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Abstract 
 

Biomolecular networks have to perform their functions robustly.  A robust function may 

have preferences in the topological structures of the underlying network.  We carried out 

an exhaustive computational analysis on network topologies in relation to a patterning 

function in Drosophila embryogenesis.  We found that while the vast majority of 

topologies can either not perform the required function or only do so very fragilely, a 

small fraction of topologies emerges as particularly robust for the function.  The topology 

adopted by Drosophila, that of the segment polarity network, is a top ranking one among 

all topologies with no direct autoregulation.  Furthermore, we found that all robust 

topologies are modular—each being a combination of three kinds of modules.  These 

modules can be traced back to three sub-functions of the patterning function and their 

combinations provide a combinatorial variability for the robust topologies.  Our results 

suggest that the requirement of functional robustness drastically reduces the choices of 

viable topology to a limited set of modular combinations among which nature optimizes 

its choice under evolutionary and other biological constraints. 

 

Key Words: function and topology/robustness/modularity/evolution/Drosophila 
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Introduction 

Biological systems are evolved to function robustly under complex and changing 

environments (Waddington, 1957).  At the cellular level, the interactions of genes and 

proteins define biomolecular networks that reliably execute various functions despite 

fluctuations and perturbations.  Functional robustness as a systems property may have 

preferences in and constraints on the wiring diagram of the underlying networks (Barkai 

& Leibler, 1997; Li et al, 2004; El-Samad et al, 2005; Wagner, 2005).  It has been 

demonstrated in a computational study that a robust oscillator has a strong preference on 

certain type of the network topology (Wagner, 2005).  Preferred network motifs in 

biological networks were identified (Milo et al, 2002) and were attributed to their robust 

dynamical properties (Prill et al, 2005).  It was argued through a comparative study of a 

few networks that a bacteria signaling network is optimally designed for its function 

(Kollmann et al, 2005).  To clearly lay out the relationship between the functional 

robustness and the topological constraints, we carry out an exhaustive computational 

analysis on the network topologies that perform the same patterning function as the 

segmentation polarity gene network in Drosophila (Matizez Arias, 1993; DiNardo et al, 

1994; Perrimon, 1994).  We found that only a small fraction of topologies can perform 

this patterning function robustly.  This information can be used in combination with 

mutant phenotypes to discriminate biological models.  We show that the topology of the 

Drosophila network is among this small group of robust topologies and is optimized 

within certain biological constraints.  We further found that all robust topologies can be 

classified into families of core topologies.  Each family is a particular combination of 
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three kinds of network modules which originate from the three sub-functions of the 

patterning function.  We argue that the modular combinations also facilitate flexibility 

and evolvability in this case. 

 

The segmentation process in the embryogenesis of the fruit fly Drosophila is 

characterized by a sequential cascade of gene expression, with the protein levels of one 

stage acting as the positional cues for the next (Wolpert, 2002).  The successive transient 

expression of the maternal, the gap and the pair-rule genes divide the embryo into an ever 

finer pattern.  After cellularization, the segment polarity genes stabilize the pattern, 

setting up the boundaries between the parasegments and providing positional “readouts” 

for further development (Matizez Arias, 1993; DiNardo et al, 1994; Perrimon, 1994).  We 

are concerned here only with the network that is in action during the extended and the 

segmented germband stage which is characterized by the interdependency of the 

expression of en and wg (DiNardo et al, 1994; Perrimon, 1994), and we focus on its 

function of stabilizing a periodic pattern of sharp boundaries defined by the en- and the 

wg-expressing cells (Vincent & O’Ferrell, 1992).  As depicted in Figure 1, the core 

network in Drosophila consists of the hedgehog (Hh) (Lum & Beachy, 2004) and the 

wingless (Wg) (Klingensmith & Nusse, 1994) signal transduction pathways.  Previous 

studies demonstrated that this network is a very robust patterning module.  Differential 

equation models of the network can stabilize and maintain the required patterns of en and 

wg expression with a remarkable tolerance to parameter changes (von Dassow et al, 2000; 

von Dassow & Odell, 2002; Ingolia, 2004).  A simple Boolean model was shown to 
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capture the main feature of the network’s dynamics (Albert & Othmer, 2003).  These 

findings have led to the hypothesis that the segment polarity gene network is a very 

robust developmental module that is adopted in a wide range of developmental programs 

(von Dassow et al, 2000).  Indeed, the striped expression patterns of the segment polarity 

genes in the segmented germband stage are remarkably conserved among all insects, 

perhaps among all arthropods (Peel et al, 2005).  On the other hand, it was argued that the 

conservation of this gene network is not due to robustness but rather to pleiotropy (high 

connectivity with other modules/networks) (Sander, 1983; Raff, 1996; Galis et al, 2002).  

