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ABSTRACT

The results on robustness theory presented here are extensions of those given in
[1]. The basic innovation in these new results is that they utilize minimal
additional information about the structure of the modelling error as well as its

magnitude to assess the robustness of feedback systems for which robustness tests

based on the magnitude of modelling error alone are inconclusive.
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I. INTRODUCTION

Determining the robustnessl of a given feedback control system can be

logically divided into two distinct questions: (1) how near instability is

the feedback system and (2) given the class of model errors for which the

feedback system is stable, does this class include the model errors that can

be reasonably expected for this particular system? The first question can be

answered exactly by appropriate mathematical analysis once a suitable notion

of "nearness to instability" is defined. The second question is, however, a

question that requires engineering judgment in the definition of what

constitutes a reasonable modelling error. The role of mathematical analysis

with respect to question (2) is that of providing a simple characterization of

a sufficiently large subclass of modelling errors that do not destabilize the

feedback system. Without a simple characterization of this subclass of model

errors even the best engineering judgment may not be adequate to answer

question (2). Nevertheless, very simple characterizations of model errors

that are not destabilizing often lead to results that are not very useful

practically because they are too restrictive and the associated subclass of

nondestabilizing model errors too small. Therefore, a compromise between the

simplicity of the characterization and the extent of the subclass of

nondestabilizing model errors that can be considered is necessary.

To this end, this paper explores two ideas. The first is the idea of using

various definitions of modelling error to obtain different robustness tests

that bound the modelling error magnitude to conclude stability. Obviously

some tests will work better than others in particular instances. The various

tests are all derived from one fundamental robustness theorem. The second

idea is that of improving any of the foregoing tests by using information

involving a partial characterization of the structure of the modelling error

(in particular, a projection of the error onto a subspace). If the modelling

error does not have a particular structure then its magnitude must be somewhat

larger in order to destabilize the feedback system than if it did possess such

structure.

1 Robustness as used here refers to robust stability although it can also be
used in a broader context to include system performance.



The development of the results on the use of model error structure will

proceed first by presenting in Section II a generalized version of a

fundamental robustness theorem. Section III gives the basic results from

matrix theory that will be used in Section IV. Section IV gives a

classification of various robustness tests that have appeared previously in

the literature as well as a new one that has not, according to the type of

model error they guard against. All these tests are generalized to use model

error structure as well as magnitude information via the results of Section

III in Section V. Also, an example is given demonstrating the results. All

key proofs [2] are given in the Appendix.

II. FUNDAMENTAL CHARACTERIZATION OF ROBUSTNESS

The basic system under consideration is given in Figure 1, where G(s), the

loop transfer function matrix, incorporates the open-loop plant dynamics as

well as any compensation employed. Due to modelling error or uncertainty the

actual loop transfer function matrix is G(s), a perturbed version of G(s).

Assume that both G(s) and G(s) have state space representations given

respectively by the triples (A,B,C) and (A,B,C) (i.e., G(s) = C(Is-A) B and

G(s) = :(Is-A)- B). Associated with the state space representation of G(s)

are the open and closed loop characteristic polynomials, respectively

~OL(s) and ~cL(s) defined by

~OL(s) = det(sI-A) (2.1)

~cL(s) = det(sI-A+BC) (2.2)

The polynomials ~OL(s) and ~cL(s) associated with (A,B,C) are

analogously defined.

The following theorem generalizes Theorem 2.2 of [1] and is based on the idea

of continuously deforming the multivariable Nyquist diagram for G(s) into the

one corresponding to G(s) without passing the locus through the critical

point. If this can be done and the number of encirclements of the critical

point required for stability by G(s) and G(s) are the same then this

perturbation of G(s) will not induce instability. In this theorem we let



DR denote the Nyquist contour (shown in Figure 2) along which det(I+G(s)) is

evaluated and define G(s,e) as a matrix of rational transfer functions

continuous in s and £ for e in [0,1] and for all s in DR that also

satisfies the following conditions

G(s,O) = G(s) (2.3)

and

G(s,l) = G(s) (2.4)

Theorem 1: The polynomial qCL(S ) has no CRHP (closed-right-half-plane)

zeros if the following conditions hold:

1. (a) qOL(S ) and 0OL(s) have the same number of CRHP zeros.

(b) if O0L(jwo) = 0 then QOL(jwo) = 0

(c) qcL(s) has no CRHP zeros

2. det[I+G(s,¢)] f 0 for all e in [0,1] and for all s e DR with

R sufficiently large.

