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Abstract. Robustness problems of computational geometry algorithms
is a topic that has been subject to intensive research efforts from both
computer science and mathematics communities. Robustness problems
are caused by the lack of precision in computations involving floating-
point instead of real numbers. This paper reviews methods dealing with
robustness and inaccuracy problems. It discusses approaches based on
exact arithmetic, interval arithmetic and probabilistic methods. The pa-
per investigates the possibility to use randomness at certain levels of
reasoning to make geometric constructions more robust.

1 Introduction

Mastering the robustness of computational geometry algorithms (algorithms in-
tended to solve geometric computing problems such as surfaces intersections,
shortest paths on surfaces, planification of trajectories, etc.) is a topic that has
attracted big attention from both computer science and mathematics communi-
ties. Robustness problems are caused by the lack of precision in computations
involving floating-point instead of real numbers, in that case robust implemen-
tation of geometric algorithms is highly nontrivial and the strange behaviors
(crashes, infinite loops, inconsistent outputs, etc.) of these algorithms are due to
their inaccurate computations. Although a lot of work has been done to solve
this problem, it is still impossible to find a systematic, simple and fast method
that eliminates the sources of all these robustness problems.

Robustness and non-robustness issues in geometric computations has important
scientific and economic impact (barrier to full automation, programmers’ pro-
ductivity, failure of critical missions, etc.). This impact has motivated intensive
researches on the subject during the last twenty years, which generated a large
literature and surveys [1–4]. We refer the reader to the excellent recent sur-
vey by C. Yap in the Handbook of Discrete and Computational Geometry [4].
In another good survey J. Keyser classified robustness problems in two main
categories: problems due to precision and problems due to degeneracies [5]. He
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presented the issues involved with each of these classes and discussed some of
the solutions that have been proposed for dealing with them. In an earlier pa-
per, D. Goldberg presented a tutorial on the aspects of floating-point that have
a direct impact on designers of computer systems [1]. The paper begins with a
background on floating-point representation and rounding error and continues
with a discussion of the IEEE floating point standard. Robustness problems in
computer aided design and geometric modelling has been studied by C. Hoff-
mann in [3] where exact arithmetic, symbolic reasoning, and reliable calculations
(interval arithmetic) was identified as possible strategies to address this problem.
Siguhara and Iri introduced the topology-based approach which avoids failure
by using floating-point arithmetic, but places higher priority on topological con-
sistency than on numerical values [6]. So decisions by this approach ensure that
the result is always coherent from the topology point of view. But, there is no
guarantee that any other software that works with such a result will give co-
herent outputs from it. Topology-oriented implementations have been applied
to a number of geometric problems such as Voronoi diagram computations and
convex polyhedra intersections [7, 8].

In this paper we survey some inaccuracy issues in computational geometry, we
discuss the classical solutions that have been suggested in the last twenty years,
and then show how randomness may sometimes be used in order to help reduce
the impact of inaccuracy in geometric computations. The probabilistic approach
has received less attention than other robustness tackling methods, our intention
here is to highlight the positive role probabilistic algorithms can play. The use
of randomness is not intended to solve all robustness problems of geometric al-
gorithms, but to provide probabilistic algorithms as an alternative for geometric
computations. These algorithms are costly in time, but tolerant and can resist
to inaccuracies. They operate using weak oracles that very often converge to the
true decision, but can also say ”I do not know” when the right decision is out of
reach.

The paper is organized as follow: Section 2 describes some of the problems caused
by inaccuracy. Section 3 reviews the classical solutions that were designed to help
prevent these inaccuracy problems. Section 4 explores new methods, based on
probabilistic approaches used in various unrelated domains.

2 Consequences of inaccuracy on geometric algorithms

The inaccuracy of floating-point arithmetic has dramatic consequences on geo-
metric computations. Inaccuracy causes inconsistencies both in geometric pro-
grams and their data structures, so that geometric programs may crash or yield
inconsistent results.

As a first illustration, let Sn be a set of n ≥ 4 points in the Euclidian plane,
with no more than two on the same line. The convex hull C of Sn is the smallest
convex polygon enclosing all its elements. A simple method to construct the
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edges of C by enumeration is to identify all pairs (a, b) in S2
n such that all points

in Sn\{a, b} lie on the same side of infinite line (ab) (note that imposing no more
than two aligned points in S removes special cases here). Although this method
is correct from a theoretical point of view, it may fail to yield consistent results in
practice: to see this, consider applying it to n = 4 nearly aligned points. Because
the points may be arbitrarily close to being aligned without being exactly so,
the previous test may easily fail on any pair of points, due to inaccuracy in
the computations! This failure may seem striking at first glance, but is it really
more striking than the impossibility to verify identities such as: (

√
2)2 = 2 or

(1/3) × 3 = 1 or (cos θ)2 + (sin θ)2 = 1 with floating-point arithmetic?

To get more insight on what goes wrong in this example, consider a, b, c to be
3 distinct points in the Euclidian plane. The “orientation” of the three points,
O(a, b, c) is defined as the sign of the determinant:
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which represents the signed volume of the parallelepiped generated by the vectors
(a, 1), (b, 1), (c, 1). Intuitively, the three points form a left, right, or null “turn”
depending on whether O(a, b, c) is positive, negative or null. Obviously, O(a, b, c)
and O(c, b, a) must have opposite signs, but one may easily generate three almost
(but not exactly) aligned distinct points a, b, c with floating-point coordinates,
which contradict this property. To help solve such inconsistencies, D.E. Knuth
[9] suggested a set of axioms fulfilled by the orientation predicates, assuming for
the simplicity of proofs that no more than two data points may lie on the same
line. He later realized that he had set up the axioms for oriented matroids with
rank 3. All his axioms and resulting theorems are contradicted by floating-point
configurations, due to inaccuracy.