Pleiotropic effects may constrain the network’s evolution, “freezing” its topology early 

on during evolution and making it conserved among developmental programs that later 

diverged.  In this study, we investigate the relationship between the functional robustness 

and the network’s topology.  Specifically, we ask (1) How many network topologies can 

perform the given patterning function and how many can do so robustly? (2) Can a robust 

topology also satisfy certain topological constraints imposed by, e.g. pleiotropic effects, 

and if so how is this achieved? (3) Where does the Drosophila network stand in this 

analysis? (4) Are there any organization principles emerging from the robust topologies 

for the given function? 

 

Results 

Coarse-graining the biological network 

Instead of analyzing the full biological network, we focus on its core topology.  The core 

topology is derived from the full network and is the minimal set of nodes and links that 
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represent the underlying topology of the full network.  This reduction in degrees of 

freedom enables us to perform a much more comprehensive computational and 

theoretical analysis and at the same time to preserve key functional properties.  The 

topology of the Drosophila segment polarity network can be represented by a network of 

three nodes.  The network represented in Figure 1A can be simplified into the topology of 

Figure 1B.  Since we are mainly concerned with the steady-state behavior, certain 

“intermediate steps” in the network can be combined.  First, we combine the mRNA node 

with its corresponding protein node if there is no posttranscriptional regulation for the 

mRNA, because the time delay between the mRNA and the protein production does not 

play any role in our steady state analysis.  We then combine the node hh/Hh with en/En, 

because the expression of hh depends solely on En.  The expression pattern of these two 

genes, hh and en, are highly correlated at this stage of the development (Tabata et al, 

1992).  We thus use a single node “E” in Figure 1B representing the four nodes, en, En, 

hh, Hh in Figure 1A.  Extra-cellular Hh signaling activates wg by regulating the 

expression of Ci and Cn, which are parts of the Hh signal transduction pathway.  Both Ci 

and Cn are the products of the gene ci.  In the absence of Hh signaling, Ci goes through a 

process of proteolysis and the remaining fragment functions as a repressor, Cn.  The Hh 

signaling blocks the proteolysis of Ci, resulting in the accumulation of Ci in the nucleus, 

which acts as a transcriptional activator for wg (Lum & Beachy, 2004; Alexandre et al, 

1996).  Thus, Ci and Cn function like a transcriptional switch in response to the Hh 

signaling.  This regulation is simplified as a direct (intercellular) link from “E” to “W” in 

the coarse grained topology (Figure 1B).  The repression of ci by En in Figure 1A is 
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represented in Figure 1B as “E” repressing “W” since the function of ci is to control the 

expression of wg.  The simplified model Figure 1B has similar dynamic properties with 

the more detailed model Figure 1A; in particular they can both stabilize the wild type 

pattern and sharpen the parasegment boundary. 

In coarse-graining the network of Figure 1C to that of Figure 1D, the two negative 

regulations, from Slp to mid and from Mid to wg, are replaced with a direct positive 

regulation from “S” to “W”.  Again, the simplified model Figure 1D has similar dynamic 

properties and patterning function with the full model Figure 1C. 

 

Enumerating 3-node networks 

We then proceed to enumerate topologies of 3-node networks with intra- and intercellular 

interactions.  Every node may regulate itself and the other two nodes, both intracellularly 

and intercellularly, resulting in 3×3×2=18 directed links.  Each link has three possibilities: 

the regulation can be positive, negative, or absent.  So the total number of possible 

topologies for the 3-node network is 318= 387,420,489.  Enumerating all of them is 

beyond our computational power.  Thus we make the following restrictions on the 

topology: only two out of the three nodes can possibly go outside of the cell to signal.  

