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Across many problems in science and engineering, it is important to consider how much the output of a given
system changes due to perturbations of the input. Here, we investigate the glassy phase of ±J spin glasses at
zero temperature by calculating the robustness of the ground states to flips in the sign of single interactions. For
random graphs and the Sherrington-Kirkpatrick model, we find relatively large sets of bond configurations that
generate the same ground state. These sets can themselves be analyzed as subgraphs of the interaction domain,
and we compute many of their topological properties. In particular, we find that the robustness, equivalent to the
average degree, of these subgraphs is much higher than one would expect from a random model. Most notably,
it scales in the same logarithmic way with the size of the subgraph as has been found in genotype-phenotype
maps for RNA secondary structure folding, protein quaternary structure, gene regulatory networks, as well as for
models for genetic programming. The similarity between these disparate systems suggests that this scaling may
have a more universal origin.
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I. INTRODUCTION

Systems in which the input can be represented as a se-
quence of characters appear across science and engineering
and especially commonly in biology and computer science.
In these fields, notions of system robustness or sensitivity can
be defined to quantify the outputs’ average resistance to small
changes in the input sequences.

In biology, the mapping from genotypes (which store
the information) to phenotypes (which describe biological
properties) can be abstracted as genotype-phenotype maps
(GP maps). Examples include four-letter RNA sequences and
20-letter protein sequences that can be mapped to their phys-
ical folded states, and gene-regulatory networks, which can,
for example, be described by Boolean networks [1] where
a set of weights represent the gene interaction strengths.
The responses of such systems to changes in the input se-
quences have been extensively studied computationally and
analytically [2–22].

For GP maps, an important concept is the set of genotypes
(sequences) that map to a particular phenotype, often called
the neutral set. These present a number of commonalities
across GP maps [12,13,18]: The neutral sets are typically
highly connected so that they can be viewed as networks,
which can be traversed by single mutational steps, leading
to enhanced evolvability [4,19]. Neutral sets are also called
neutral networks. In some cases such as RNA GP maps, the
neutral network can split into smaller component networks
that are disconnected due to biophysical constraints [5,20].
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The neutral set size (NSS) can vary over many orders of mag-
nitude, and is typically strongly biased, with a small fraction
of the phenotypes taking up the majority of genotypes. Such
phenotype bias can strongly affect evolutionary outcomes
[8,11,21,23].

A key property of the neutral set for GP maps is the
mutational robustness, typically defined in the literature as
the fraction ρp of single-character mutations in a genotype
that produce the same phenotype p, averaged over the neu-
tral set of all genotypes that produce phenotype p. That is
to say, for a biological input-output map f (g), which takes
in a genotype g of d characters chosen from an alphabet
K = {K0, . . . , Kk−1}, the robustness of phenotype p is defined
as

ρp( f ) = 1

|Gp|d (k − 1)

∑
g∈Gp

np,g, (1)

where Gp is the neutral set of all genotypes g whose output is
the phenotype p, and np,g is the number of nearest neighbors
of g mapping to p defined as the number of genotypes g′
satisfying f (g′) = f (g) = p that differ from g by a Hamming
distance of 1. Thus, ρp( f ) ∈ [0, 1] measures the mean proba-
bility that a mutation from g ∈ Gp to a neighboring genotype
g′ ∈ Gp results in the same phenotype p.

What all the biological models mentioned above hold in
common is that they each have high levels of mean robust-
ness to changes in their inputs, excepting pathological or
adversarial examples. To quantify this statement, consider the
naive uncorrelated expectation that ρp ≈ |Gp|/kd because, in
a large randomly assigned GP map, the probability that a
nearest-neighboring genotype yields phenotype p is approx-
imately equal to the probability that any genotype drawn at
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random from the entire input space yields phenotype p. This
probability is |Gp|/kd , so np,g ≈ d (k − 1)|Gp|/kd , and ρp ≈
|Gp|/kd . And indeed this is true for completely uncorrelated
and randomly assigned GP maps [12]. However, biology- and
computer science-inspired GP maps such as the RNA sec-
ondary structure maps, protein folding maps, gene regulatory
networks, linear genetic programs, and digital logic gate maps
exhibit a remarkably similar observed scaling for robustness
ρp ∝ log |Gp| rather than ρp ∝ |Gp| [18] over a range of |Gp|,
which can span several orders of magnitude in biological GP
maps [12]. Such enhanced mutational robustness is necessary
for the neutral sets to percolate [12], which, in turn, is critical
for the evolutionary process because it allows for neutral
exploration of the neutral set, greatly enhancing the ability
of a population to find novel phenotypic variation [4]. This
enhanced robustness also facilitates the exploration of fitness
landscapes [24].