Inaccuracy introduces inconsistencies in geometric data structures. Among the
most basic geometric data structures, some represent point / line or point / plane
incidences. Typically a 2D point is described by its cartesian coordinates (x, y),
and a line with equation ax + by + c = 0 by the triple (a, b, c). The intersection
point between 2 lines (a, b, c) and (a′, b′, c′) is easily computed with standard
linear algebra. Due to inaccuracy, Ω(xΩ , yΩ), the computed intersection point
will not lie on these lines (i.e., axΩ + byΩ + c 6= 0 and a′xΩ + b′yΩ + c′ 6= 0): a
contradiction between a numerical test and the incidence fact stored in the data
structure. Of course, most geometry programmers are aware of this difficulty,
and hence, to find out the position of a vertex v relatively to a line D, they
first check whether the data structure does not explicitly hold the information
“v lies on D”; if not, a numerical orientation test is performed. This two-stage
procedure eliminates the more obvious inconsistencies. However, many geometric
theorems of projective geometry—or even geometric constructions—imply non-



4

trivial incidences, which such simple ”precautions” cannot detect, as we shall
now see through five well-known theorems from the field of classical geometry.

Theorem 1 (Harmonic conjugate, Fig. 1, left). Let A,B, X be 3 distinct
aligned points. Let L be any line through X, s any point outside L and ABX.
Then the point X ′ defined by the construction: a = sA ∩ L, b = sB ∩ L, s′ =
aB ∩ Ab, X ′ = ss′ ∩ AB, depends neither on L nor on s.

X ′ is called the harmonic conjugate of X relatively to A,B. The harmonic con-
jugate of X ′ is X.

Theorem 2 (Desargues theorem, Fig. 1, right). In 2D or 3D, if two tri-
angles abc and ABC are such that aA, bB, cC concur (the two triangles are
said to be “perspective”), then homologous sides meet in 3 aligned points, i.e.,
ab ∩ AB, bc ∩ BC, ca ∩ CA are collinear. The converse is true as well.

Theorem 3 (Pappus theorem, Fig. 2, left). In 2D (i.e., in the projective
plane), if p1, p2, p3 are three distinct aligned points, and if q1, q2, q3 are three
distinct aligned points, then the three intersection points p1q2 ∩ p2q1, p1q3 ∩ p3q1

and p2q3 ∩ p3q2 are aligned as well.

Theorem 4 (Pascal, Fig. 2, right). 6 coplanar points belong to the same
conic if and only if the 3 opposite sides (in any order) meet in 3 aligned points.

Theorem 5 (Pouzergues (hexamys)). In the projective plane, an hexamys
is a (possibly concave and self-intersecting) hexagon such that its three opposite
sides meet in three aligned points. Then every permutation of an hexamys is also
one.

Pouzergues’ theorem may be seen as a particular case of Pascal’s theorem with
no conic involved. All those geometric theorems are “wrong” when using the
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Fig. 1. Left (harmonic conjugates): for 3 given aligned points A, B, X, the point X ′

does not depend on L nor s. Right: Desargues theorem.



5

p2
p1

q1
q2 q3

p3 p1

p2

p3

q3

q2
q1

Fig. 2. Pappus’ and Pascal’s theorems.

floating-point arithmetic, and “true” when using an exact arithmetic. An ex-
act rational arithmetic is sufficient to prove the harmonic conjugate theorem,
Pouzergues’, Pappus’ and Desargues’ theorems, assuming the initial coordinates
are rational. An algebraic arithmetic is required for Pascal’s theorem, if the
points on the conic are intersection points between general conics.

3 Classical methods

3.1 The epsilon heuristic

To overcome inaccuracy, the most popular trick used in geometric modelers is
the ǫ heuristic. When two floating-point numbers differ by less than a given
threshold traditionally called ǫ, they are considered to be the equal. The test
may be made in an absolute (|a − b| < ǫ) or relative (|a − b| < ǫ × max(|a|, |b|))
manner. Some modelers use several ǫ values, say one for lengths, another for
areas, another for angles, etc.

This heuristic loses the equality transitivity: it is easy to find a, b and c so that
a =ǫ b, b =ǫ c, but a 6=ǫ c, with =ǫ meaning ”equal for the ǫ heuristic”: thus
inconsistencies remain possible.

Moreover, finding the relevant value(s) for ǫ(s) is much of a difficult task, depend-
ing on the usual range of numbers (itself depending on the applications), and on
the format of floating-point numbers: it is common folklore in the CAD-CAM
community that the conversion from 32-bits floating-point numbers to 64-bits
has required a not so easy ǫ’s updating. Of course the ǫ heuristic may fail, and
sometimes it does. In practice, it seems to work not so bad and to improve the
geometric modelers’ robustness.
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3.2 The exact computation paradigm

In geometric computations, a lot of effort has been put to design theoretically
fast methods, assuming that an exact arithmetic is available for free. These
sophisticated methods do not resist inaccuracy and the induced inconsistencies.
They require consistency to work.

Exact rational arithmetics In the presence of alternatives and tests, geo-
metric methods branch according to the (positive, negative or null) sign of ex-
pressions, called predicates: the orientation test of three points in the plane is
a typical example. One method to prevent inconsistencies in computations is to
take “exact” decisions in the branching tests, by means of an exact arithmetic.
Systematically using such an arithmetic consumes too much time and space re-
sources, and hence various authors have advocated for the use of some sort of
‘filtering” (also known as “laziness”):

– First compute guaranteed bounds on the expressions to be tested. Most of
the time, those are sufficient to determine the sign of the expression.

– Whenever they are not (i.e., 0 lies within the bounds), use an exact arith-
metic to determine the sign of the expression.

An example of such a method is the lazy rational arithmetic [10]: a lazy number
is represented by an enclosing interval, and by a definition (either an initial
rational number, or the sum, product, opposite, inverse of other lazy numbers).
The interval is systematically computed. When it is not sufficient to decide the
sign of a number, the definition associated with the number is evaluated using
an exact rational arithmetic.