Theorem 1 forms the basis for the derivation of all subsequent robustness

results. We will subsequently assume that the radius R of the contour DR is

taken sufficiently large so that Theorem 1 may be applied.

Notice, that if IIG(s,)112--0 0 as Isl--X for all e in [0,1], then condition 2
of Theorem 1 need only be verifed for (s,e) in 2R x [0,1] where 2R is defined as

QR:{SlseDR and Re(s)<0}. (2.5)

This will be the case when G(s,¢) is defined in Section IV because both

IIG(s)112 - 0 and IIG(s)1I2 -O as Isl--Ao. The development of robustness

tests from Theorem 1 involves the construction of inequalities that can

guarantee the nonsingularity of I+G(s,e) as in condition 2. Therefore,

Section III will develop general matrix theory results that test for

singularity of the sum of two matrices.



III. MATRIX THEORY

The purpose of this section is to introduce important tools from matrix theory

and present some results that form the backbone of the robustness results of

section V. The specific problem considered in this section is the following.

Given a nonsingular complex matrix A, find the nearest (in some sense)

singular matrix A which belongs to a certain class of matrices. If the error

matrix E is defined as E = A - A then the problem may be stated in the

following form. Given a nonsingular complex matrix A find the matrix E of

minimum norm that makes A + E singular when E is constrained to belong to a

certain class of matrices.

A. Singular Valve Decomposition (SVD) [6] and Subspace Projections

Let the complex n x m matrix A have the SVD

H k H
A =UV = Z aiuiv. k = min(n,m) (3.1)

i=l

where VH denotes the complex conjugate transpose of V, U and V are unitary

matrices given by

U = L ul,' 22' '.." * un ] (3.2)

V =L vl' 2' *'*' -. m ] (3.3)

and Z has the singular values of A, denoted ji, on its main diagonal

(arranged in descending order) as its only nonzero elements. When n=m it

can be verified that the n2 matrices u.vH form an orthnormal basis

in which we can express an arbitrary n x m matrix E as

n n

E = Z Z <u.v. ,E> u.v (3.4)
i=l j=l -- 1

where the innerproduct for matrices is defined by

<A,B> = tr(A B) (3.5)



H H
The matrix <u.v.,E>u.vH is simply the projection of E onto the subspace

jIJ -13 H
spanned by uivj which has magnitude I<u iv,E>I.

B. Error Matrix Structure

It is well known that if A + E is singular and IlEII 2 = amin(A) then

<unH,E> = n = - min(A). Also if IlEI2 < amin(A) then A + E is nonsingular.

Now suppose that we construct a constraint set for E so that E cannot have a

projection of magnitude on in the most sensitive direction UnlHn .

This means that the matrix A + E cannot become singular along the direction

u vH and thus IIEII 2 must increase if A+E is to be singular. To
-n--n 2

find out just how much larger IlEI12 must become we formulate the

constrained optimization problem where we assume A has distinct singular

values.

Problem A:

min IIEli 2

E (3.6)

s.t. det (A+E) = 0

I<u v ,E>I < < on

Solution to Problem A:

The error matrix E is given by

E- z~ fIIII U~ CQ ___ ;JVE (3.7)

0 ,y* -q

where Ps arbitrary but

IIPs I< / nn-nl+4(On-nl) = IIEII 2, (3.8)



and y is given by

:Y (4 +n-l.1 )(Yrn-qb)e e arbitrary (3.9)

and A has the SVD

A=U C2 VI' C. > C
·A = z2, I > ai+2 L (3.10)

The following theorem follows trivially from the solution of Problem A.

Theorem 2: For square matrices A and E, A+E is nonsingular if

amax(E)=:EII 2< nanonl+K(n-ann-l) (3.11)

and

I<UnH ,E>I < < a (3.12)

where on_ 1 > an > 0 are the two smallest singular values of A and

un and vn are respectively the left and right singular vectors of A

corresponding to on. °

Corollary 1: For square matrices A and E, det (A+E) f 0

if

omax(E)=lIE112< n/ n n-I1 (3.13)

and

<unvH ,E> = 0 E (3.14)

Theorem 2 is the key to making use of model error structure in the subsequent

robustness tests. Corollary 1 has a very pleasing geometrical interpretation

that will be discussed next.



in the 2x2 case and displays the columns of A and A=A+E where A is singular

and IEll12 a minimum. When the number of orthogonal vectors (i.e. columns

of A) is greater than 2, Corollary 1 states that it requires the minimum

"effort" to align the two shortest vectors in the set.