Robustness has a direct counterpart in computer science,
the sensitivity, which measures the likelihood that flipping a
single input bit will alter the output bit of Boolean functions
f : {0, 1}d → {0, 1} that map binary sequences of length d
onto a single binary output. In other words, low sensitiv-
ity corresponds to high robustness. Huang’s [25] famously
short solution to the decades-old sensitivity conjecture [26]
concerning induced subgraphs of the n-dimensional hyper-
cube graph has recently brought a great deal of attention to
the sensitivity analysis of Boolean functions. While scaling
laws for sensitivity are typically not measured in the manner
done for biological robustness, there are many mathematical
equivalencies between the two. In the literature (see, e.g.,
Refs. [25–28]), quantities are defined such as local sensitiv-
ity, function sensitivity, and average sensitivity, which are
similar to biological robustness. In this paper, we do not
explicitly use these definitions from sensitivity analysis, in-
stead opting for the GP map-inspired ones. But, we point out
that there is a seemingly understudied connection between
robustness in biological systems and sensitivity in Boolean
functions.

Given the wide range of systems for which high robust-
ness is observed, we ask here whether a similar phenomenon
can be found in spin glasses, which have a rich history in
statistical and condensed matter physics. They have been in-
tensely studied since the 1970s [29,30], and have led to many
important insights in physics and other related disciplines,
including computer science [31–33]. More recently, the spin
glass Hamiltonian has been used as a phenomenological
model for epistatic genotype-to-fitness landscapes in which
different sites (e.g., DNA, genes expressions, or amino acids)
may couple to each other [34–40]. An important application
has been to viruses [35–39]. By taking sequence data over
time, inverse statistical physics methods can be employed to
learn the interactions (bond configurations) between different
sites. In the context of evolution, therefore, one can interpret
the ground state of the spin glass energy landscape as the
global fitness peak on an evolutionary fitness landscape. The
interactions between spins in such a system can depend on a
number of biological or environmental factors [34,38]. The
interesting question in the context of fitness landscapes is,
what is the robustness of the sequences of spins to mutations
in the bond configurations (the epistatic couplings)?

In this paper, we consider this question by investigating
the spin glass phase at T = 0 by calculating the robustness
of ±J spin glass ground-state configurations to a sign flip
perturbation of a single bond. Our investigation is related to
the concept of spin glass bond chaos or disorder chaos [41],
which considers how the ground state of a spin glass changes
when all the couplings are perturbed by a small amount; no-
table investigations (see Refs. [41–45]) have been conducted
on continuous J spin glasses, whereas we consider the ±J spin
glasses. Another similar concept is the recently introduced σ

criticality [46], which considers the effects on the ground state
of only a single-bond perturbation, as we do here, but again
this is a continuous J spin glass. Our use of ±J spin glasses is
an important distinction between our work and these previous
studies because the discreteness of the bond configuration
domain of the ±J spin glass, modeled as a hypercube graph,
allows us to investigate the topological features of the sub-
graphs formed by bond configurations mapping to the same
ground state. The bond chaos and σ -criticality investigations
are mainly interested in how the spin glass ground states
change, and we consider these aspects here as well, but in
this work we are mainly interested in the universality of the
subgraph network features in the bond configuration domain.

In addition to spin glasses on random graphs, we exam-
ine special cases, namely the Sherrington-Kirkpatrick model
and one-dimensional (1D) Edwards-Anderson model. Various
network topological properties are computed for interaction
domain subgraphs comprised of bond configurations that all
map to the same ground-state spin configuration. We find
that these subgraphs obey the same logarithmic scaling law
between robustness and neutral set size as the analogous
biological and computer science GP maps described above,
suggesting that this high robustness may hold for a much
wider set of physical systems.

II. MODEL AND METHODS

A. Spin glass model

Consider an undirected, unweighted random graph
G(V, E ) with vertex set V and edge set E . We place Ising spins
on each vertex, and each edge represents a nonzero interaction
between spins. A spin configuration s ∈ {±1}|V | can be written
as a sequence of +1 and −1 values, so it is essentially a
binary sequence of length |V |. A set of interactions (bond
configuration) J ∈ {±1}|E | similarly is a sequence of +1 and
−1 values of length |E |. The spin glass Hamiltonian

HG(s; J ) = −
∑

{i, j}∈E

Ji jsis j −
∑
i∈V

hisi (2)

contains couplings between all spins, which are connected
by an edge in G. The single-spin, external magnetic field
interactions hi are independently and identically distributed
uniformly on the interval [−10−4,+10−4], noting that the
external field hi � Ji j ∈ {−1,+1}; we incorporate an external
field in order to break the possible degeneracies of the spin
glass ground state. In our numerical simulations described be-
low, we find that this choice of distribution for hi is sufficient
to ensure a unique ground state for all of our simulations.
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The input-output map considered in our study is the spin
glass ground-state optimization function

�G : {±1}|E | → {±1}|V | (3)

defined for the graph G. For a bond configuration J , �G(J )
outputs the ground-state configuration s that minimizes the
Hamiltonian Eq. (2). The most common task in spin glass the-
ory is to find s given a particular bond configuration J . In this
paper, we study an inverse problem, namely the relationship
between the set of all bond configurations {J} that generate a
particular output s.

