the transcriptome, epigenome, and proteome, providing a
more comprehensive picture of the detailed molecular composi-
tion of cellular systems. Cellular processes are not only driven by
individual molecules, however, but also by the interplay between
them. These interactions are conventionally modeled as context-
specific molecular interaction networks1, such as gene regulatory
networks2,3, protein–protein interaction (PPI) networks4, and
metabolic networks5,6. Network modeling7 has become an
effective and widely used approach in the analysis of cellular
systems. While the study of the static topology of these networks
has been successful in various applications, such as disease gene
prioritization8, disease biomarker discovery9, and disease diag-
nosis and subtyping10, substantial insights can be gained by
analyzing the properties of dynamical processes evolving over the
nodes and edges of the network. These processes are usually
defined to simulate the effects of environmental changes, internal
perturbations, the onset of diseases, or random failures occurring
in the network11.

An established approach to quantifying the effect of pertur-
bations in a biological system is the analysis of the system’s
robustness, defined as its ability to maintain stable functioning
despite various perturbations12,13. In biological systems across all
scales, from cells to organisms, robustness is attained by a com-
bination of five mechanisms: feedback control, structural stability,
redundancy, modularity, and adaptation14. For example, by
applying percolation theory to the analysis of the robustness of
biological networks15, Jeong et al.16 found strong connections
between the centrality of a protein and its lethality. In other work,
metabolic networks have been shown to be exceptionally
robust17, hinting as to why organisms can survive in a wide range
of environmental conditions. The analysis of the robustness of
molecular networks under perturbations has become an efficient
tool for uncovering disease mechanisms at the molecular level18.
Most of these studies focus on the investigation of single mole-
cular networks. Molecular networks are not independent, how-
ever, and processes can span multiple molecular layers
simultaneously, generating intricate patterns that are difficult to
uncover when networks are analyzed separately11. For example,
in a cell, genes can activate or inhibit other genes, and this reg-
ulation is operationalized through physical protein–protein and
protein–DNA binding. Proteins can, in turn, affect metabolic
reactions through enzyme catalysis. In these cases, exploring
networks of molecules of the same kind in isolation can ulti-
mately lead to an incomplete or even incorrect picture of the
problem. Thus, accounting for the interactions between different
molecular networks is critical for understanding cell dynamics
and functionality.

In network science, systems composed of multiple interacting
networks19–22 have attracted considerable attention owing to the
discovery of novel structural and dynamical features in coupled
cases that differ from those observed in uncoupled cases. In the
past decade, the mathematical frameworks for characterizing the
robustness of a network of networks20 or multilayer networks22

have been studied in various settings, such as full inter-
dependency19, partial interdependency23, interconnections24,
spatially embedded networks25, multiple supports26, directed
networks21, multiple networks27, and many more28–30. The
robustness of multilayer networks has a broad impact on infra-
structure networks31, ecological systems32, social networks33, and
financial networks34. Recently, the growing availability of massive
genomic, proteomic, and metabolomics data has stimulated the
construction of multilayer biological molecular networks35–37.
For example, Shinde et al.38 proposed a multiplex network

composed of six different PPI layers representing different life
stages of Caenorhabditis elegans, showing varying degree–degree
correlation and spectral properties across the nematode’s life
cycle. Bennett et al.39 found functional communities across layers
in a two-layer PPI network of yeast, where one layer is connected
by physical interactions and the other by genetic interactions. In
this context, different layers model different kinds of interactions.
Klosik et al.40 designed a vast, directed, biological molecular
network, called the interdependent network of gene regulation
and metabolism, which is composed of three types of biological
molecules: genes, proteins, and metabolites. For multicellular
organisms such as humans, Didier et al.41 and Valdeolivas et al.42

investigated the community structure in multiplex biological
molecular networks, which is composed of three or four biolo-
gical networks sharing the same set of genes/proteins, with the
nodes in each layer connected by different types of interactions,
such as co-expression or physical interactions.

Despite these advances, our understanding of determinants of
the robustness and lethality of biological systems is limited43,44.
The difficulty is rooted in three independent factors, each with its
own complexity: (1) A comprehensive framework integrating
heterogeneous sources of data of human molecular networks is
still lacking. The integration of various molecular data, such as
gene regulatory, PPI, and metabolic networks, is a challenging
problem because these components have completely different
features and modes of interaction within an organism, which are
measured in fundamentally different ways. (2) We lack general
models as to how gene perturbations propagate and affect the
downstream functions of the cell and its components. It is diffi-
cult to capture a holistic picture of the process by which a specific
genetic perturbation propagates across a biological network.
However, modeling the effect of gene perturbations with rea-
sonable mechanisms could give us a better understanding of the
complex dynamics of the cell’s molecular machinery. (3) Most
previous theoretical frameworks are agnostic to their applied
setting and deal with networks of the same type, which are either
all undirected20 or all directed21,45, and in which the inter-
dependence relations are random. By contrast, biological net-
works include interactions that can be both directed and
undirected and of different types, and the topological structure of
the interlayer links follows specific wiring patterns that are far
from random. In addition, different interaction networks can vary
considerably in size and connectivity. Thus, developing a general
framework by which to analyze the robustness of multilayer
biological networks remains an unsolved problem in inter-
dependent networks46.

Results
Construction of the multilayer biological network. According
to the central dogma of molecular biology, DNA is transcribed
into RNA which is then translated into protein products. More-
over, many proteins can regulate metabolic reactions through
enzyme catalysis. Based on these well-known relationships, we
constructed a multilayer network by aggregating three major
biochemical networks that govern cell function: a gene regulatory,
a PPI, and a metabolic layer, as shown in Fig. 1.

We first construct three layers of biological molecular networks
(see Methods section for details):

(1) Gene regulatory network. We use two types of gene
regulatory networks in our work: a general gene regulatory
network and three tissue-specific gene regulatory net-
works18. The general gene regulatory network is generated
by curating the binding motifs of a subset of 695 unique
human transcription factors, and the tissue-specific gene
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regulatory networks are curated from the FANTOM5
database47.