All filter-based solutions use the same basic scheme, they may differ by the way
they define aspects such as:

– the exact arithmetic used (remainder number system, i.e., modular arith-
metic; strings of digits, ...),

– the evaluation strategy,
– the method for storing the exact values or the definition itself,
– the method for evaluating the bounds (statically at compile time, or dynam-

ically at run time).

Such techniques, routinely used in major geometric applications, for instance
CGAL [11], XSC [12], LOOK [13] or LEDA [14] libraries, are, unfortunately,
limited to computations in the field of rational numbers. However, it is possible
to generalize the lazy (or filter) paradigm if an exact algebraic arithmetic is
available, as the ”gap arithmetic” used in LEDA::real, CORE and CGAL [15,
16, 11].
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Gap arithmetics Canny’s gap theorem gives a way to numerically prove that
a number is zero: compute a (guaranteed) interval containing it, with width
smaller than ǫc [17]. As soon as the interval does not contain 0, the number is
clearly not 0 and its sign is known. Otherwise, if the interval contains 0 and has
width less than ǫc, the number can only be 0.

Theorem 6 (Canny’s gap theorem). Let x1, x2 . . . xn be the solutions of
an algebraic system of n equations and n unknowns, having a finite number of
solutions, with maximal total degree d, with relative integer coefficients smaller
or equal to M in absolute value. Then, for all i ∈ [1, n], either xi = 0 or |xi| > ǫc

where ǫc = (3Md)−(ndn).

Unfortunately, there are several problems. First, ǫc is far much smaller than the ǫ
used in geometric modelers; actually ǫc is generally much smaller than the small-
est positive floating-point number, even in simple examples, hence the need for
some “big-float” arithmetic. Second, given such an arithmetic, the computational
scheme described here has an exponential cost: an exponential number of digits
is needed to prove the nullity of a number because of the ndn term in Canny’s
theorem. There is no hope to significantly widen Canny’s gap in the worst case,
because it is almost reached in the following simple instance: x1(Mx1 − 1) = 0,
Mx2 − x2

1 = 0 . . .Mxn − x2
n−1 = 0. See [18–20] for implementations of gap

arithmetics or gap theorems, and [21, 22] for related root separation bounds.

Pros and cons of the exact computation paradigm CGAL geometric
library relies on filters and lazy rational arithmetic to achieve robustness [11].
CGAL is well-known for its reliability and speed; its Delaunay routine is often
used in industry for surface reconstruction from a set of sampling points. This
alone stands as a good point of the paradigm. However, the exact approach has
important limitations:

– Exact algebraic arithmetics are too slow to be practical. Unfortunately, alge-
braic numbers are ubiquitous in geometric computations: rotating an object
by an angle kπ, k ∈ Q, intersecting conics or other algebraic curves, inter-
secting quadrics or other algebraic (parametric or implicit) surfaces, all those
”primitives” introduce algebraic numbers. [23] implemented robust boolean
operations between 3D algebraic shapes, but the corresponding program is
an order of magnitude too slow.

– In applications such as CAD-CAM, computer graphics and GIS, data are in-
accurate; it does not make sense to compute results which are more accurate
than data itself; the only justification could be the attempt to make the most
fragile algorithms ”work”; moreover the exact results are typically rounded
to communicate with the rest of the world, which uses only floating-point
arithmetics.
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– Industrial applications use the floating-point arithmetic to represent geomet-
ric object. Translations from exact representations to floating-point represen-
tations and vice-versa are thus essential. Another reason for such ”rounding”
is that geometric modelers are shape editors, and the algebraic complexity
of the edited shape increases with each editing operation. Rounding floating-
point geometries to exact (and consistent) geometries is as much difficult as
“repairing” inconsistent geometric objects (a situation known as the “poly-
gon soup”).

When the cost of exact arithmetics is taken into account, some of these algo-
rithms may become unpracticable, or slower than more rudimentary methods
(see section 4), which are more robust and still work with inaccuracy, because
they do not propagate inaccurate results.

3.3 Interval computations

A natural idea to rid geometrical computations of inconsistencies is to resort to
some kind of interval computations.

Basic interval arithmetic The first and most basic interval arithmetic is
due to R. Moore [24]. Basically, numbers are represented with intervals, which
stand for the uncertainty associated with each one, a notion which was obvi-
ously borrowed from the everyday practice of physicists. Interval computations
are defined for the sum, difference, product and inverse of intervals. Hence, it
is possible to maintain intervals for combinations of, and even simple functions
on, elementary data. It is also possible to define interval variants for the ex-
ponential (exp([a, b]) = [exp(a), exp(b)]), logarithm, sine, cosine functions, etc.
For non-monotonous functions, the interval argument must be decomposed into
subintervals on which the function is monotonous.

Following the basic theory, the width of the sum or the difference of two intervals
is the sum of the widths of the two added or subtracted intervals. Thus, X −X
is not equal to 0: interval arithmetic “loses the dependence between variables”.
A consequence of this is the wrapping effect: the overestimation of intervals
increases with the number of operations.