This restriction reduces the total number of topologies to 315=14,348,907, all of which we 

enumerate.  For each topology, we use a model of ordinary differential equations to 

quantitatively assess its ability to perform the required function, which is to stabilize the 

pattern of Figure 1F given the initial condition of Figure 1E (Methods).  The functional 

robustness of a topology is measured by the quantity Q=[the fraction of the parameter 
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space that can perform the function] (von Dassow et al, 2000; Ingolia, 2004).  We 

estimate Q by randomly sampling the parameter space: Q≈m/n, where n is the number of 

the random parameter sets used in the sampling and m the number of those sets that can 

perform the function.  We first sampled each and every topology with n=100 random 

parameter sets.  We found that about 1% of the topologies can perform the function with 

at least one of the 100 parameter sets (m>0).  However, their Q values differ drastically.  

As shown in Figure 2, the distribution of the Q values is much skewed among the 1% 

population of the topologies—while the majorities have very small Q values there is a 

long tail in the distribution.   

 

Biological network   

The topology (Figure 1B) of the network constructed in previous studies (von Dassow & 

Odell, 2002; Ingolia, 2004) (Figure 1A) scored very high but is not the top ranking one.  

However, there may be some biological constraints on the selection of topologies.  

Indeed, a group of topologies consisting of only two nodes (with the “S” node left 

unlinked) come close to the top (see Figure 3A), suggesting that if Drosophila were only 

presented with the function defined in our study the best design would be to just use two 

mutually activating signaling pathways (“E” and “W”) and nothing else.  But both the Hh 

and the Wg signaling pathways are utilized in at least several other functions besides 

stabilizing the parasegment boundaries (Galis et al, 2002), which may impose pleiotropic 

constraints on the topology of the networks that utilize these pathways.  In general, these 

constraints may be hard to decipher.  Here we simply note that there is no sound 
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biological evidence for any direct positive autoregulation loops on the two signaling 

pathways and on the slp genes.  If we exclude topologies with any direct positive 

autoregulation on the “E” and the “S” nodes, Figure 1B stands up as the most robust 

topology (Q=0.47).  In this topology, there is still a direct autoregulation loop on “W”, 

which originates from the Wg -> wg autoregulation in Figure 1A.  This autoregulation 

has no basis in biological evidence, but was added by previous authors to ensure the 

correct patterning of the model—without this added link, their models cannot reproduce 

the correct biological pattern (von Dassow et al, 2000; von Dassow & Odell, 2002; 

Ingolia, 2004).  We ask that if we do not add this autoregulation whether we can identify 

a robust topology that has biological evidence for every link.  There are 8 topologies with 

Q>0.1 that have no direct autoregulation on any of the three nodes.  A top ranking one 

(Q=0.36) is shown in Figure 1D.  Instead of a direct autoregulation on “W”, this topology 

accomplishes the positive feedback indirectly through the node “S”.  This would suggest 

that the Wg signaling pathway regulates the slp gene whose product in turn regulates wg.  

Indeed, there is ample biological evidence for these regulations (Lee & Frasch, 2000; 

Buescher et al, 2004), suggesting a biological network of Figure 1C.  The role of slp in 

regulating wg was also discussed in previous computation models (Meir et al, 2002; 

Albert & Othmer, 2003). 

To further determine which of the two topologies, Figure 1B or D, is closer to the 

true biological one, we subject both to the mutant test.  We model two kinds of mutants 

corresponding to perturbations in the two signaling pathways and compare the computed 

phenotypes with the experimental observations.  The first is the zw3 (a protein kinase in 
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Wg signaling pathway) mutant—the mutation results in a ubiquitous Wg signaling with a 

phenotype of an expanded en-expressing region ended by an ectopic wg-expressing stripe 

(Figure 1G) (Siegfried et al, 1994).  The second is the mutation of the Hh receptor 

patched (ptc) which results in a ubiquitous Hh signaling and has a phenotype of an 

expanded wg-expressing region ended by an ectopic en-expressing stripe (Figure 1H) 

(DiNardo et al, 1988).  We found that while both topologies, Figure 1B and D, can 

produce the wild type patterning robustly, only the network of Figure 1D can also 

produce the two mutant phenotypes.  Specifically, for Figure 1D about 1/3 of the 

parameter sets that produced the wild type pattern can also produce the two mutant 

patterns.  For Figure 1B, none of the parameter sets that produced the wild type pattern 

can also produce either of the two mutant patterns.  We also used the more detailed 

models Figure 1A and C to carry out the mutant test and obtained similar results (see 

details in Supplementary Information).  This suggests that the network of Figure 1C (and 

its corresponding topology of Figure 1D) is a better model for the Drosophila network 

than that of Figure 1A (and Figure 1B).   