D. Examples

To make these results clearer we will illustrate the solutions to the problem

of finding the matrices E of minimum spectral norm that make A+E singular

under various constraints on the E matrix.

Examples:

Let A be given by

A =f 0 4 O (3.18)

O0 1

and consider the various constraints on E.

Unconstrained Case:

ES :

.E .= [ .. 0 (3.19)

E O s -O I -1

where IIE sl2 < 1 but otherwise Es is arbitrary.

e33 0 Case:

[e1 1 0 0

E el 0 2e
E = jCje 0 (3.20)

LO 2e-2 e 0



C. Geometric Interpretation

The nature of the solution to Problem A becomes apparent when the SVD is used

to transform the A matrix into a positive definite diagonal matrix. This is

accomplished with the following simple lemmma.

Lemma 1: If the SVD of A is given by

A = UZVH (3.15)

with U and VH unitary and Z and diagonal then A+E is singular if and only

if Z+P is singular where

P = UHEV (3.16)

and furthermore lIPll2=llE112. 0

Thus, one may work with £ and P rather than A and E. Therefore, in the

subsequent discussion we will make the assumption that the matrix A is now

diagonal and positive definite.

The matrix A is now given by

rCl o-

= I 2
(3.17)

0lo on

where ai > ai+ 1. If the columns of the matrix A are thought of as

a set of n orthogonal vectors of lengths ai, then Corollary 1 can be

interpreted geometrically in the 2x2 case as the problem of aligning two

orthogonal vectors with minimum "effort" without decreasing the length of the

shortest vector. Here the "effort" required to align the two vectors is equal

to tElli2 = max(E) where E makes -A+E singular. Corollary 1 states

that the minimum "effort" required to align the two vectors is equal to the

geometric mean of their lengths. Figure 3 graphically illustrates Corollary 1

~~~~~ ~~~~`----~~~~--~~~-- -`--~~~~~-1"~~~~------"'~~~~~~~ ~~~~---"'"-""~~~~~~~~""""""~""~~~~~~~~~~~~~~"""-~ ~~~~~ `;"~~~~~;~~~--------



where

iell < IIEl12 = /l0O = 1.58 (3.25)
2

and ell and e are otherwise arbitrary.

It is important to point out that we have limited ourselves to constraints on

E of a very special form and in general arbitrary constraints on the form of E

lead to a mathematical nonlinear programming problem that does not in general

have a closed form solution. However, these special form of constraints on E

will be useful in obtaining robustness results of Section V.

IV. ROBUSTNESS TESTS AND UNSTRUCTURED MODEL ERROR

In this section, we present theorems that guarantee the stability of the

perturbed closed-loop system for different characterizations of model

uncertainty (i.e., different types of model error). This is done via Theorem

1 by using a specific error criterion to construct a transfer matrix

G(s,c) continuous in s and C on DR x [0,1] that satisfies (2.3) and

(2.4). Then a simple test bounding the magnitude of the error is devised

which guarantees that condition 2 of Theorem 1 is satisfied. This procedure

is carried out for four different types of errors. These tests use the

magnitude of the modelling error and hence are based on the unstructured

part of the model error. These different types of model errors will

emphasize different aspects of the difference between the nominal G(s) and

G(s) and thus under certain circumstances will give essentially different

assessments of the robustness or margin of stability of the feedback control

system.

A. Robustness Error Criteria

Four basic input/output types of modelling error can be defined by considering

absolute and relative errors between the nominal and perturbed systems and the

analogous errors for the inverse nominal and inverse perturbed systems. Let

P(s) and P(s) denote the nominal and perturbed open loop plants and K(s) the

compensation employed; then G(s) = P(s)K(s) or K(s)P(s) depending on where



where lelll < 2 and otherwise ell and 6 are arbitrary.

e23 = e33 = 0 Case:

0 0 3e,

E 2 0 (3.21)

L -e ' 0

where le221 < 3 and otherwise e22 and e are arbitrary.

e13 = e23 = e 33 = O Case:

e 0 0

= 0 -4 (322)E 0O -4 0 (3.22)

e31 0 0

where

-le 11 2 + le 3 1 2 < 4 = IIEl 2 (3.23)

but otherwise ell and e31 are arbitrary.

le331 < 1/2 Case:

iell o o

oE = 0 1/2 3/2 ej: (3.24)

0 3/2 e- je -1/2



the loop is broken (arbitrarily for convenience we take G(s) as P(s)K(s)

although K(s)P(s) would serve just as well).

Define the errors

EA(S) - P(s) - P(s) (4.1)

EM(s) = [P(s)-P(s)] P (s) = [G(s)-G(s)]G- (s) (4.2)

Es(s) = P-l(s)-p- (s) (4.3)

ED(s ) = P(s)[P l(s)-P l(s)] = G(s)[G - (s)-G- (s)] (4.4)

where the subscripts A, M, S and D refer to addition, multiplication,

subtraction and division, respectively, and signify model error type. Solving

for the perturbed system P(s) in terms of the nominal P(s) and the error we

obtain

P(s) = P(s)+EA(S) (4.5)

P(s) = [I+EM(s)]P(s) (4.6)

P(s) = P(s)[I+Es(s)P(s)] 1 = [I+P(s)Es(s)]- P(s) (4.7)

P(s) = [I+ED(s)]l P(s) (4.8)

Notice that ES is a feedback type error whereas EA is a feedforward

type error. It is also useful to introduce the matrix L(s) defined by the

relationship

P(s) = L(s)P(s). (4.9)

To utilize Theorem 1 to prove stability we will need to construct two

homotopys G(s,E) which are given by



G(s,c) = (l-c)G(s) + cG(s) (4.10)

and

G(s,E) = [(1-c)G- (S) + G (S)]1 (4.11)

The first G(s,E) is used in the proof of Theorem 3 and the second

G(s,c) in the proof of Theorem 4 via Theorem 1.

Theorem 3 [3,4,5]: The polynomial dCL(s) has no CRHP zeros if the

following conditions hold:

1. condition 1 of Theorem 1 holds

2. either (a) or (b) holds for all sEQ R

(a) amin [K l(s)+P(s)] > amax[EA(S)]

(b) min [I+G l (s) ] > omax[EM(s)] 

Theorem 4: The polynomial qCL(S) has no CRHP zeros if the following

conditions hold:

1. condition 1 of Theorem 1 holds

2. L(s) has no zero or strictly negative real eigenvalues for any seQR

3. either (a) or (b) holds for all seQR

(a) ami [K(s)+P -1(s)] > cm [ES(s)]

(b) amin[I+G(s) ] > max[ED(s)] 

Remark: If amax[ED(s)] < 1 then condition 2 of Theorem 4 is automatically

satisfied.

Observation: The condition that L(s) have no strictly real and negative

eigenvalues or be singular can be interpreted in terms of a phase reversal of

certain signals between the nominal and perturbed systems or as the

introduction of transmission zeros by the modelling error. To make this

precise, suppose that for some 0 that L(jwo)x = Xx for some

complex nonzero vector x and some real X < O. Then there exists a vector



u(t) of input sinusoids of various phasing and at frequency w0 which when

applied to the nominal system produces an output y(t) and produces an output

Xy(t) when applied to the perturbed system. Thus when X is negative the

phase difference between the sinusoidal outputs of the nominal and perturbed

systems is 180 o. If X=O then the perturbed system has transmission zeros

at + jw0. This fact is significant since Theorem 4 can never guarantee

stability with respect to model uncertainty when the phase of the system

outputs is completely uncertain above some frequency or with respect to sensor

or actuator failures in the feedback channels.

B. Interpretation of Robustness Error Criteria

The following interpretation about the usefullness of the four robustness

tests of Theorems 3 and 4 can be obtained by examining when their singular

value tests are likely to be satisfied. First consider Theorem 3 condition

2(a). When amin(K - ) >> ma (P) so that amax(G) << 1 then

2(a) becomes

amax(K) amax(EA) < 1 (4.12)

which means that after crossover the compensator gain must be sufficiently

small. When amin(P) > aCmax(K-!)so that amin(G) >> 1 then

2(a) becomes

amin(P) > amax(EA) (4.13)

and hence below crossover the gain of the open loop plant must be sufficiently

large. As one can see this one has no control over this last inequality.

Thus 2(a) is most useful in the region after crossover where parasitic or

neglected dynamics contribute to model error (e.g., higher order structural