To restrict such a wrapping effect when evaluating polynomials, a possibility is
to use the central evaluation form, as follows: f(X) ⊂ f(Xc) + (X − Xc)f

′(X),
where Xc is the center of the interval X; X −Xc is the halfwidth of X; f ′(X) is
an interval enclosing the derivative of f inside X; it is computed either with the
naive arithmetic, or recursively with the central evaluation form. This extends
to multivariate polynomials. The analytical definition of f is explicitly required,
and may not be considered as an ”oracle” or a black box by itself.
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Affine interval arithmetic As mentioned just above, the naive interval arith-
metic “loses the dependence between variables”; the affine interval arithmetic
was intended to fix this flaw [25, 26]. It is designed as a model for “self-validated
computations”, that keeps track of the first-order correlations between computed
and input quantities. Quantities manipulated by the arithmetic are represented
by affine expressions of the form:

x̂ = x0 + x1ε1 + . . . + xnεn,

where the εi are called the “noise symbols”, and the xi are real numbers. Each
noise symbol stands for an independent component of the total uncertainty of
the ideal quantity it is associated with. Standard operations are defined over
those forms, and affine interval arithmetic may be be seen as a generalization
of interval arithmetic with richer properties. In particular, it is possible to use
the noise symbols to identify the dependency between variables (or even one
variable appearing in more complex algebraic expressions, as in (1 + x)(1− x)),
and hence to prevent the dynamic interval bounds on expressions from growing as
rapidly as they would if an interval arithmetic used. This technique requires good
approximations of higher degree expressions with affine forms in the appropriate
noise components. This of course is fairly more time-consuming than standard
interval arithmetic.

Bernstein-based intervals In the CAD-CAM and computer graphics commu-
nities, since the pioneering works by Bézier and de Casteljau, it is well-known
that the properties of the Bernstein basis yield sharp enclosing intervals for poly-
nomials [27–29], as Fig. 3 gives visual evidence. This knowledge finally percolated
to other communities [30–32]. A Bernstein basis solver for polynomial systems
written by Mourrain and Pavone is available in GALAAD [33].

The canonical basis for degree d polynomials in t is: T = (1, t, t2 . . . td). The

Bernstein basis is: B = (B
(d)
0 (t), B

(d)
1 (t), . . . B

(d)
d (t)) where B

(d)
i (t) =

(

d
i

)

ti(1 −
t)d−i.

The conversion between the Bernstein and the canonical bases is a linear map-
ping, representable by a (d+1)× (d+1) square matrice M such that: B = TM .
For instance, for d = 3:

(B0, B1, B2, B3) = (1, t, t2, t3)









1 0 0 0
−3 3 0 0

3 −6 3 0
−1 3 −3 1









Some remarkable properties of the Bernstein basis are:

– The polynomial lies inside the convex hull of its coefficients zij in the Bern-
stein basis. Thus z = f([0, 1], [0, 1]) lies in [mini,j zij ,maxi,j zij ]. This prop-
erty extends to all dimensions.
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– The de Casteljau method computes the coefficients in the Bernstein basis of
the polynomials f(2x) and f(2x−1) without having to refer to the canonical
basis; it allows to subdivide the studied interval [0, 1] into two subintervals
[0, 1/2] and [1/2, 1]. This method extends to multivariate polynomials.

– The control points of the image of a curve (or surface) by some affine trans-
form T are the images by T of the control points of the curve (or surface). i.e.,
T (CtrPts(Surface)) = CtrPts(T (Surface)), where T is any affine transform.
This extends to all dimensions.

Fig. 3. The naive interval arithmetic is used in the top row, and the Bernstein-based in-
terval arithmetic in the bottom row, for displaying the same three curves. Left column:
the curve has equation: f(x, y) = 15/4 + 8x − 16x2 + 8y − 112xy + 128x2y − 16y2 +
128xy2

− 128x2y2 = 0 and is displayed in the square [0, 1] × [0, 1]. Middle column:
Cassini’s oval. Right column: a random curve with degree 14.

What interval analysis can do In this paragraph we discuss five applications
of interval analysis:

a. tracing of implicit curves or surfaces,
b. displaying of strange sets,
c. solving non-linear systems of equations using Newton method,
d. solving non-linear systems of equations using Bernstein basis; and
e. representing boundaries of geometric objects (interval geometry).
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a. Tracing implicit curves or surfaces:
Interval analysis is used in computer graphics to display semi-algebraic sets
defined by boolean combinations of polynomial inequalities, in 2D (such as
f(x, y) ≥ 0 and g(x, y) ≥ 0) or 3D (such as f(x, y, z) ≥ 0 and g(x, y, z) ≥ 0).
See Fig. 3 for an illustration. Without loss of generality, we present the classical
subdivision method used to display 2D curves defined by an implicit equation
f(x, y) = 0 as follows:

Subdivide(f: function, X : interval, Y: interval, depth: int) {

interval F = f(X, Y);

draw_rectangle(X, Y);

if (F contains 0)

{ if (depth==0) fill_rectangle(X, Y)

else

{

interval X1 = [min(X), middle(X)];

interval X2 = [middle(X), max(X)];

interval Y1 = [min(Y), middle(Y)];

interval Y2 = [middle(Y), max(Y)];

Subdivide(f, X1, Y1, depth-1);

Subdivide(f, X1, Y2, depth-1);

Subdivide(f, X2, Y1, depth-1);

Subdivide(f, X2, Y2, depth-1);

}

}

}

b. Displaying strange sets:
Interval analysis methods may also be used to compute guaranteed covers of
fractals or strange sets such as Julia sets or the Hénon attractor (see Fig. 4), a
process that we now sketch rapidly:

– The “Hénon mapping” sends the point (x, y) ∈ R2 onto (x′, y′) = (y + 1 −
ax2, bx), where a, b are two parameters; classically, a = 1.4 and b = 0.3.

– The Hénon set is the set of points whose orbit (set of H-iterates) remains
bounded.

– Assume, for the sake of simplicity, that a square bounding box B of the
Hénon set is known:
• Subdivide B in 16 × 16 square cells;
• For every cell C, compute an enclosure of H(C), using an interval arith-

metic;
• Each time H(C) overlaps a cell Ci, add an arc C → Ci in a graph HG,

whose vertices are cells partitioning B.
• Compute the strongly connected components of HG: a strongly compo-

nent is transient if and only if it contains only one cell C and there is
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no loop C → C in HG; then this cell cannot contain any point in the
Hénon set.

• For non-transient cells C, the graph HG contains at least one loop C → C
or C → C1 → . . . C, thus C may contain points of the Hénon set.

Non-transient cells are subdivided, and the method is applied again.