 

2-node topologies   

In our enumeration study of the 3-node topologies, there are some 2-node topologies 

(with the “S” node unlinked) scored very high.  This indicates that the simplest 

“irreducible” topology for the required patterning function consists of only two nodes and 

that it would be instructive to study 2-node topologies.  There are 45 2-node topologies 

with Q>0.1.  A close examination of these topologies revealed that all of them come from 
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4 core topologies, which we call skeletons (Figure 3A).  In other words, the 45 topologies 

can be classified into 4 families.  In each family, all the members come from a skeleton 

by adding extra links to the skeleton.  These links are either “neutral” (have no effect on 

the Q-value) or “bad” (will reduce the Q-value).  The number of neutral links a skeleton 

can accommodate and the number of bad links it can tolerate (so that the reduced Q value 

is still large than 0.1) depend on the structure and the robustness of the skeleton.  As 

shown in Figure 3A, the first skeleton can accommodate and tolerate combinations of 2 

neutral links and 4 bad links, while the fourth skeleton can accommodate or tolerate none.  

Furthermore, the 4 skeletons all contain the following three topological features: positive 

feedback on “E” (either intra- or intercellularly), positive feedback on “W” (either intra- 

or intercellularly), and intercellular mutual activation between “E” and “W”.  These three 

topological features can be traced back to three sub-functions which the required 

patterning function can be decomposed into.  Note that cells adjacent to an “E”-

expressing cell can have two different fates: expressing “W” or none (Figure 1F).  So the 

network should be bistable in “W”.  Similarly, cells adjacent to “W” can express either 

“E” or none, implying bistability in “E”.  Thus the positive feedback loops on “E” and on 

“W” follow the functional requirement of bistability on “E” and “W” (Ingolia, 2004).  

The mutual intercellular activation between “E” and “W” arises from the functional 

requirement of maintaining a sharp patterning boundary.  In order to sharpen a wide 

boundary (Figure 1E), it is necessary to have “E” expressed only right next to a “W” cell, 

and vice versa, leading to the interdependency of “E” and “W” in the network topology.  

Therefore, the three functional requirements lead to the three kinds of topological 
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features, or modules.  The combination of the three kinds of modules, with one from each 

kind, results in the 4 skeletons of the robust topologies (Figure 3A).  Note that for the 

second, the third and the fourth skeletons in Figure 3A, there are necessary repressive 

links (which are neutral in the first skeleton) in addition to the three modules.  When the 

positive feedback module is intercellular, it is necessary to have an intracellular 

repression on the node to prevent the “E” and “W” being expressed in the same cell 

causing further blurring of the boundary (see details in Supplementary Information).  

Also note that some bad links are just redundant modules, e.g. the intercellular auto-

activation of E or W in the first skeleton. 

 

Families of 3-node topologies  

Having identified the three essential kinds of modules for the patterning function and the 

rules of their combination in 2-node topologies, we turn our attention to the robust 3-node 

topologies and ask if similar organization principles exist there.  With one extra node “S”, 

there are multiple new ways to form each kind of modules (Figure 3B).  (Note that for the 

E and W modules the positive feedback does not have to act on E/W directly.  If E/W is 

dependent on S, positive feedback on S is also a viable choice.  Also note that since we 

have excluded from our enumeration the intercellular regulation from S, there are no 

modules with this regulation.)  We then checked all 3-node topologies with Q>0.1 to see 

if they contained these modules.  Intriguingly, every topology in this pool (37,580 of 

them) contains at least one module of each kind.  Therefore, it is a necessary condition 

for a robust topology to include at least one module of each kind.  On the other hand, the 
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reverse is not true.  From the modules in Figure 3B, one can form 108 combinations that 

include one and only one module of each kind and that have no conflicting regulations 

(see details in Supplementary Information).  Only 44 of them are robust enough to be the 

skeletons of networks with Q>0.1.  In other words, we found that all topologies with 

Q>0.1 can be classified into 44 distinct families corresponding to 44 modular 

combinations (skeletons).  In most families, the Q value of the skeleton is either the 

highest or close to the highest in the family, implying that other members in the family 

have extra non-beneficial (neutral and bad) links compared to the skeleton.  There are a 

few cases where the skeleton’s Q value is not close to the top within the family, implying 

that some extra links in addition to the modular combination are beneficial.   