(2) PPI network. We use the comprehensive human inter-
actome built by Cheng et al.48, which integrated multiple
databases with experimental evidence. After removing the
self-loops, we obtain a PPI network whose largest
connected component consists of 15,906 proteins con-
nected by 213,874 links.

(3) Metabolic network. The metabolic network is constructed
by curating the biochemical–biochemical (metabolite–
metabolite) interactions from the STITCH database49 and
then mapping to metabolites in the Human Metabolome
Database (HMDB)50. This metabolic network had statisti-
cally significant enrichment of overlapping edges with
analogous metabolic networks constructed using genome-
scale metabolic models such as Recon51 (Table S2). For a
detailed comparison between STITCH- and Recon-based
metabolic layers, see Supplementary Note 5.

(4) Connections between Gene regulatory and PPI networks.
We connect the protein-coding genes in the gene regulatory
network directly to their protein products in the PPI
network. These connections result in 10,255 bidirectional
interlayer links between the general gene regulatory
network and the PPI network.

(5) Links from PPI to metabolites. Protein–biochemical links
are compiled from the STITCH database52 and are directed
from the protein to the metabolic layer, as we make the
simplifying assumption that the perturbation of an enzyme
affects the metabolic reactions it regulates, and the cases

where enzyme levels may, in turn, be affected due to
feedback loops are neglected. Note that proteins and
metabolites are connected in a many-to-many relation,
since multiple enzymes and chemicals can participate in the
same reaction, and multiple proteins can be associated with
multiple metabolites. The interconnections between the PPI
network and the metabolite network are obtained through
the biochemical-protein links in the STITCH database. For
the 15,906 proteins and the 1269 metabolites in the
multilayer network, we have 141,283 directed interlayer
links connecting 12,039 proteins to 1211 metabolites.

To model the functionality and robustness of multilayer
biological networks, we define a cascading failure mechanism
simulating the effect of a perturbation in the network. From the
molecular viewpoint, the cascade corresponds to a process
whereby a number of perturbed transcription factors lose their
ability to regulate their targets, resulting in some genes being left
unregulated in the regulatory network, ultimately affecting the
expression of the proteins for which they code in the PPI
network. The altered expression of these proteins, in turn,
disrupts the metabolic reactions they regulate.

The process is summarized below and shown in Fig. 1. Each
node of these networks is assigned a two-state variable, either
functional or dysfunctional, and all the nodes are initially set as
functional nodes. When a node becomes dysfunctional, it is
removed from the network. The perturbation originates from a
set of predefined target genes (TGs) in the gene regulatory
network, simulating a loss of functionality due to, for example,
mutations or gene knockouts. Since the TGs lose their ability to

Initial perturbation

cba

Gene regulatory

PPI

Gene regulatory

Gene regulatory

PPI
PPI

M
etabolic

M
etabolic

M
etabolic

Fig. 1 Schematic demonstration of the cascading failure process in multilayer biological molecular networks. The multilayer model includes a gene

regulatory network in which the genes (ellipses) are linked by regulatory relations (red directed links), a PPI network in which proteins (bone shapes) are

linked by physical interactions (black undirected links), and a metabolic network in which metabolites (molecule shapes) are connected by

chemical–chemical interactions (purple undirected links). The gene regulatory and PPI networks are connected by bidirectional interdependency links

(yellow dashed lines). From the PPI to metabolic networks, there are multiple supporting links (green dashed lines). a Initially perturb a gene in the gene

regulatory network causing such gene to stop functioning (represented by a black ellipse). b The target genes of the perturbed genes fail (black ellipses),

and their corresponding proteins stop functioning, represented by black bone shapes. c The proteins that disconnected from the largest connected

component fail (black bone shapes), and the metabolites losing all supports from the PPI network stop functioning (black molecule shapes).
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regulate other genes, both the TGs and the genes they regulate in
the gene regulatory network become dysfunctional. As a
consequence, the corresponding protein products of all of the
involved genes become dysfunctional. After the removal of these
proteins, the functional proteins that are left disconnected from
the largest connected component of the PPI network become
dysfunctional, following the assumption that any protein must be
connected to the larger network of interacting proteins for it to be
a part of the functioning cellular machinery53–55, along with their
corresponding protein-coding genes. The regulated genes of the
newly dysfunctional genes are then removed and the process
continues in a cascading fashion until a stable state is reached.

In a metabolic network, each metabolite has multiple support
links from the protein–protein interaction network. A metabolite
stops functioning if a fraction fP2M of its supporting proteins
becomes dysfunctional, where fP2M is a constant between 0 and 1.
As an additional modeling choice, a metabolite is functional at
any given time only if it belongs to the largest connected
component. As shown in Fig. 1 and Supplementary Note 1, the
perturbation in the gene regulatory network can cause cascading
failures to propagate across the gene regulatory and PPI networks.
When the process comes to a halt, the remaining nodes are
identified as the final functional component.

Influential genes are enriched in essential and cancer genes. To
investigate how the couplings between the gene regulatory and
PPI networks contribute to defining the system structure and
function, we compared the effects of the above-mentioned per-
turbation process, hereby referred to as a coupled process, to the
outcomes of a perturbation only affecting the PPI network alone,
or an uncoupled process, which removes the perturbed protein
from the isolated PPI network directly. In order to provide a fair
comparison between the two processes, we only consider per-
turbations of genes that are associated with their corresponding
protein products, while genes that have no connections to the PPI
layer are excluded from the analysis. In the PPI network of both
uncoupled and coupled cases, we characterize the contribution of
each node to the system’s integrity by measuring the final func-

tional network size, f PS , when that node is removed. A smaller
final fraction of functional nodes indicates a larger contribution
of the target node to system integrity. Thus, we assign an influ-

ence score (1� f PS ) to each node to evaluate its influence on the

system’s robustness, where f PS is the final functional size of the
PPI network.