– The recursion stops when an accurate picture is obtained.

This method guarantees s sharp cover of the Hénon set, and shows that the
classical orbit method used to display strange sets may yield erroneous results
(for some values of a, b). Even the need of an initial bounding box may be relaxed,
since the projective plane is bounded (it may be mapped to a sphere). Refer to
[34] for more details.

Fig. 4. The Hénon set with increasing 82, 162, 322, 642, 10242 resolutions.

c. Solving non-linear systems of equations using interval Newton methods:
Let F (x) = 0 be a system of n equations in n unknowns. The classical Newton-
Raphson method iterates: xn+1 ← xn + F (xn)F ′(xn)−1 until convergence. A
variant is the secant method which does not update the inverse of the derivative
F ′ at each step, and iterates: xn+1 ← S(xn) = xn + F (xn)J−1, where J is the
Jacobian of F at x0.

To find roots of F inside a prescribed initial box X, a natural idea is to compute
S(X) for an interval X. Since S(X) = X+ something, the width of S(X) is al-
ways greater than the width of X, if evaluated with the naive interval arithmetic,
which prevents convergence. A solution is to use the central form evaluation to
compute S(X), which leads directly to the Krawczyk (or Krawczyk-Moore) op-
erator.

The interval secant method may be described as follows: if S(X) ⊂ X, then S
is contractant inside X, thus X contains an isolated root of F , and the secant
method will converge to this root starting from any point of X. If X∩S(X) = ∅,
then X contains no root of F . Otherwise possible roots of F in X can only be
in X ∩ S(X); if X ∩ S(X) is significantly smaller than X, then the method is
resumed on X∩S(X), i.e., S(X∩S(X)) is computed, etc. Otherwise, the former
is likely to contain several roots of F , and is bisected: eventually, these bisections
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separate roots. The combinatorial complexity of the method is due of course to
the bisection steps.

The computation of

X ∩ S(X) = (X1 ∩ S1(X1, . . . Xn), . . . Xn ∩ Sn(X1, . . . Xn)),

can be optimized using the most recent value of Xi, i = 0, . . . k when computing
Sk(X), and hence by cascading the computations:

X1 ← X1 ∩ S1(X1, . . . Xn), X2 ← X2 ∩ S2(X1, . . . Xn),

and so, see [35, 36] for more details.

d. Solving non-linear systems of equations using Bernstein basis:
The Bernstein-based subdivision method may also be used to solve polynomial
systems of equations, as it was done by Patrikalakis [29] and Garlof [30]. These
authors use the tensorial Bernstein basis, which has limitations: it is a dense
representation (even if the polynomial is sparse in the canonical basis), and has
an exponential number of coordinates.

A typical solution is likely to use the simplicial Bernstein basis, as obtained
from the development of: (x0 + x1 + x2 + . . . xn)d, where d is the total degree,
and x0 + x1 + x2 + . . . xn = 1. The simplicial basis only has O(nd) coefficients,
has the same convex hull property as the tensorial basis, and the de Casteljau
method also allows to divide a Bernstein simplex into two, along one of its edge.
Recently, Nataraj et al. [31, 32] combine tensorial Bernstein basis and Taylor
expansions, to achieve superconvergence of inclusion functions, and to account
for non polynomial functions.

e. Representing boundaries of geometric objects:
Quite recently also, several authors (e.g., [37]) suggested to extend the prin-
ciple of intervals, which enclose boundaries in 1D, to geometric objects in 3D
(interval geometry). A boundary surface is thus enclosed inside two polyhedra
(typically with rational coordinates). The inside and outside polyhedra may have
different topologies, for instance a different number of connected components.
Constructive Analysis extends to such objects, i.e., it is possible to compute
(using increasing computing resource) closer and closer nested approximations.

This approach does not suffer from the incompatibility between, on the one
hand, classical boundary representations or geometric algorithms which require
to compute the exact sign of numbers: 0,+,−, and on the other hand interval
arithmetics which are intrinsically unable to compute the sign of 0 from an
enclosing interval. However interval geometry suffers from the same intrinsic
restriction as interval arithmetics: interval arithmetics cannot compute the sign
of 0, and interval geometry cannot detect if two shapes are tangent: it can only
detect whether they are disjoint or intersect.

In another effort similar to the one of interval geometry, Foufou et al. introduced
the fuzzy geometry and proposed to use it to classify surfaces against their
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intersection status [38] . Geometric entities are replaced by thicken entities. The
associated fuzzy intersection algorithm provides a three-state classification of
surfaces couples: certainly intersecting, certainly non intersecting and potentially
intersecting.

What interval computations cannot do All interval-based solutions have
the intrinsic limitation of being only “half deterministic”, in the following sense.
If a number is zero, no interval computation can detect it (in finite-time); on the
other hand, if the number is either strictly positive or strictly negative, a tight
enough interval will find its sign. Thus interval analysis cannot decide nullity.
For the same reason, it cannot decide equality (i.e., the nullity of the difference
of two equal numbers). This argumentation has been formalized by Constructive
Analysis [39] as follows.

By definition, a number is computable if a finite-time algorithm provides an ar-
bitrarily tight interval enclosing it. For instance, the interval arithmetic provides
a stream of (nested) Cauchy intervals. Interval arithmetics which are capable of
computing such arbitrarily tight enclosures are called Real Arithmetics. Several
implementations have been suggested (and sometimes proven) [40, 41].

By definition, a function f(x1, x2 . . . xn) is computable if f(x1, x2 . . . xn) is com-
putable whenever x1, x2 . . . xn are computable.

No interval arithmetic may be more powerful than the Real Arithmetic, an
ideal interval arithmetic which does not suffer from practical limitations (e.g.,
restricted memory). But even Real Arithmetic is intrinsically restricted:

Theorem 7 (Real Analysis). Only continuous functions are computable.