To efficiently represent this system, we note that the col-
lection of all binary sequences of length n can be represented
by a n-dimensional undirected hypercube graph Qn(U, F ).
This is accomplished by mapping each binary sequence to a
vertex in Qn(U, F ) and placing edges between two vertices
if the corresponding sequences have a Hamming distance of
1 between them. The hypercube graph has vertex set U with
|U | = 2n and edge set F with |F | = 2n−1n.

The domain of �G accordingly has a mapping to the
|E |-dimensional hypercube graph Q|E |(U, F ). In general, for
graphs G that can produce geometrical frustration in the spin
glass, �G(J ) follows no pattern and is difficult to calculate
[47], even more so because of the degeneracy-breaking exter-
nal random field interactions {hi}. But, because of frustration,
two sets of bond configurations J (i) and J ( j) corresponding to
adjacent vertices in Qn(U, F ) often have �G(J (i) ) = �G(J ( j) ).
The vertices corresponding to all J such that �G(J ) = s for
some fixed s induce a subgraph Hs(Us, Fs) of Q|E |. It follows
that

⋃
s Us = U . In the GP map literature, a neutral network

(or neutral set) for phenotype (here, the ground state) s is the
graph Hs(Us, Fs).

In this paper, we numerically compute topological proper-
ties of each neutral network of spin glass bond configurations
which all map to the same ground-state spin configura-
tion. We consider multiple random graphs for G as well as
the fully connected graph; the latter case is known as the
Sherrington-Kirkpatrick (SK) model of a spin glass [29]. In
our simulations, we also impose the condition that every node
in G has at least one neighbor. Additionally, in this paper we
also consider the one-dimensional Edwards-Anderson (EA)
model [30], for which the relationship between robustness
|Fs| and vertex count |Us| (equivalent to robustness) becomes
analytically solvable. Our simulated spin glasses are rela-
tively small because (i) we need to calculate the ground
states exactly for each bond configuration, (ii) every possible
bond configuration is considered for each spin glass in order
to accurately determine neutral network properties. In other
words, the number of times Eq. (2) is computed in order to
find all ground states for a random graph G(V, E ) scales as
O(2|V | × 2|E |), which forces us to use relatively small systems.
Our largest model (|V | = 8, |E | = 28) involves calculation
of an exact ground state for every single-bond configuration
(over 2.6 × 108 bond configurations); this is a similar size to
systems for which exact ground-state calculations like ours
were carried out in the context of the spin glass literature (see,
e.g., Ref. [48]).

B. Definitions of topological quantities

The following parameters are computed for the neutral
networks in bond configuration space:

Robustness. The neighbor count np,g in Eq. (1) is equivalent
to the degree of a vertex g ∈ Us within a neutral network
Hs(Us, Fs). The mean degree is related to the number of edges
by ∑

v∈Us

deg(v) = 2|Fs|. (4)

Here, we compute the robustness ρs, simply dividing the
above quantity by the size of the subgraph |Us| and by the
length of the input sequence |E |:

ρs = φss ≡ 2|Fs|
|Us||E | ∈ [0, 1]. (5)

The notation φss will become clear below when we also treat
the transition probability φrs of a bond perturbation leading
to a different ground state r. It is important to notice that
the robustness is nothing other than the edge-to-vertex ratio
|Fs|/|Us| normalized to the range [0,1] and also is equivalently
the normalized mean degree within the neutral network Hs.
In many real-world GP maps including RNA and protein
folding, Boolean threshold networks, and genetic algorithms,
it has been observed that ρs ∼ log |Us| or equivalently |Fs| ∼
|Us| log |Us|. We will test this scaling for spin glass systems.

Transition probability. We define the transition probability
φrs to be the average probability that, given a bond configura-
tion which maps to ground state s, a single-bond perturbation
changes the ground state from s to r. Graph theoretically, we
can think of this in the following way: consider two neutral
networks of Q|E |(U, F ) called Hs(Us, Fs) and Hr (Ur, Fr ) so
that s and r are two different spin configurations (s 
= r). Let
Trs = Tsr be the set of edges connecting Hs and Hr . The tran-
sition probability of s → r due to a single-bond perturbation
is

φrs ≡ |Trs|
|Us||E | ∈ [0, 1], s 
= r. (6)

In many real-world GP maps, it has been observed that often
φrs ∼ |Ur |, or equivalently |Trs| ∼ |Ur ||Us| [8,12]. We will
also test this scaling for spin glass systems.