To select a ground truth, we compiled two sets of genes that are
recognized to have important biological roles. The first set
consists of the biologically essential genes, i.e., genes that are
indispensable for supporting cellular viability, collected from the
database of essential genes56. The second set is composed of the
genes that have been causally implicated in cancer development,
integrated from the Cancer Gene Census57. We note that, while a
number of network-based approaches have been developed for
the in silico prediction of essential genes58, including those that
rely on genome-scale metabolic models59, here we employed
essential gene information from the literature as a general
criterion to assess the biological importance of the prioritized
genes. We calculated the precision–recall curves of coupled and
uncoupled influence scores in recovering the sets of essential and
cancer genes (see Supplementary Note 4). As shown in Fig. 2a, b,
the coupled influence scores yield higher precision–recall scores
compared to the uncoupled and random scores, denoting the
higher descriptive power provided by the layer couplings. In the
coupled case, the removal of a single-gene does not only cause
one-time failures like those in the uncoupled cases, but also
causes the second or even third round of cascading failures. We

find that the average number of genes/proteins that became
dysfunctional in the second round as a consequence of the
removal of an essential or cancer gene is higher than that of
removing a nonessential or non-cancer gene, as shown in Fig. 2c,
d, explaining why the coupled case performs better in prioritizing
essential and cancer genes than the uncoupled case. To test the
generalizability of this result, we sequentially replaced the gene
regulatory layer with three tissue-specific gene regulatory net-
works, namely, forebrain, lymphocytes, and lung (see “Methods”
section). In all three cases (see Fig. S6), the coupled influence
scores are more informative than the uncoupled scores in
detecting essential and cancer genes.

The same result holds when using different criteria for selecting
essential genes: (1) probability of haploinsufficiency (Phi), (2)
probability of loss-of-function intolerance (pLI), and (3) essential
genes found by Dickinson et al.60. Genes with high scores of
essentiality, as measured by these metrics, are associated with
higher influence scores, and they are more prevalent among the
genes with high influence scores in the coupled model compared
with those of the uncoupled model (Fig. S7). Note that the
influence score in the coupled case incorporates the contribution
of a gene to the integrity of the PPI network. We further test the
performance of coupled influence scores in prioritizing disease
genes categorized by their association with Mendelian or complex
diseases. We divide the disease genes into MC (both Mendelian
and Complex), MNC (Mendelian but Not Complex), and CNM
(Complex but Not Mendelian) disease genes, as defined in ref. 61.
The influence scores of genes show higher performance in
prioritizing CNM disease genes (Fig. S8), suggesting that
complex-disease genes have more cohesive connections to their
surroundings than Mendelian disease genes. As an additional
confirmation of this result, we assessed the significance of the
overlap between the top influential genes and the disease-related
gene sets (MC, MNC, and CNM) in two different ways. First, by
computing the p-value of a hypergeometric test of overlap
between the two sets, and second, by comparing it to a null
distribution of overlaps with random gene sets of the same size
and degree distribution (see “Methods” section). We observe in
both cases (see Figs. S9 and S10) that influential genes are
enriched in complex-disease-related genes, while this enrichment
is nonsignificant or marginally significant in the case of
Mendelian disease genes. This observation aligns with the current
understanding of complex diseases, which are hypothesized to
stem from the interactions among a multitude of genes, requiring
a higher degree of influence on their surroundings. By contrast,
since Mendelian genes are, by definition, the primary cause of the
disease phenotype they induce, their influence scores are
indistinguishable from random chance.

Since the proposed failure mechanism depends on the out-
degrees of the perturbed genes, we investigated to what extent the
information provided by the influence score is different from the
simple out-degree measure. We compute the fraction of essential,
disease, and cancer genes among the sets of top n genes ranked by
the influence scores and out-degrees, repeating the operation for
each n. To account for the ambiguity in ranking caused by genes
with the same out-degree or influence score, we randomly
shuffled the ranks of the groups of genes corresponding to the
same values 100 times and computed the average ratios. As
shown in Fig. 2e, f, genes ranked by the influence score are
enriched in larger fractions of essential and cancer genes
compared to genes ranked by their out-degree, indicating that
influence scores have a higher sensitivity in discerning the genes
involved in critical cellular processes.

Finally, to demonstrate the added benefit of considering a
multilayer structure and to compare our approach with valid
alternative methods that identify biomolecular entities with

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19841-3

4 NATURE COMMUNICATIONS |         (2020) 11:6043 | https://doi.org/10.1038/s41467-020-19841-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


impact on the robustness of biological systems, we used an
established in silico single-gene deletion approach based on flux
balance analysis (FBA)51 on the metabolic layer only (see
Supplementary Note 5). The essential genes and reactions found
using this approach were limited in number (Figs. S21 and S22),
supporting the notion that the influence score provides a
complementary and extended view to essentiality that is more
focused on robustness, identifying many additional genes that are
potentially crucial to the functioning of the system as a whole.

Perturbation of metabolic disease genes and metabolic network
dysfunction. Gene perturbations can propagate to the metabolic

network through the failure of enzymes. For example, consider
the gene TCF7L2, one of the most replicated type 2 diabetes
mellitus (T2D) susceptibility genes62. Its perturbation generates a
cascade of failures that leads to the removal of o-
hydroxyphenylacetic acid and lipid peroxidation in the meta-
bolic layer. Lipid peroxidation has been observed to be directly
associated with T2D63, while o-hydroxyphenylacetic acid is
formed from phenylalanine, an amino acid that is consistently
associated with T2D risk64. As a more extensive experiment, we
assessed the consequences of perturbing a group of metabolic
disease genes in the gene regulatory network on the integrity of
the coupled metabolic network. We integrated multiple sources
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Fig. 2 Comparison between the coupled and uncoupled cases. Average precision–recall (PR) curves of the coupled (red) and uncoupled (blue) influence

scores in the prioritization of essential (a) and cancer (b) genes. The gray PR curves represent 100 random node rankings. On the right of each plot are

listed the average precision scores (APS) of the three ranking strategies evaluated from the corresponding PR curves. The performance of coupled

influence scores in prioritizing essential and cancer genes are, respectively, 5.05% and 48.94% higher than that of uncoupled influence scores. In the

coupled case, the removal of a single-gene not only causes one-time failures as those in the uncoupled cases but also causes a second or third round of