modes) where we can use K to roll off the loop quickly enough to tolerate

these errors.

Next consider 2(b) when amin(G) >> 1 then

Gmax(EM) < 1 (4.14)



so that one cannot tolerate as much error before crossover as after when

amax(G) << 1 and 2(a) becomes

amax(G) amax(EM) < 1 (4.15)

As in the previous case high frequency unmodelled dynamics will be tolerated

as long as the loop is rolled off sufficiently in the vicinity where the

unmodelled dynamics have large magnitudes.

In Theorem 4 condition 3(a) becomes

amin(K) > amax(Es) (4.16)

when amin(K) >> cmax(P l) making amin(G) >> 1. Thus in the region

before crossover (providing Es does not induce phase reversals) sufficiently

large compensator gains are required to stabilize the system for Es

variations. This type of error is usually associated with parameter changes

in system time (4.16) constants and is a mathematical statement of well known

fact that high gain reduces the sensitivity of the system to open-loop plant

variations. When amin(P 1) >> omax(K) then amax(G) << 1 and 3(a) becomes

Cmax(P)
amax (E) 1 (4.17)

which requires that after crossover the open loop plant must have

sufficiently small gain to tolerate this type of error

Finally consider 3(b) when amin(G) >> 1 then we obtain

Cmin(G) >> amax(ED) (4.18)

and again high loop gain is an effective means to tolerate large low

frequency (nonphase reversing) model errors. After crossover when

Cma (G)<< 1 we have no control of the tolerance to this type of model

error and 3(b) becomes

amax(ED) < 1. (4.19)



In summary, Theorem 3 is most useful for model errors occurring predominantly

at high frequency and conversely Theorem 4 is most useful for modelling errors

that occur predominantly in the low frequency range and do not produce phase

reversals.

All the preceding robustness tests guarantee that stability is preserved by

ensuring that the magnitude of the model error (according to some particular

error criteria) is sufficiently small. In these tests the model error is

unconstrained in its structure, and therefore, these tests guard against any

type of model error structure. If all types of model error structure are not

possible then these robustness tests may be conservative and methods such as

those developed in the next section must be employed to take advantage of some

particular aspect of the structure of the model error.

V. ROBUSTNESS ANALYSIS FOR LINEAR SYSTEMS WITH STRUCTURED MODEL ERROR

In this section, the robustness tests of Section IV are refined to distinguish

between those model errors which do not destabilize the feedback system and

those that do, but both of which have magnitudes larger than the MIMO

generalization of the "distance to the critical (-1,0) point". To do this it

is necessary to be able to distinguish between model errors that increase the

margin of stability for the feedback system and those that decrease it. This

cannot be done on the basis of the magnitude of the model error. Therefore,

it must be done on the basis of the structure of the model error. However,

only a partial characterization of the modelling error is necessary and its

structure is constructively produced by the method of analysis used in Section

III.

In order to make a practical use of these results that utilize the structure

of the model error, it is necessary to determine if the model error of minimum

magnitude that will destabilize the feedback system can be guaranteed not to

occur. This assessment must be made on the basis of engineering judgment

about the type of model uncertainties that are reasonable for the nominal

design model representing the physical system. For discussions on how to

practically determine what constitutes a reasonable modelling error, the

reader is referred to [7] for a discussion of model errors in an automative



engine control system and [8] for a similar discussion with regard to power

system models.

A. Robustness Test Utilizing Model Error Structure