This theorem has considerable implications, which even today have not been
fully realized. For instance let us just consider that the sign function is equal
to +1 for positive numbers, to -1 for negative numbers, and to (say) 0 for zero.
This function is discontinuous in 0; since no interval computation may establish
that a number is zero, the sign of zero is not computable.

There is a quantitative variant of this theorem: the greater |f ′

xi
|, the sharper

the interval for xi so as to compute f(x1, . . . xn) with a prescribed precision.
For a discontinuous function, its slope is infinite at the discontinuity, thus the
argument has to be known with infinite precision to compute the function at
that point.

In practice, an arbitrarily tight interval cannot be computed, because of storage
limitations (and the patience limitation of the user). But the theorem holds
even without taking this common-sense argument into account. This theorem
has dramatic consequences on geometric computing.

The most basic geometric algorithms typically require to compute non-continuous
functions, such as: do two geometric objects intersect or not? does this point lie
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on the left, on the right, or just on a boundary surface? does this triple of 2D
points turn left, right, or are they aligned?, and so on.

As we have seen, geometric algorithms use “predicates” for branching; the branch
is chosen according to the sign of a predicate, such as the orientation predi-
cate. Predicates being discontinuous functions, they are not computable with
Real Analysis. Hence, interval computations (which seem to be the only realistic
guaranteed way of computing) are not compatible with the most basic geometric
algorithms of Computational Geometry, and not compatible with the most basic
geometric data structures used to represent incidence between points, curves and
surfaces. Nearly all geometric modelers use these data structures.

Stated crudely: no geometric programs computing non-continuous functions, and
using floating-point arithmetic, or using interval computations or even Real
Arithmetic, may be proven. Actually, they all are wrong. The best they can
achieve is to work most of the time (i.e., not fail more often than their competi-
tors).

This limitation of interval arithmetic is the main argument to promote discrete
geometry, and stochastic or probabilistic approaches.

4 Probabilistic approaches

4.1 Solutions at the arithmetic level

Probabilistic gap arithmetics A practicable but only probabilistic method is
to compute with some “big-float” library, and to use the ǫ heuristic (see section
3.1) with a small ǫ, e.g., ǫ = 10−200, and hope that life will not be so bad as
to produce a counterexample. We are not aware of any report on this kind of
experiment.

The stochastic arithmetic The stochastic arithmetic, implemented in CADNA
[42], estimates and limits the propagation of round-off errors of the floating-point
arithmetic in scientific software (e.g., simulation of fluid mechanics), and may
detect the source of numerical instabilities. A stochastic number is represented
by a mean value (a floating-point number) and a variance. Each floating-point
operation is performed with n (typically n = 3) samples of the stochastic num-
ber. A stochastic zero is a number with no significant bits.

While the wrapping effect of interval arithmetics overestimates the interval
widths, the stochastic arithmetic gives more realistic confidence intervals, which
accounts for the fact that round-off errors often compensate. The stochastic
arithmetic is well-adapted to programs with few branchings, where tests are
used mainly to detect the convergence of a numerical algorithm.
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For geometric computations, the stochastic method will decide the sign of num-
bers equal to 0 or close to 0 only randomly, thus it takes neither exact nor
consistent decisions and it does not seem to make sense to use a stochastic
arithmetic for geometric algorithms (e.g., computing a convex hull or a Delau-
nay triangulation). However, it does make sense to use the stochastic scheme at
the geometric level, as we shall soon see.

Zero free arithmetic There are 2 kinds of exact arithmetics: those (e.g., ra-
tional arithmetics) which provide a test against zero (i.e., is a number equal,
superior or inferior to 0?), and those that do not (e.g., real constructive arith-
metics). In the latter class, real numbers are typically represented by streams
(potentially infinite lists) of nested Cauchy intervals.

In geometric methods, programmers usually round data to integers or rationals,
and then use the first kind of arithmetics. This precludes Computational Geom-
etry from addressing algebraic non-rational problems (e.g., intersection between
algebraic curves and surfaces).

The idea of the zero-free exact arithmetic [43] is to round data numbers to al-
gebraically independent, transcendental numbers, by perturbing them with a
stream of random digits. Assume that all the tests in geometric programs in-
volve the signs of polynomials: f(u1, u2 . . . un) where u1, . . . un are initial data
numbers; if the latter are rounded on algebraically independent numbers, then
the only polynomial f which can vanish is the identically zero polynomial. It
makes no sense to ask for the sign of this polynomial in an instruction such
as if(0==0) then .... In consequence, tests never evaluate to zero, and it is
possible to use real constructive arithmetics. Moreover this method also solves
the problem of degeneracies (the zero-free arithmetic may be seen as a gener-
alization of the so-called “simulation of simplicity” (SoS ) technique suggested
by Edelsbrunner and Mcker [44], with the major difference that SoS requires
an arithmetic capable of exactly testing the sign of numbers.): three points will
never be aligned, four points will never be coplanar nor cocyclic, etc. Finally, this
solution allows geometric methods to address problems requiring non-rational
arithmetics: algebraic arithmetics, or even transcendental numbers. It becomes
possible to use numbers defined by a convergent algorithm, which computes roots
of polynomial systems for instance, as long as we are sure that all tests involve
algebraically independent numbers.

This assumption is the cornerstone of the zero-free arithmetic, and its main
weakness: some geometric programs allow to derive geometric objects or numbers
(coordinates for intersection points) from the initial (perturbed) ones, with some
geometric constructions. Clearly, the former algebraically depend on the latter.
For instance, cutting one (perturbed) initial line with three other (perturbed)
initial lines produces three aligned points; the orientation test for these three
points will not terminate: the related determinant is zero. A lot of geometric
theorems (Pappus, Desargues) allow to construct less trivial alignments, and
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occurrences of zero. At the other end of the spectrum, computing x−x, where the
two instances arise from different computation contexts (e.g., the dependance of
the variables has been lost as in interval arithmetic), is null but not “identically
null”.