cascading failures. The average numbers of nodes failing in the second round caused by the removal of essential (c) and cancer genes (d) are, respectively,

higher than that of removing the nonessential and non-cancer genes, explaining why the coupled case performs better in prioritizing essential and cancer

genes. In addition, the densities of e essential and f cancer genes among the top n genes ranked by influence scores (red diamonds) are higher than that

ranked by out-degrees (black circles). For the genes of the same influence scores or of the same out-degrees, we randomly put their orders 100 times and

compute the average densities. It indicates that the influence scores perform better than out-degrees in uncovering the connections between network

topology and biological mechanisms.
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from large-scale genome-wide association studies (GWAS) pub-
lished in the literature and data from the GWAS Catalog65 to
compile three sets of genes that are associated with dyslipidemia,
hypertension, and type 2 diabetes (see “Methods” section). From
each set of metabolic disease genes, we randomly perturb a
fraction p of genes and calculate the final functional metabolic
network size, for p ∈ {0.1, 0.2, . . . , 1}. In order to control for node
degree, for each metabolic disease gene set we generate a popu-
lation of random gene sets of the same size and similar degree
distribution as the original set and repeat the perturbation process
described above.

As shown in Fig. 3 and Figs. S11–S16, perturbations targeting
these gene sets cause more damage to the metabolic network than
random perturbations. For example, Fig. 3 shows the comparison
between targeted perturbations (red boxes) of the dyslipidemia-
related genes and random perturbations (blue boxes). In addition,
we find that this result holds regardless of the value of the
threshold fP2M in the failure mechanism of the metabolic network
(if more than a fraction fP2M of supporting proteins fail, then the
metabolite fails).

Robustness of the multilayer biological network. To define a
baseline for the robustness of the real biological molecular net-
works, we considered multiple versions of randomized models:
(1) intra-layer randomized versions, where the randomization
occurs within the gene regulatory, PPI, or metabolic layers; and
(2) interlayer randomized versions, where the gene–protein or the
protein–metabolite connections are randomly rewired. For each
randomization scheme, we defined three modes of rewiring:
neutral, assortative, and disassortative rewiring. The randomized
versions of the PPI and metabolic networks are generated by
multiple rewiring of pairs of edges. At each step, we randomly
select two pairs of connected nodes, such as (A, B) and (C, D),
then (1) for neutral randomizations, connect node A with node C
or D, then connect the remaining two nodes; (2) for assortative
randomizations, connect the node with the highest degree among
these four nodes to the node of the next highest degree in this
subset and connect the remaining two nodes; (3) for dis-
assortative randomizations, connect the node with the highest
degree among these four nodes to the node of the lowest degree in

this subset and then connect the remaining two. During these
processes, multiple links and self-loops are forbidden.

In addition, for the directed gene regulatory network, we
assessed how the in-degree and out-degree correlation of the
same node affects the robustness of the model. We randomize by
keeping both the in-degree and out-degree distributions
unchanged, and rewire the network so that nodes with higher
out-degrees tend to have higher in-degrees in the assortative
versions. Assortative randomization in the directed gene
regulatory network is realized by maintaining the in-degree and
out-degree distributions but increasing the correlations between
the in-degree and out-degree of each node66 (see Fig. S5).
Assortative randomization in couplings involves connecting the
high-degree nodes in one layer to the high-degree nodes in the
other layer. Similarly, disassortative randomization is realized by
decreasing the in-degree and out-degree correlations or connect-
ing the high-degree nodes to the low-degree nodes.

The robustness of the multilayer biological network can be

evaluated by the final functional sizes in the three layers: f GS , f
P
S ,

and fMS , where fS is a general metric representing any layer after
randomly removing 1− p fraction of genes. The higher value of
the final functional size indicates higher robustness. Alternatively,
robustness can be evaluated by the integral size of the functional

network size (R ¼
R 1

0
f S dp), with p varying from 0 to 1. We find

that the robustness of the multilayer molecular network is
comparable to or higher than the robustness of the randomized
models. For the disassortatively and neutrally randomized
models, their robustness is comparable to the real models, as
shown in Fig. 4a and Figs. S13–S16. We find that the real model
is more robust than the following two randomized models:
(1) randomization in the gene regulatory network maintaining
the in-degree and out-degree distributions and increasing the in-
degree and out-degree correlations (Fig. 4b, c); (2) randomization
of the couplings between the gene regulatory and PPI networks
maintaining the degree distributions in gene regulatory and PPI
networks but increasing the degree correlations between the
connected gene–protein pairs (Fig. 4d).

Comparison of numerical and analytical solutions. In a typical
scenario, to quantify the multilayer network’s robustness, one
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Fig. 3 Targeting dyslipidemia-related genes (red boxes) causes more damage to the metabolic network than degree-preserving random attacks (blue

boxes). (Top) The fraction of functional nodes after perturbations for several values of the remaining fraction ps of metabolic disease genes and threshold

proportion fP2M (a metabolite fails if more than fP2M fraction of supporting proteins fail); (bottom) p values of the one-sided Mann–Whitney test between

the distributions of the functional node-set sizes in the targeted and random case. Lower values indicate a higher degree of damage to the network. The

result of each bar is calculated based on 1000 random realizations. For each distribution, boxes indicate the quartiles, whiskers extend to an additional 1.5 *

IQR interval, and the medians are represented by a black line.
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needs to perform simulations on large-scale networks, which is
time-consuming and requires significant storage capacity. In
particular, the biomolecular networks to which our approach is
applicable can vary greatly in terms of size and density. Therefore,
we derived an analytical formulation to estimate the functional
network sizes in a computationally efficient way.