As shown in Figure 4A, the family size roughly scales exponentially with the 

skeleton’s Q value.  This means that the larger the skeleton’s Q value, the more non-

beneficial links it can accommodate and tolerate.  The exponential dependence of the 

family size on the Q value suggests family members as some kind of combinatorial 

additions to the core topology, although in general the effects of additions of links to the 

core may be correlated.  While the non-beneficial links do not improve the Q values, they 

may facilitate variability and plasticity that can be useful in adapting to new 

environments and functional tasks (Schuster et al, 1994).  We found that certain neutral 

links and redundant modules are beneficial when the system is faced with noisy initial 

conditions (see details in Supplementary Information).  The modular organization of the 

skeletons suggests that their Q values might be related to the Q values of the modules.  

Indeed, we found that for the 44 skeletons the Q value of a skeleton is well correlated 
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with the product of the Q values of the three modules that make up the skeleton (Figure 

4B). 

 

Discussion 

In summary, our study of the relationship between function and topology revealed certain 

design principles that may be applicable to a broader class of biological systems.  We 

found that the requirement of functional robustness drastically reduces the choices of 

viable topology.  Similar findings were reported in models of circadian oscillators 

(Wagner, 2005) and, in a broader sense, protein folding (Li et al, 1996), suggesting that 

the constraint may be general.  The approach and method developed here may be 

applicable in analyzing other networks and in designing novel functional networks. 

 

Modularity   

In our case, the robust topologies are a set of modular combinations.  Here modularity 

arises from the decomposability of the function into relatively independent sub-functions.  

Combinations of modules provide a combinatorial variability—each sub-function has a 

multiple choice of modules.  Although only a subset of these combinations is robust, this 

flexibility may be crucial for the network to evolve and adapt in a wide range of 

situations (Kirschner & Gerhart, 2005).  On the other hand, the fact that each module in 

the network can be traced back to a simpler sub-function suggests that new and more 

complex functions can be built from the bottom up via combinations of simpler 

functional modules.  Similar principles have been seen in other biological systems, e.g. 
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the transcriptional control (Carroll, 2005) and protein interactions (Bhattacharyya et al, 

2006), suggesting a hierarchical modular design toward an increasing complexity.   

 

Optimality and pleiotropy   

Another insight gained from our study is that the topology adopted by nature may not 

necessarily be the most robust per se, but may nonetheless be optimized within certain 

biological constraints.  Here the constraint seems to be that no direct positive loops can 

be used on the three nodes: “E”, “S”, and “W”.  Direct positive autoregulation may result 

in a less flexible system, which may impair the other functional abilities of the Hh and 

the Wg pathways.  Given the multiple tasks carried out by the two major signaling 

pathways (Galis et al, 2002), it is plausible that when a positive loop is needed for a 

specific function it is best done with another mediator (here “S”) that is only involved in 

that function.  Intriguingly, in the segment polarity gene network, the “S” node is part of 

the positive loops of both “E” and “W” (Figure 1C and D).  The “S” loops with “E” 

through mutual repression and with “W” through mutual activation.  This design ensures 

that “E” and “W” cannot be switched on in the same cell.  Our study suggests that 

modular design not only provides robustness but can also facilitate variability to 

accommodate a variety of pleiotropic constraints.   