The robustness test of Theorems 3 and 4 may be improved by excluding modelling

errors with significant projections onto subspace spanned by d_,H

where again un v are the left and right singular vectors of the

appropriate transfer function associated with the particular error type.

Dropping the explicit s dependence for notational convenience this may be

formalized in the following theorem.

Theorem 5: The polymonial ^CL has no CRHP zeros if the following

conditions hold:

1. condition 1 of Theorem 1 holds

2. (A,E) = (P -+K, EA) or (I+G- ,EM) or (K-I+P,Es) or (I+G,ED)

3. X(L) i (-,0O] for all scE R if A = K +P or I+G

4. For all sl2 R

H H
(a) A has the SVD A = UZV H a=uiv. where ai+1 > a. for all

(b) I<UnH, E>I < < an whenever Omax(E) > n

(c) amax(E) < [cnan-l + c(an-1nl)]1/ 2

This can be interpreted as a change in the multivariable Nyquist locus. If

the magnitude of the error is sufficiently small (condition 4(c)) then <u vH, E>

adequately predicts in which the direction in which the Nyquist locus moves

with respect to the critical point. Thus by restricting the class of

modelling errors only slightly the feedback system may tolerate much larger

errors if an 1l >> an. For a more detailed discussion see [9].



Remark: Notice that in this theorem the vectors un and v are not

specified apriori (i.e., they are not defined until the compensator has been

designed) and thus we are not able to directly utilize apriori structural

information about E. We can only try to determine from this and other

information if <uvHn,E> represents a reasonable modelling error.

Recent results in [10, 11] give a very useful partial mathematical solution to

an optimization problem like that of Problem A where the structure of E is

prespecified. However, as previously mentioned, a closed form solution does

not exist in general for this latter problem.

B. Illustrative Example

Suppose that we wish to determine stability robustness of a 2x2 control system

which actually has a loop transfer function matrix G(s) but is represented by

the nominal diagonal loop transfer matrix G(s) given by

gls (s) O (52s+7.5
G(s) : = 1(5.1)

0 g22 (s) _ s+O.s 5 _

so that the nominal closed-loop system has poles at -8.5 and -1.5. If we use

the relative error criterion (5.2) (this is a slightly different definition of

error than the one in (4.2) where the error is specified at the output; here

it is specified at the input),

gll (S)-gls) ) 12 (s5)

E ())gti (s) gl1 (S)

E(s)=G-L(s):I+(s) [- G( s ) ] (5.2)

g~g22l (s)-g22 (s)

g22 (s) g22 (s )

then the multiplicative uncertainty factor matrix L(s) (perturbing the inputs)

is given by

gll (S) g! 2 (s)

gli (s) gil (s)

L(s)=I+E(s) = (5.3)

2: (s) g22(s)

g22(s) g22;s)



First, we compute amin(I+G-l (jw)) to determine the magnitude of the

smallest destabilizing model error E(s). This is simply given by

amin(I+G- l(j )) = 5(1.5+ji = /1.5)2?2 > 1.5 (5.4)

because

s+8.5 O

I+G'l(s) = : . (5.5)
O s+l.5

Now suppose that the error in the loop gain of each loop of the feedback

system is known within +50% of the nominal loop gain, that is

I el(jW)Jl < 0.5 (5.6)

and

I e22(jW) I < 0.5 (5.7)

Next, suppose that we are more uncertain about the channel crossfeeds in the

sense that we can only assert that

le 1 2 (j) l = l 1 2 (jw) i g 2 (jw) < 2 (5.8)

and that

e2 1 (jW21) Z2 1 (jW)) < 2 . (5.9)

It follows from (5.6) and (5.7) that we can bound 1ell(jw)l and

le22(jw)l by 1/2 and thus, by (5.8) and (5.9), we can only conclude

that

iE(jw)ll 2 = cmax[E(jw)l < 2.5 (5.10)

From (5.10) and (5.4) it is clearly possible to have

Cjmax[E(jw)] ' aminI+G-l(j)]. (5.11)



Therefore, Theorem 3 does not apply. However, we can use Theorem 5 to ensure

the stability of the perturbed feedback system. To see this, note that the

SVD of I+G-l(jw) is given by

-1 pe 0 j+.8.5 I I 0

I+G1 (jw) = i 6 ( 5.12)

0 Je 2 ( oj)+l.51 O 1

= U(jw)E(jw)VH(jw)

where

1(w) = arg[jw+8.5] (5.13)

and

02(w) = arg[jw+l.5] (5.14)