We first derive equations for calculating the functional network
size in the gene regulatory network after initial perturbations on
the 1− p fraction of genes (see “Methods” section). The
functional network size in the PPI layer after the perturbation
process converges can be calculated through the generating
function formalism and percolation theory19. Most previous
frameworks of robustness in multilayer networks are proposed
under the assumption that the connections between layers are
random, i.e., that the degrees of two connected nodes in two
layers either have no correlations23 or follow specific patterns36,
which usually do not hold in real cases. In multilayer biological
networks, the analytical estimation of the number of failures
propagating from the gene regulatory layer to the PPI layer is
challenging since the connections between the two layers are not
purely random. We propose an analytical method to determine
two equivalent coupling strengths23, qG, and qP, to quantify,
respectively, the fraction of genes that depend on proteins of the
PPI network, and the fraction of proteins that depend on genes of
the gene regulatory network (see Supplementary Note 2). By

using these two coupling strengths, the connections between the
gene regulatory and PPI networks can be treated as random in the
theoretical calculation.

Next, we present the solution for the final functional network
sizes step-by-step according to the cascading process between the
gene regulatory network and the PPI network. At the final stage
of the cascading process, the final fractions of functional nodes in
the gene regulatory and PPI networks are, respectively, ψm and
ϕm (see Eq. (5) in the “Methods” section). In the metabolic
network, a metabolite node fails if a fraction of more than fP2M of
its supporting proteins fails. By applying percolation theory, the

final functional node size of the metabolic network is fMS (see Eq.
(6) in the “Methods” section).

To verify the proposed framework, we first apply it to a
synthetic model composed of three layers of Erdős–Rényi (ER)
networks. We find that our framework accurately predicts the final
functional network size in multilayer ER networks (see Supple-
mentary Note 3). Next, we repeat the calculations for the three-
layer biological network described above. We evaluate the
fractions of functional nodes at each stage of the perturbation,
finding that the fractions of functional nodes in each cascading
stage agree with the numerical simulations, as shown in Fig. 5a. To
test the generalizability of our framework on multilayer biological
networks with arbitrary degree distributions, we sequentially
replace the gene regulatory layer with three tissue-specific gene

dc

a b

Fig. 4 Comparing the robustness of the real biological multilayer networks (filled symbols) and randomized models (unfilled symbols). The results are

averaged over 30 realizations. Higher values mean greater robustness of the system. The real model has comparable robustness as a the model that is

disassortatively randomized in the gene regulatory network, and higher robustness than b the model that is assortatively randomized in the gene regulatory

network. Here, the result in the metabolic layer is evaluated by setting the threshold fP2M= 0.7, and the results under other threshold values are shown in

(c), where ROMeta and RCRN�RandMeta , respectively, represent the integral size of the functional metabolic network in the real and randomized models, with p

varying from 0 to 1. If the value ROMeta � RCRN�RandMeta is larger than zero under different thresholds, the real model is more robust than the assortatively

randomized model (GRN-Assort). The real metabolic layer has comparable robustness with the disassortatively randomized model (GRN-DisAssort), since

ROMeta � RCRN�RandMeta is near zero under different thresholds; d the real model is also more robust than the randomized model in which the gene–protein

connections are assortatively rewired.
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regulatory networks, namely forebrain (Fig. 5b), lymphocytes
(Fig. 5c), and lung (Fig. 5d). We find that in all three cases, our
analytical framework correctly predicts the final sizes of functional
nodes in these multilayer molecular networks.

Sensitivity analysis and comparative studies. To assess the
generality of our results, we evaluated their stability with respect
to a change of modeling assumptions and to alterations in data
due to noise. We considered multiple experiments in which we
varied several aspects of our framework to observe their influence
on the results. As a consistent benchmark, in each case, we
measured the enrichment of the modified influence score in
essential and cancer genes.

We tested the dependence of the influence measure on the
quality of the network data we are using since it is well-known
that biological interaction networks are affected by considerable
noise. We simulated a certain degree of noise in the data by
randomly adding/removing a fraction of links from the gene
regulatory network and the PPI network. We tested the effect of
the random addition/removal of 1% of links and then repeated
the same test for an increasing fraction of 2%, 3%, ..., 20%. We
then calculated the average precision score (APS) of the coupled
and uncoupled case in prioritizing essential and cancer genes.

As shown in Figs. S23 and S24, the performance in the
detection of essential and cancer genes is only mildly affected or
unaffected by the addition or removal of edges in both the gene
regulatory or PPI network. This finding suggests that the
influence measure depends on specific structural patterns of
the network that are resistant to noise in the data.

We also contemplated a possible modification as to how the
perturbation process evolves. Our original model is defined such
that once a gene in the gene regulatory layer is perturbed, then all
of its out-neighbors lose their functionality. We parameterized
this assumption such that, if a gene fails, then only a certain
fraction f of its out-neighbors also fail. This increase in the
complexity of the model simulates those cases in which genes that
are the target of a perturbed TF still remain functional because of
redundant pathways/regulation by other TFs. We tested this
modified rule under the settings f= {0.1, 0.2, . . . , 1}. As shown in
Figs. S25 and S26, we observe that the performance in prioritizing
essential and cancer genes (measured by the APS) is quite stable
across all the considered values of f.

Next, we verified that the improvement in the performance of
the coupled case over the uncoupled case is due to the
informativeness of interlayer couplings and not simply a result
of the increase of information given by the wider range of
network interactions affecting the perturbation process in the
coupled case (i.e., gene regulatory and protein–protein interac-
tions as opposed to PPI in the uncoupled case). We reduced
the coupling strength between the gene regulatory network
and assessed the performance in the coupled case with 0%, 10%,
20%, ..., 100% interdependence links, where the 0% case
represents the uncoupled case and the 100% case represents the
original coupled case. We find that the APS increases as the
coupling strength increases, indicating that interlayer information
is crucial for detecting important genes in the coupled system (see
Figs. S27 and S28).