 

Evolution   

The distribution of Q values (Figure 2) may have quantitative implications in the early 

history of evolution.  One may ask whether nature picked a robust topology in the first 
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place or a fragile one and then improved upon it.  The argument for the former is that a 

robust topology has a very large working parameter space and thus is easy to be “hit” by 

random parameter sets.  The argument for the latter is that although each particular 

fragile topology has a tiny working parameter space and is hard to be “hit” there are so 

many of them that the chance of hitting any is high.  This question can be phrased 

quantitatively by asking what is the most probable Q value for the quantity Q×P(Q), 

where P(Q) is the probability density of the Q distribution (inset of Figure 2).  We found 

that P(Q) ≈ c/Qα, with α=1.37, which implies that Q×P(Q) ≈ c/Q0.37 has larger weights in 

smaller Q’s, favoring the fragile topologies as nature’s first pick.   

 

Functional versus robustness constraint 

We have sampled each of the 14,348,907 3-node topologies with N=100 random sets of 

parameters.  We found that there are M=156,016 (about 1%) networks that are 

“functional” with at least one parameter set.  Among these “functional networks”, 96% of 

them contain at least one module of each kind.  Thus it appears that the function alone 

(without robustness) is a primary constraint on topology.  However, note that the number 

of the “functional networks” M can increase with the sampling number N.  We have 

sampled all 2-node networks with N=100, 1000, and 10000 (Supplementary Information) 

and found that M=75, 100, and 120, respectively.  Furthermore, we found that the 

percentage of the “functional networks” that are modular (containing at least one skeleton) 

decreases with N: it is 92% for N=100, 74% for N=1000, and 63% for N=10000.  Thus, 

“functional network” can not be defined unambiguously without a minimal robustness (Q) 

 16



requirement.  There would be more and more non-modular “functional networks” if we 

sample the parameter space more and more thoroughly.  These networks “function” with 

some special arrangements of parameters.  On the other hand, if we focus on robust 

functional networks (the ones with Q larger than a minimal value), all the statistical 

properties converge with the sampling number and the conclusions are robust. 

 

Methods 

The ODE model   

For a fixed topology, every cell has the same set of nodes and links.  Each node A has a 

half life time τA.  Each link is modeled with a Hill function.  “A link from A” has either 

the form An/(An+kn) (positive regulation) or kn/(An+kn) (negative regulation).  After proper 

normalization, each node has one parameter (half life time) and each link has two 

parameters (n and k).  Multiple regulations to the same node are modeled as the product 

of the regulations.  For example, for the topology of Figure 5 the equations in each cell 

are 

dA
dt

=
1

τ A

( k1
n1

Bn1 + k1
n1 − A)

dB
dt

=
1

τ B

( k2
n 2

An 2 + k2
n 2

Aout
n 3

Aout
n 3 + k3

n 3 − B)
 

where Aout is the average concentration of A in the neighboring cells.  We use the 

multiplication rule to model multiple regulations because in the full biological network 

(Figure 1A and C) the negative links are dominant, implying an “AND”-like logic when a 
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negative link appears together with other regulations.  In the simplified model, a positive 

link can be a result of two negative links (e.g., the link S→W in Figure 1D is from two 

negatives: Slp⎯|Mid⎯|Wg in Figure 1C).  In this case, the positive link should also have 

the “AND”-like logic.  For simplicity, we implement the multiplication rule uniformly 

whenever there are multiple regulations.  In our case, we have tested that the simplified 

models (Figure 1B and D) have the same steady state pattern as the full models (Figure 

1A and C).  

 

Simulation   

We use the GNU Scientific Library (GSL) for ODE simulation (Galassi et al, 2002).  The 

function used for the integration is rkf45.  Calculation time is set to 800 mins (virtual 

simulation time).  In most calculations, we randomly sample 100~10,000 parameter sets 

using the LHS method (McKay et al, 1979) which minimizes the correlation between 

different parameter dimensions.  The ranges of the parameters used in the sampling are as 

follows: k=(0.001-1), n=(2-10), and τ =(5min-100min).  They are similar to the ranges 

used in previous studies (von Dassow et al, 2000; Ingolia, 2004).  k is evenly sampled on 

the log scale and both τ  and n are evenly sampled on the linear scale.  The ODEs are 

simulated on an 8-cell segment (one row of the parasegment in Figure 1F).  Periodic 

boundary condition is used in both directions (x and y). 