Note that condition 4(b) of Theorem 5 can be satisfied with c(jw)=l/2 since

from (5.12) defining u2(jw) and y2(jw) and from (5.7) bounding e22(jm) we

have that for all w

I<u2(jw)v2(jw),E(jw)>l = Iu(jw)E(j)v2(J)l (5.15)

= le22(jw)l < 1/2

Thus, by (5.15) and (5.4) we have

a2(j) > 1.5 > 1/2 > I<u2(j)22(jw), E(jw)>l (5.16)

Next, we calculate the right-hand-side of condition 4(c) of Theorem 5 and a

lower bound as follows

[l/ (J) C2 (j)+cl (jI) 2 (jw)-. (j)]j [ju8.5( 3+l. 5(

+ L/2[|j+H!.5|- jj.+8.5.5|] 1 > (8.5)( 1. 5)+ ( ) > 3. (5.17)



Therefore, using (5.10) we have that

max [E(j)]< 2.5 < 3 <[l(jw)a 2 (jW)+c(jW) [2(j)- 1 ( (5.18)

and so condition 4(c) of Theorem 5 holds. Assuming condition 1 of Theorem 9

holds we have shown that the perturbed feedback system is stable. The next

smallest destabilizing error can be calculated using Problem A with

(jw)=O and w:O since amin(I+G-l(j))> amin(I+G- (0))=1.5 and is given by

E(O) = (5.19)

l3 -3 /

which means that L(s) may be taken as the constant matrix L given by

[3 1/2 3 (5.20)

3 1/2

Thus, we see that (refer to Figs. 4 and 5 crossfeed gain errors of magnitude 3

and loop gain changes of +50% are required to destabilize the feedback system

if we insist that (5.6) and (5.7) must hold.

VI SUMMARY AND CONCLUSION

This paper has discussed two ideas for the robustness analysis of

linear-time-invariant systems. The first is that of exploring different types

of modelling error and in what cases these might be useful. The second idea

focuses on improving any given particular robustness test by placing a weak

restriction on the structure of model errors considered. If all reasonable

model errors are contained in the slightly smaller set, the size of the

tolerable model errors may become much larger than otherwise.
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Figure 1: Control system under consideration
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Figure 3: Columns of A and A=A+E depicted as

vectors aligned with minimum effort.
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Figure 4: Nominal feedback system (stable).



Perturbed Open-Loop System G(s)
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Figure 5: Perturbed feedback system (unstable).



APPENDIX

This appendix gives the necessary proofs involved with the solution to

Problem A. We proceed with some definitions followed by six lemmas

necessary to prove the solution of Problem A.

Definition: A matrix X belonging to a set S is said to be minimal in S if

1XII1 2 < 1IY112 for all Y belonging to S.

Sets: In the space of complex matrices define the sets:

DA A {E I A+E is rank deficient} (A.1)

11~~~~_A H
PA {E I EcDA and I<unVn E>I< 4 < a } (A.2)

H {E I E=EH and E E P (A.3)
A A

where the matrix A has the SVD given by

Hi n 

H i: 1i-i-l - i i+l ° (A.4)

where VH denotes the complex conjugate transpose of V and the vectors ui

and vi compose the columns of the unitary matrices U and V respectively.

Note that A need not be square.

Lemma Al gives the form of the unique minimal E in PA when A>O is

diagonal and 2x2. Lemma A2 shows this E is minimal in PA' Lemma A3 shows

this E is the unique minimal element of PA' Thus Lemmas Al to A3 give the

complete solution to Problem A via Lemma 1 when A is 2x2. Lemmas A4 and A5

extend the solution to the case where A is nx2. Lemma A6 extends the

solution to the case where A>O is nxn and diagonal. Applying Lemma 1 the

complete solution to Problem A is obtained.



Lemma Al: Let A = diag[ol,a2] > 0 then Eo PA given by

Eo ] (A.5)

= ¥ ( 1l)(a2- ) ej 9, e arbitrary (A.6)

is uniquely minimal in PA'

Proof: Clearly Eo&PH to show that IIElI2<EIBI2 for all

other EPA', let E be given by

a
E = (A.7)

then iE1112 is given by

2 2 +Ib r 2
11 Ell2 a+d +. ad + Ibi (A.8)

and because A+E is rank deficient

2l a+d + (a+d)2 + (aCl+a)(ac 2 +d) (A.9)

Taking partials ofiIll2 with respect to a and d we have

2 = 1/2 [sgn(a+d) + Zl] (A.10)
a

2 = 1/2 [sgn(a+d) + z23 (A.11)