As additional confirmation of this result, we generated a
merged network that consists of the union of the edges of the

c d

ba

Fig. 5 Theoretical predictions on the robustness of the multiple molecular networks. The final functional node sizes in the multilayer molecular networks

after randomly removing 1− p fraction of genes from the general gene regulatory network (a), and from the tissue-specific networks of the forebrain (b),

lymphocytes (c), and lung (d). The solid lines represent the theoretical predictions and the markers represent the simulation results obtained by averaging

over 30 realizations. Note that the PPI and metabolic layers considered in these four panels are the same; the value of fP2M is set to 1, i.e., a metabolite fails

when all of its supports fail. The correlation coefficient between the theory and simulation results is around 0.9918 (see Table S1), indicating that the

theoretical results (solid lines) match the simulation results (symbols).
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GRN and the PPI. We then executed the uncoupled perturbation,
as defined previously, on the merged network. Our reasoning was
that the uncoupled measure still has access to the same amount of
intra-layer information as the coupled one, except for the
interlayer edge information, which represents the coupling
between the two systems. As we show in Fig. S29, in the
prioritization of both essential and cancer genes the uncoupled
measure on the merged network (merged in the figure) has a
performance that is higher than the uncoupled measure, but still
lower than the coupled one. This finding suggests that there is a
net gain in considering how the two layers are coupled, in
addition to their raw static information content.

Discussion
To uncover how the couplings between molecular networks
influence their biological functions, we propose a minimalist
model of multilayer molecular networks encompassing reg-
ulatory, protein–protein, and metabolic interactions, and develop
a theoretical framework for analyzing the system’s robustness. We
define a perturbation process that roughly simulates the cascade
of effects occurring in the network when a group of genes is
perturbed. We show that our analytical formulation correctly
predicts the number of functional nodes at each stage of the
cascading process. In this framework, we find that the topology of
the proposed multilayer network is more robust than that of
randomized models. This finding suggests that molecular net-
works may have evolved to avoid developing strong
degree–degree correlations, so as to increase the system’s
robustness under perturbation.

We define an influence score characterizing the contribution of
each gene to the system’s robustness, and find that essential and
cancer genes are enriched in higher scores compared to random
chance. In addition, to assess the contribution of the connections
between different molecular layers, we compare the results above
with the effects obtained by a perturbation process acting only on
the isolated PPI network, finding that the multilayer system
achieves superior performance in prioritizing essential and dis-
ease genes. Similarly, whereas FBA-based approaches measure the
impact of genes directly encoding reactions within the single
metabolic layer, our dynamical multilayer approach measures the
effect of gene perturbations cascading down the gene regulatory
and protein–protein interaction networks to the metabolic net-
work layer. Furthermore, targeting a group of metabolic disease
genes causes significantly more damage in the metabolic network
when compared to random perturbations, denoting the non-
trivial association between these genes and the metabolic pro-
cesses they regulate.

The results above are complementary. On the one hand, we
find that the coupled perturbation process accurately predicts
genes that are important for biological processes and survival; on
the other hand, we find that perturbing biologically important
genes, defined a priori, causes more damage to the overall sys-
tem’s integrity than perturbing other randomly chosen genes. As
shown by these results, the analysis framework proposed in this
work allows the integration of heterogeneous sources of data to
study the robustness of human molecular networks, opening new
avenues of investigation on their organizing principles and
dynamics. Future directions of this work are twofold: at a theo-
retical level, an important unmodeled factor in the analytical
formulation is the correlation between in-degree and out-degree
of the gene regulatory layer; at the biological level, there are
additional molecular mechanisms that have major roles in
determining the robustness of a cellular system, such as gene
methylation, noncoding RNA regulation, and post-translational
modification of the proteome. Importantly, increasing evidence

suggests the existence of feedback mechanisms such as the
metabolic control of gene expression, whereby specialized tran-
scription factors are activated in response to changes in meta-
bolite levels or metabolic enzymes function as transcriptional
coregulators67. Future studies that aim to extend the current work
could incorporate such mechanisms for an even more realistic
coupling of the biological layers.

One additional avenue of investigation for improving this
model is the inclusion of detailed molecular interaction para-
meters within the network, such as protein binding affinities,
allowing for a generalization of the methodology to weighted
networks. In a similar vein, while we have opted for a metabolic
layer that will maximize metabolite coverage and connectivity to
the other layers, we note the use of flux balance analysis-capable
genome-scale metabolic models such as Recon as a potential
future extension of our work. Indeed, the significant overlap of
edges between STITCH- and Recon-based metabolic networks
suggests the concordance of the metabolic layers built using the
two methods and supports the utilization of stoichiometric and
constraint-based techniques that allow for a dynamical depiction
of the human metabolic machinery. As high-throughput techni-
ques for molecular profiling continue to be developed and
become more feasible, modeling these aspects can provide a
deeper understanding of how perturbations spread in a hetero-
geneous biological interaction network and their functional
consequences.

Methods
Reconstruction of three layers of biological molecular networks
Reconstruction of gene regulatory network. A subset of 695 human transcription
factor motifs, corresponding to 695 unique transcription factors, was curated from
the list provided by an online library of transcription factors and their binding
motifs68. For each of these 695 motifs, the entire hg19 genome was scanned using a
program that scans sequence databases to find occurrences of known motifs69, and
significant hits with p < 1e− 3 were retained; 694 of the motifs had at least one
significant hit in the genome for this scan. Once the genome-wide scan was com-
pleted, we took hg19 RefSeq annotated transcription start sites (TSS) and selected all
associated Gene Symbols that mapped to a unique TSS. We then took the locations
of the motif hits from the FIMO (Find Individual Motif Occurrences)70 scan
described above and found the distance from the middle of the motif to the nearest
TSS. Finally, we queried each of these files to find only motif-hits that occur in the
promoter, which we defined as [−1000, +500] around the TSS. We used a p value
cutoff of 1e−6 for the regulatory network layer of our multilayer network, which
results in 18,566 nodes and 65,310 links.

In addition to the general gene regulatory network described above, we
downloaded three additional tissue-specific gene regulatory networks from http://
regulatorycircuits.org. In particular, we downloaded the set of cell-type and tissue-
specific networks derived using data from the FANTOM5 project18,47. Of these, we
selected networks in the smaller Network compendium dataset, which included
three tissue-specific regulatory networks, forebrain (ID:03), lymphocytes (ID: 12),
and lung (ID: 23). Based on the description in ref. 18, these networks are
reconstructed by integrating CAGE-sequencing data with expression data. We then
transformed these three tissue-specific networks by setting a link weight threshold
of 0.05.