 

Patterning function and judgment of pattern   
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We judge whether or not a network with a given parameter set can perform the required 

patterning function in the following way.  Let x(I;n) be the value of node I in cell n.  I can 

be E, S or W and x is a real number between 0 and 1.  The patterning function is defined 

as: Given the initial condition (Figure 1E) x(E;1,2)=1, x(E;3-8)=0, x(S;1-4)=0, x(S;5-8)=1, 

x(W;1-6)=0, x(W;7,8)=1, the network should reach the target steady state (Figure 1F) 

x(E;1)=1, x(E;2-8)=0, x(W;1-7)=0, x(W;8)=1 within a given time.  We use a similar 

criterion as the one in previous studies (von Dassow et al, 2000; Ingolia, 2004) to judge if 

a pattern is acceptable to be the target pattern.  Specifically, for node I in cell n, a score T 

is given to evaluate if its expression level is consistent with the target pattern. 

( )
( )

( )),((1
/),(1

/),()),((

maxon

3

3

maxmaxoff

nIxfT
xnIx

xnIxnIxfT
t

t

−=
+

==

α

αα
 

where x(I,n) is the concentration of node I in cell n, xt the threshold for x (we use 10% 

here), αmax the worst-possible score (0.5 here).  Toff is used when the target state requires 

that node I has a low value (0) in cell n.  Ton is used when node I should have a high value 

(1) in cell n.  All the individual scores are combined to give the total score:  

.)),((
node cell
∑∑ nIxT  

If the total score is lower than 0.0125, the pattern is acceptable.  This threshold is more 

stringent than that in the previous work (von Dassow et al, 2000; Ingolia, 2004).  We 

check the pattern twice, at 600 min and at 800 min.  If the score is smaller than 0.0125 at 

both times, we accept the pattern. 
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Figure Legends 

Figure 1.  Segment polarity network and expression pattern of wg and en.  (A) The 

segment polarity gene network model of (Ingolia 2004).  Ellipses represent mRNAs and 

rectangles proteins.  Lines ending with an arrow and a dot denote activation and 

repression, respectively.  Dashed lines indicate intercellular regulations.  The grey line 

means no direct biological evidence.  Nodes are colored into three groups, each of which 

is represented by one node in (B).  (B) The simplified topology of (A).  Each node here 

represents a group of nodes in (A) of the same color.  (C) Our model of the segment 

polarity gene network (see also (von Dassow & Odell 2002)).  Slp regulates wg positively 

through the mid gene and its product, which is represented by an arrow from “S” to “W” 

in (D).  (D) The simplified topology of (C).  (E) The initial condition of the patterning 

function.  In 3-node networks, “S” expresses in the posterior 4 cells of the parasegment.  

The pattern is periodic.  (F) The final stable pattern.  In 3-node networks, “S” is not fixed 

to be any specific pattern in the final state.  (G) zw3 mutant phenotype.  (H) ptc mutant 

phenotype.  Note that E-F is a simple representation of the actual embryo surface which 

is extended in both directions and includes 14 segments. 

 

Figure 2.  The histogram of Q values for 3-node networks.  Each of the 14,348,907 

networks is sampled with 100 random parameter sets (black bars).  Each of the resulting 

156,016 networks with Q>0 is resampled with 1000 random parameter sets (only data 

with Q>0.1 are shown; red bars).  Inset: the same data plotted in log-log scale and in 

terms of the probability density.  The straight line has a slope of -1.37.  
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Figure 3.  Skeletons and Functional modules.  (A) The four skeletons in robust 2-node 

topologies (black lines).  The green, orange and red links are neutral, bad and very bad 

links, respectively.  The numbers below the skeletons are (its Q-value, the size of its 

family).  (B) The three kinds of modules correspond to the three sub-functions in 3-node 

networks.  The bold modules are also those of the 2-node networks.  Many of these 

modules can be identified as significant network motifs among all networks with Q>0.1 

(see details in supporting information).  The combination of these modules leads to 44 

robust core topologies or skeletons.  The number under each module is (its Q-value, the 

frequency the module is being used in the 44 skeletons).   

 

Figure 4.  The number of networks in a family (A) and the skeleton’s estimated Q value 

(the product of the modules’ Q values) (B) versus the Q value of the skeleton.  

 

Figure 5.  An example of a 2-node topology. Intracellular regulations (solid lines) act on 

nodes within the cell; intercellular regulations (dashed lines) act on target nodes in nearby 

cells. 
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