where sgn ) is the usual sign function andd

where sgn(.) is the usual sign function and



= 2 (A.12)2

//(ad)2 + (ol+a)(aC2+d)

z2 = (a+d) 1 (A.13)2 (A. 13)

/(9a-+ d2 (a 1+ a)(a 2+d)

and Izli<l and Iz21 > 1 for Idl < c 2 and lal < a1. Thus allEll2/Sa has

the same sign as a+d indicating a global minimum at a = -d. Since lz21>l,

alIEll 2 /3d is always positive indicating the extremal value d = 4 minimizes

IlEll 2. Therefore the unique minimizing E in AH is E

Lemma A2: Let A = diag [cl,a 2,...,an>O and let E be minimal in PA

then EH =1 (E+EH) is minimal in PA.
H A' H H

Proof: Since EePA, xH(A + E)x = xH(A+EH)x = 0. This implies Xmin(A+E H) < O.

However if Xmin(A+EH)< 0 then there exists an a e(0,1) such that aE&HPA and

IlaE 1lI2 < IIEll 2 contradicting the minimality of E. Thus Xmin(A+E H) = O and

EH is minimal in PA.

Lemma A3: Let A = diag[ol, 230>O and let E be minimal in PA then E = EH

Proof: For 2x2 matrices E, some simple algebra shows that

iiEll2 =1 2ll E (A.14)

110~2 : IIEll

+ ('IIEl, 2) 2 det El > 1 IlEllE

where IIEll2 = < E,E >.

If E is decomposed as E = EH + ESH where EH is hermitian and ESH

is skew hermitian then



2 2 2
iEE : IIE IE + IIESI E

and hence

lEll2 1 2 1 21ES (A.15)
2 - 2 EI4IE 2 E

The matrix EH is uniquely minimal in PA by Lemmas Al and A2. From

the form of EH required by Lemma Al we have

2 7 EIlEF4I2 = +IIE2IE2 (A.16)

2 2SHand hence IIE2I 2 < 18ll 2 if ESHf O.

This contradicts the minimality of E and hence E = EH = (E+EH) E.

Lemma A4: Let A1 = diag[ol,u2]>O, let

A 0= L ° I(A.17)

and conformably partition E as

E E2 (A.18)

and let E be minimal in PA then E2 = 0 and E1 is minimal in PA

Proof: Suppose E1 is not minimal in PA then 1112 > IIE1112 > lEo 112 where

Eo is uniquely minimal in PA A

Define EA as

E [0 (A.l9)
0O 



then IiEJI 2 = IiEodl 2 < II El2 and Ek PA contradicting the minimality of

E in PA' Hence E1 is minimal in PA

2 H H H
Since IIEI 2 = Xmax(ElE1 + E2E2) and from Lemma Al EEl = (+2+, I2)I

we obtain

IIEII2 = (4,2+y2) + IE2112 (A.20)

Hence IlEli2 is minimized only when E2 = 0.

Lemma A5: Let A be nx2 with singular values a > a 2 then E is

uniquely minimal in PA and given by

Y

E=U -Y v = UE1V
H (A.21)

where

Y = {(o1 F)(a2 -)} 1/ 2eJ8 , arbitrary (A.22)

and

2 2 2
IIEll 2 + 1 2+ = (a1- 2) (A.23)

Proof: A has SVD

C1 0

A = U 0a2 VH = UA1 VH (A.24)

and it is clear (by Lemma 1) allowing unitary transformations) that E1 is

minimal in PA l is unique and given by Lemma A4.
1l



Lemma A6: Let A = diag[ol,a2,...,n] > 0 then the unique minimal E

in PA is given by

P 0

E -0Y] (A.25)

I

where

Y = eje {(nln )(CnT )} 1/2; e arbitrary (A.26)

with

tIPs12 < IIEI12 = [2 + (nnl+)( n 1/2 (A.27)

but Ps is otherwise arbitrary.

Proof: EcP A implies that there exists an x i 0 such that (A+E)x = 0

where

xT = T xn (A.28)

x [Xl,2,...,x l], Xl 2 (A.29)

and where Xnl 1 c[0,1]. Note xl f 0 else E PA' Define Z

Z= 1 (A.30)

then

(A+E)x = (AZ+EZ)y = 0 (A.31)

where yT = [l,xn]. Clearly EZcPAz otherwise EPA'



Also from (A.30) we obtain

II EZi 2 1I Ell 211ZII 2 = lI E12 (A.32)

Now AZ has. the form

AZ : = - (A.33)

° tiOn
where

wT = [a l a2 x2 ...,n-lXn-l] (A.34)

and since IIxlll 2= 1

1IW1 > a -(A.35)--2 - n-i

with equality only when xl = [O,O,...,0,1 (recall x [O,

From Lemma A5,

IE 2 > 2 +( ) (A.36)

with equality only when Z is given by

Z = 1 -- 0 i (A.37)

01 - - -

For this selection of Z in (A.37) E is given by

E = [E1
$ EZ]. (A.38)

and thus if El=O and EZ is minimal in PAZ we then have 11012 =

iiEIi2 = { 2+( n-l)(an )}1 /2 and this choice

of E is minimal in PA' Therefore, Z must be given as in (A.37).

Since EZ must be minimal in PAZ making



E1122 = max(EHE + (Ez)HEZ)IIEI =max (E

12

E 1HE 0 a1 I+ (A.39)

2

for some real a O, E1 must be the form

E= [v-] 11E2112_ IEZ2 (A.40)

otherwise IIEl1 2 > IIEZ11 2 making E nonminimal. This gives the desired

conclusion.

The solution to Problem A follows directly from Lemma A6 and Lemma 1.