Construction of protein–protein interaction network. As our protein–protein
interaction network layer, we used the comprehensive human interactome built by
Cheng et al.48, which integrated multiple databases with experimental evidence. We
mapped Entrez IDs to Gene Symbols using the HUGO Gene Nomenclature
Committee (HGNC) website (https://www.genenames.org/). After removing self-
loops, the resulting PPI network consisted of 15,930 proteins that were inter-
connected by 213,887 physical interactions. In this work, we focus on the largest
(giant) connected component of the PPI network, which consists of 15,906 proteins
connected by 213,874 links.

Construction of the metabolic network. For the metabolic network, we used the
STITCH database49, which is an extensive association database that has both
biochemical–biochemical (metabolite–metabolite) and biochemical-protein links.
PubChem ids are used for metabolite identification, which maps well to metabolites
in the Human Metabolome Database (HMDB)50, facilitating their identification.
We limited our use of the dataset to interactions with experimental, similarity, and
database evidence. The resulting metabolic association network, which we con-
struct by combining the STITCH and HMDB databases, contains 1292 metabolites
with HMDB ids and 16,032 interactions between them, and its largest (giant)
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connected component includes 1269 metabolites and 16,019 links. Compared to
metabolic network layers built using Recon, the STITCH-based metabolic network
contains a larger number of unique PubChem compounds as well as greater
coverage of the PPI network via interlayer edges (see Table S2).

Compilation of metabolism-related gene lists. Single-nucleotide polymorphisms
(SNPs) associated with lipid traits, blood pressure traits, and type 2 diabetes were
compiled from previous large-scale GWAS published through 2016 from the lit-
erature, as well as the GWAS catalog. For lipid traits, SNPs from GWAS associated
with low-density lipoprotein (LDL), very LDL, high-density lipoprotein, and total
cholesterol levels were included. For blood pressure traits, SNPs associated with
systolic pressure, diastolic pressure, mean arterial pressure, and pulse pressure
values were selected. Type 2 diabetes loci included those associated with T2D,
insulin secretion, and insulin resistance. Selection criteria included p values ≤ 1e−8
or Bonferroni corrected significance levels from European population-based stu-
dies. From these SNPs, gene lists were created based on either location (exon,
intron, or promoter) or physical proximity to the nearest gene upstream or
downstream of the SNP.

Evaluation of the significance of the overlap between top influential genes

and MC, MNC, and CNM gene sets. We estimated the significance of the overlap
between the most influential genes and the disease-related gene sets (MC, MNC,
and CNM) by evaluating the hypergeometric test p value of the overlap between
each disease gene set and the top 500 influential genes. The results are shown in
Fig. S9. Note that the hypergeometric test implicitly assumes as a null distribution a
uniform sampling of the nodes in the network independent of their degree. To
account for possible degree biases, we also evaluated a numerical p value by
extracting three null distributions of 10,000 random gene sets with the same degree
distribution as each disease gene set (MC, MNC, and CNM). We generated a
random gene set as follows. We first chose a binning of the degree values of the
network in order to avoid having singleton degree values. The binning is chosen
such that each bin is populated by at least 30° values. Given a gene to randomize,
we randomly extracted a new gene in the pool of genes whose degree falls in the
same bin. We repeated this operation for each gene in the gene set to randomize
and repeated the whole process 10,000 times. The significance of the overlap
between the top influential genes and the disease gene set is estimated by com-
paring the observed overlap size with the null distribution of overlaps between the
influential gene set and each random gene set. We repeated this operation for each
disease gene set (MC, MNC, and CNM) and each gene regulatory network variant
(general and three tissue-specific networks). In Fig. S10, we show the empirical p
values computed in each case. Note that for visualization purposes we assigned an
arbitrary value of 1e−6 to the p values that were below the resolution allowed by
the considered number of samples. We observe in both cases that influential genes
are enriched in complex-disease-related genes, while this enrichment is not sig-
nificant or marginally significant in the case of Mendelian disease genes. We
hypothesize that this trend stems from the fact that complex diseases are the result
of the interaction between a large number of units, and, therefore, are more likely
to be associated with genes that are well connected in the network.

A theoretical framework for analyzing the robustness of multilayer molecular

networks. We developed a general theoretical framework for modeling cascading
failures between the gene regulatory and PPI networks, and computing the final
number of functional nodes in three molecular layers after randomly removing a
1− p fraction of genes from the gene regulatory network. We find that the gene
regulatory network is vulnerable to perturbations, while the robustness of the
metabolic network is highly dependent upon support from the PPI network.

Percolation analysis in single-gene regulatory networks. We denote the joint degree
distribution of the top-layer gene regulatory network as PGene(kin, kout). We ran-
domly choose a fraction 1− p of nodes as perturbed genes. The probability density
of genes with in-degree kin and out-degree kout not being perturbed or TGs of one

perturbed gene is PGeneðkin; koutÞp
kinþ1 . Thus, after removing the perturbed genes

and their targets, the fraction of the remaining nodes is

rS ¼
X

1

kout¼0

X

1

kin¼0

PGeneðkin; koutÞp
kinþ1: ð1Þ

Assuming that there are no correlations between the in-degrees and out-degrees,
the degree distribution of the remaining network can be written as
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which can be simplified to

f GS ¼ rS½1� PðrSÞðkin ¼ 0; kout ¼ 0Þ�; ð4Þ

We apply this theoretical tool to gene regulatory networks, including a generic
network and three tissue-specific networks. As shown in Fig. S2, the theoretical
predictions (solid lines) agree well with the simulations (symbols).

Percolation analysis in coupled gene regulatory, PPI, and metabolic networks. Owing to
the incompleteness of the data, some proteins do not have corresponding genes in the
regulatory networks, and some genes do not have corresponding proteins in the PPI
network. Thus, the gene regulatory and the PPI networks are partially interdependent,
and their interdependency relations are not random. We propose a method to find
the equivalent coupling strengths between the gene regulatory and PPI networks,
denoted by qG and qP, so that the non-randomly interdependent relations could be
approximated by random interdependency (see Supplementary Note 2).