Combining intervals and randomized nullity tests The previous method
does not terminate in case of a null number. In order to circumvent this problem,
it is possible to combine it with a randomized nullity test [45–48]. For instance,
assuming all numbers involved are rational, a number is probably null if its
interval is sharp enough and contains zero, and the number’s hashed value (result
of a modular computation modulo a large prime) is zero. This method is efficient
and simple in the rational case, but is less appealing in the algebraic case [47,
49, 47, 50].

Probabilistic tests can also be used for polynomials and not only for numbers.
J.T. Schwartz [45] introduced this method to test algebraic identities: if a polyno-
mial (e.g., the determinant of a square matrix with polynomial entries) vanishes
when evaluated at random values of its variables, it is likely identically null. This
test is only probabilistic, but extremely fast. This probabilistic principle, called
proof by example, is also used for probabilistic proofs of geometric theorems
[51–53]. It has been extended beyond polynomials [49, 47, 50], e.g., Tulone et al.
[49] extend it to radical expressions which occur in ruler and compass geometric
constructions and related geometric theorems, such as Pascal’s for a circle.

This probabilistic test may be made deterministic in several ways. For the sake
of simplicity, consider a polynomial in one variable: if an upper bound d of the
degree is known, and if the polynomial vanishes in d + 1 distinct sample values,
then it may only be the zero polynomial; or, if we have an upper bound for the
magnitude of the coefficients, we can also use some formula [20] to compute an
upper bound for the magnitude of the root module, or a lower bound for the
magnitude of the root inverse, so if the polynomial vanishes for a number outside
these bounds, then it can only be the zero polynomial [51]. This principle for
univariate polynomials may be extended to the multivariate case, and always
with an exponential cost.

Clarkson and Shor used random sampling for several geometric algorithms and
showed that random subsets can be used optimally for divide-and-conquer al-
gorithms and for bounds computations for incremental building of geometric
structures [54, 55].

4.2 Solutions at the geometric level

The motion planning problem In robotics, the motion planning problem
(also called the piano mover’s problem) consists in finding a trajectory for a
robot, which moves from a starting position to a final one in an environment
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cluttered with obstacles. The robot is represented by a point in a configuration
space; the configuration space is the usual Euclidean space (which allows to
describe the location of some origin point of the robot), augmented with all
parameters which describe the spatial orientation (3 angles for a rigid body in
3D) and the configuration (one angle for each articulation of the robot, one
length for each jack) of the robot. Obstacles – and the constraints of avoiding
self-intersection of the robot – forbid some areas of the configuration space.
There is a trajectory for the robot if its initial and final configurations lie in the
same connected component of the configuration space. Typically, the routine
that decides whether a given point in the configuration space is collision-free or
not, returns in fact a signed “interpenetration depth” or some kind of signed
minimal distance to the closest obstacle. In the first stages of the algorithm,
interpenetration is tolerated in order to find a coarse path rapidly. In the final
stages, the acceptable tolerance is gradually reduced.

This problem is decidable, and exact and deterministic algorithms from computer
algebra (say the Collin’s Cylindrical Algebraic Decomposition, and its variants
and optimizations) solve it by computing an explicit representation of the feasible
part (the part not forbidden by obstacles and self-avoidance constraints of the
robot) of the configuration space. However, such approaches turn out to be
definitively not practical due to their high combinatorial costs, to their lack of
robustness (these methods do not resist inaccuracy and degeneracy), and also to
the high dimension of the configuration space (≈ 200 for a human body, ≈ 50
after simplification; from 10 to 20 for a simple robot) occurring in industrial
problems.

By the end of the 1980’s some roboticians broke away from this exact and de-
terministic approach. They no more compute an explicit representation of the
feasible configuration space. Instead, they randomly sample the configuration
space, keeping only collision-free samples; they build a graph, called the road
map, where close collision-free samples of the configuration space are linked
when the line segment (in configuration space) connecting the two samples is
collision-free, or, more precisely, when sampling regularly the line segment, all
samples are collision-free (the detection of collision for a point in the configura-
tion space is simpler than for a segment). In this approach, finding a trajectory
reduces to finding a path in the road map graph, with a standard algorithm
like Dijkstra’s. Once a path has been found, it may be refined in several ways,
for instance by trying to connect two non-contiguous vertices of the path by a
segment and resampling more densely a neighborhood of the path.

This method is neither deterministic nor exact; it may fail to find complicated
paths in very cluttered environments. Its completeness is probabilistic: it will
find a solution (when there is one) with probability one if it runs indefinitely;
the probability of failure decreases exponentially with the running time.

This approach is a technological breakthrough as it solves in interactive running
times problems of industrial size which are completely out of reach of the deter-
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ministic exact methods; moreover it is extremely robust against inaccuracy or
degeneracy: for deciding if a sample point of the configuration space is collision-
free or not, it uses the standard floating-point arithmetic. We refer the reader
to Laumond’s book for more details [56].

Roadmap and topologic computations A similar approach is used in [57] to
compute (approximated) shortest circuits with a prescribed topology (≈ shape)
on a given surface. Actually, the authors started with trying to use mesh repre-
sentations provided by some industrial software; but these meshes turned out to
be inconsistent, containing self intersecting triangles, and gaps (holes between
triangles), which means that some sections of the meshes were not even con-
nected. They then decided to sample the mesh, and to build a graph (a roadmap)
where each edge connects two close enough samples. They also assume that each
triangle in this roadmap (three pairwise-connected vertices) corresponds to a tri-
angular patch on the sampled surface: this assumption is sufficient for roadmaps
to allow topological computations, required to decide the equivalence of two
circuits on a surface with holes.

Topological computations are usually done from some simplicial complexes such
as triangulated meshes; these sophisticated data structures are terribly frag-
ile – it is the reason why CGAL requires exact computations. Roadmaps are
not triangulations, and they are sufficient to perform topological computations.
Moreover, roadmaps are rudimentary and robust: they use floating-point com-
putations without problems.

No motion planning algorithm uses topological computations yet, as far as we
know. Such computations can detect there are several kinds of paths or circuits
(e.g., passing at the left or at the right of an obstacle) in the configuration space.

Note: the length of a line through rational vertices is a sum of square roots of
rational numbers [58]; this length is an algebraic number with degree 2n−1 if there
are n vertices. A truly exact algorithm, which exactly computes these lengths
(in order to compare them when they are very close) has thus an exponential
running time. For this reason, even proclaimed “exact” methods do not use exact
computations of lengths.

The radiosity problem The radiosity problem [59, 60] consists in comput-
ing photo-realistic images of virtual scenes. Monte Carlo methods simulate the
propagation of light by following samples of photons, from the light sources
and their reflections or refractions in the scene, until they are absorbed by a
surface. Counting the number of absorbed or reflected photons on each surface
patch of the scene gives an estimation of the radiosity. Monte Carlo methods
do not require an explicit representation of surfaces bounding the objects in the
scene, but only a procedure capable of computing the intersection between a line
and geometric objects (and the normal to the surface at the intersection point);
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computing this intersection is an easily to solve one-dimensional problem. Monte
Carlo methods are extremely robust: they never fail because of inaccuracy.

Ray tracing [59] is another method used for scene rendering; it follows light
rays, i.e., photons, but start from the (virtual) eye. Like Monte Carlo methods,
ray tracing does not need an explicit representation of the scene (similarly the
roadmap method for the motion planning problem does not need an explicit geo-
metric representation of the configuration space). It uses the same intersection
procedure as Monte Carlo methods. Actually ray tracing and Monte Carlo meth-
ods are combined: the former accounts for specular (mirror-like) light reflections,
and the latter accounts for diffusion and scattering of light.

Numerous deterministic methods were proposed to compute more or less realistic
images of virtual scenes. They rely on an explicit representation of the bound-
ary of objects in the scene, typically approximating meshes (so they were not
even exact). As these deterministic methods use sophisticated data structures
(e.g., boundary representations, visibility graphs), they are terribly complicated
to implement, and fragile. Note that ray tracing and Monte Carlo radiosity are
roughly as old as the deterministic methods; it is the increasing power of com-
puters which has made them practical over the last ten years.

5 Conclusion: is randomness the problem or the solution?

The inaccuracy of the floating-point arithmetic is often considered as a source of
random noise. The latter perturbs computations, introduces inconsistencies in
deterministic geometric algorithms and causes strange behaviors such as crashes
or infinite loops. Thus randomness is a problem for deterministic algorithms.

Worse even, exact computations turn out to be intractable, and not relevant for
real-world applications (except in some very restricted cases). Randomness kills
deterministic geometric algorithms.

Probabilistic geometric methods are simpler, very robust, and become relevant
and tractable with the increasing power of computers: randomness may very well
be the solution to randomness.
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44. Edelsbrunner, H., Mücke, E.: Simulation of simplicity: a technique to cope with
degenerate cases in geometric algorithms. ACM Trans. Graph 9 (1990) 66–104

45. Schwartz, J.: Fast probabilistic algorithms for verification of polynomial identities.
J. ACM 4 (1980) 701–717

46. Agrawal, A., Requicha, A.G.: A paradigm for the robust design of algorithms for
geometric modeling. Computer Graphics Forum (EUROGRAPHICS’94) 13 (1994)
C–33–C–44



23

47. Monagan, M., Gonnet, G.: Signature functions for algebraic numbers. In: Proc.
ISSAC, ACM Press (1994) 291–296

48. Benouamer, M., Jaillon, P., Michelucci, D., Moreau, J.: Hashing lazy numbers.
Computing 53 (1994) 205–217

49. Tulone, D., Yap, C., Li, C.: Randomized zero testing of radical expressions and
elementary geometry theorem proving. In: International Workshop on Automated
Deduction in Geometry (ADG’00). (2000)

50. Gonnet, G.H.: New results for random determination of equivalence of expres-
sions. In: SYMSAC’86: Proceedings of the fifth ACM symposium on Symbolic and
algebraic computation, New York, NY, USA, ACM Press (1986) 127–131

51. Hong, J.: Proving by example and gap theorem. In Press, I.C.S., ed.: 27th sym-
posium on Foundations of computer science, Toronto, Ontario (1986) 107–116

52. Kortenkamp, U.: Foundations of Dynamic Geometry. PhD thesis, ETH Zurich,
Institut fur Theoretische Informatik (1999)

53. Foufou, S., Jurzak, J.P., Michelucci, D.: Numerical decomposition of geometric
constraints. In: Proc. ACM Conference on Solid and Physical Modeling. (2005)
143–151

54. Clarkson, K.L., Shor, P.W.: Applications of random sampling in computational
geometry, II. Discrete and Computational Geometry 4 (1989) 387–421

55. Clarkson, K.L.: New applications of random sampling in computational geometry.
Discrete and Computational Geometry 2 (1987) 195–222

56. Laumond, J.P., ed.: Robot Motion Planning and Control. Lecture Notes in Control
and Information Science, Springer Verlag (1998)

57. Michelucci, D., Neveu, M.: Shortest circuits with given homotopy in a constellation.
In: 9th ACM Symp. Solid Modeling and Applications. (2004) 297–302

58. Choi, J., Sellen, J., Yap, C.: Approximate Euclidean shortest path in 3-space. Int’l.
J. Computational Geometry and Applications (1997) 271–295 Journal special issue.
Also in 10th ACM Symposium on Computational Geometry, 1994.

59. Glassner, A.: An Introduction to Ray Tracing. Andrew Glassner ed., Academic
Press (1989) ISBN 0-12-286160-4.

60. Glassner, A.S.: Principles of Digital Image Synthesis. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA (1994)