We present the solution of the final functional network sizes step-by-step
according to the cascading process between the gene regulatory and the PPI
networks. In order to unify the quantities at each stage t of the cascading process,
we define ψ0

t as the remaining network size after initial perturbation or upon
receiving the failure from the PPI network, and ψt as the functional network size in
the gene regulatory network. At the initial stage t = 1, the remaining network size
after perturbation is ψ0

1 ¼ p, and the functional network is ψ1 ¼ ψ0
1hGeneðψ

0
1Þ,

where hGeneðpÞ ¼ rS=p½1� PðrSÞðkin ¼ 0; kout ¼ 0Þ�. Since a fraction of qP nodes in
the PPI network depends on nodes from the gene regulatory network, the number
of nodes in the PPI network becoming dysfunctional is
ð1� ψ1ÞqP ¼ qPð1� ψ0

1hGeneðψ
0
1ÞÞ. Accordingly, the remaining network size in the

PPI network is ϕ01 ¼ 1� qPð1� ψ0
1hGeneðψ

0
1ÞÞ. In the PPI network, the generating

functions for the degree distribution and branching process are, respectively,

GPPIðxÞ ¼
P1

k¼0 PPPIðkÞx
k and HPPIðxÞ ¼ G0ðxÞ=G0ð1Þ. The fraction of nodes

belonging to the largest connected component in the PPI is ϕ1 ¼ ϕ01hPPIðϕ
0
1Þ, where

hPPI(p)= 1−GPPI(pxc+ 1− p) with xc=HPPI(pxc+ 1− p). Following this
approach, we can construct the sequence for the remaining network sizes ψ0

t and
ϕ0t , and the functional network sizes ψt and ϕt. The general form is given by

ψ0
1 ¼ p; ψ1 ¼ ψ0

1hGeneðψ
0
1Þ

ϕ01 ¼ 1� qPð1� hGeneðψ
0
1ÞpÞ; ϕ1 ¼ ϕ01hPPIðϕ

0
1Þ

ψ0
2 ¼ pð1� qGð1� hPPIðϕ

0
1ÞÞÞ; ψ2 ¼ ψ0

2hGeneðψ
0
2Þ:::;

ψ0
n ¼ pð1� qGð1� hPPIðϕ

0
n�1ÞÞÞ; ψn ¼ ψ0

nhGeneðψ
0
nÞ

ϕ0n ¼ 1� qPð1� hGeneðψ
0
nÞpÞ; ϕn ¼ ϕ0nhPPIðϕ

0
nÞ:

ð5Þ

At the end of the cascading process, no further failures occur. The remaining
fractions of nodes in the gene regulatory network and the PPI reach stable values,
ψ0
m ¼ ψ0

mþ1 and ϕ0m ¼ ϕ0mþ1 , respectively. Thus, the fractions of the final functional

nodes in the regulatory and PPI networks are, respectively, f GS ¼ ψm and f PS ¼ ϕm .
The PPI and the metabolic networks are connected by multiple unidirectional

support-dependence relations. In the metabolic network, qMeta is the fraction of
metabolites having multiple connections with the PPI layer. The generating
functions of the degree distribution of the metabolic network and its branching

process are GMetaðxÞ ¼
P1

k¼0 PMetaðkÞx
k and HMetaðxÞ ¼ G0

MetaðxÞ=G
0
Metað1Þ,

respectively. Each metabolite has ks supporting links from the PPI network, and we
define the support degree distribution as PD(ks) whose generating function is

GDðxÞ ¼
P1

ks¼0 PDðksÞx
ks , and whose branching process is

HDðxÞ ¼ G0
DðxÞ=G

0
Dð1Þ.

Since failure in the metabolic network cannot affect the gene regulatory and PPI
networks, their percolation behaviors are equivalent to that in the coupled gene
regulatory and PPI networks, whose final number of functional nodes are ψm and
ϕm, respectively. In the metabolic network, a metabolite node fails if more than fP2M
fraction of its supporting proteins fails. The probability that more than fP2M
fraction of the supports to a metabolite fails is

ω ¼ qMeta

P1
ks¼0 PDðksÞ

Pks
l¼df P2Mkse

ks
l

� �

ð1� ϕmÞ
lϕks�l

m . Thus, the fraction of the

remaining nodes is rMeta= 1− ω, and the final number of a functional node of the
metabolic network is

fMS ¼ rMetað1� GMetaðrMetaxc þ 1� rMetaÞÞ; xc ¼ HMetaðrMetaxc þ 1� rMetaÞ:

ð6Þ

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
The data used in this work are collected from open-access databases. The transcription

factors and their DNA binding motifs used in the construction of the human regulatory

network were downloaded from the CIS-BP database (http://cisbp.ccbr.utoronto.ca/). The

three tissue-specific gene regulatory networks were downloaded from the FANTOM5

database47, respectively forebrain (ID: 03), lymphocytes (ID: 12), and lung (ID: 23). The

PPI network data were obtained from Supplementary Data 1 provided by Cheng et al.48.

The human chemical–chemical (chemical_chemical.links.detailed.v4.0.tsv) and
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protein–biochemical (9606.protein_chemical.links.detailed.v4.0.tsv) links were

downloaded from the STITCH database (version 4.0) (http://stitch.embl.de/). The human

metabolites data were downloaded from the Human Metabolome Database (HMDB)

(version 3.5, retrieved November 2015). The essential and essential genes were respectively

collected from the Database of Essential Genes (DEG)56 and the Cancer Gene Census

(CGC)57. The metabolic disease-associated genes were integrated from large-scale

genome-wide association studies (GWAS) published in the literature and data from the

NHGRI-EBI GWAS Catalog (https://www.ebi.ac.uk/gwas/)65. The authors declare that the

data supporting the findings of this study are available from the corresponding author

upon request.

Code availability
The main results are generated by using Matlab-R2017a, R-3.6.1, and python 2.7. The

code generating the main results in this work is available at https://github.com/

XuemingLiu/Robust-Multilyer-BioNetworks.
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