We now see that, for the case where s = r, the transition
probability Tss, based on the definition above, simply counts
the number of edges within the induced subgraph Hs(Us, Fs),
and therefore Tss = Fs. In the definition of φss in Eq. (5),
an additional factor of 2 comes from the double counting of
edges; recall, the robustness is equivalent to the (normalized)
mean degree, which means that the number of edges must be
double counted. From the definitions, it is easy to check that
the normalization condition

∑
r φrs = 1 holds, where the sum

includes r = s.
Rank-size plot. A rank-size plot is useful for visualizing

how many orders of magnitude the neutral set sizes span. It
may be used to deduce if there is a power-law (i.e., generalized
Zipf’s law) relationship between rank and neutral set size, as
is seen for some GP maps.

Degree distribution, clustering coefficients, assortativity,
and betweenness centrality. We also compute the degree distri-
bution, clustering coefficients, assortativity, and betweenness
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(a) Random Graph, |V| = 7, |E| = 15 (b) Random Graph, |V| = 9, |E| = 15 (c) SK Model, |V| = 6, |E| = 15 (d) SK Model, |V| = 8, |E| = 28

FIG. 1. G(V, E ) for (a) and (b) two representative examples of random graphs and (c) and (d) two representative examples of complete
graphs (Sherrington-Kirkpatrick model). Each Ising spin si is placed on a vertex, and each interaction Ji j is placed on an edge. Each spin also
experiences an external random field hi.

centrality for the neutral networks studied here. Degree distri-
butions give us information about the modality and skew of
the degrees of the vertices in the neutral networks. Clustering
coefficients, which turn out to be trivially zero for these sys-
tems, are informative about the number of neighboring nodes,
which share a neighbor. Assortativity measures correlation
between the degrees of neighboring vertices. Betweenness
centrality of a node measures the number of shortest paths in
the network passing through that node; it is often compared
with, and is expected to be positively correlated with, the
degree of the node [49]. Because our systems are small, gen-
eralizable trends regarding these quantities are more difficult
to resolve, but calculating them assists our physical intuition,
so we present them in the Supplemental Material [50] along
with their mathematical definitions.

III. RESULTS

We now present results for the properties described in
the previous section for the neutral networks Hs(Us, Fs) for
spin glasses defined on random graphs as well as for the SK
model. Two instances of random graphs (|V | = 7, |E | = 15
and |V | = 9, |E | = 15) and two SK models of differing sizes
(|V | = 6, |E | = 15 and |V | = 8, |E | = 28) are used as the
representative simulation examples for this main text; these
graphs G are shown in Fig. 1. To demonstrate the consistency
of our results across many instances of the random graphs,
properties of additional random graph instances and their net-
work topological properties are described in the plots in the
Supplemental Material [50]. We also present the 1D EA model
as a special case where we can calculate the exact relationship
between robustness and neutral network size.

A. Robustness

For all topologies for G, we find that each induced
subgraph Hs(Us, Fs) has exactly one connected component, re-
gardless of size. Whether this will also hold for larger systems
is unclear, but this lack of multiple component networks is
different from, for example, the RNA GP map, where biophys-
ical constraints (mainly that GC ↔ UA and CG ↔ AU bond
changes are not possible by single-point mutations) lead to
fragmentation of the neutral networks [5,20]. In Fig. 2, we plot
the robustness of neutral networks versus the neutral set size.

Each plot point represents a particular ground state and its
associated neutral network, and the plot axes have been set to
ensure that all neutral networks appear in the viewing window.
Due to the presence of the random fields {hi}, one expects to
observe at most 2|V |−1 unique ground states obtained from all
bond configurations. Our numerical simulations find in most
cases that indeed 2|V |−1 are found, but in a small number of
|V | = 9 simulations we find half of this number, namely 2|V |−2

ground states, possibly due to some symmetry of graph G
which is not necessarily easily apparent from inspection (see
Supplemental Material [50] for an example).

The spin glasses on random and complete graphs all show
behavior consistent with the ρs ∝ log |Us| relationship, which
is also seen for the closely related scaling of robustness with
neutral set size found for many GP maps. For these small
models, the range of variation in |Us| seems to depend on
the density of bonds in graph G. For the |V | = 7, |E | = 15
random graph, neutral set sizes ranged from 216–1200 bond
configurations (0.0066 � |Us|/2|E | � 0.037), for the |V | = 9,
|E | = 15 random graph, neutral set sizes ranged from 64–
928 bond configurations (0.0020 � |Us|/2|E | � 0.028), for
the |V | = 6, |E | = 15 SK model, neutral set sizes ranged
from 608–1616 bond configurations (0.019 � |Us|/2|E | �
0.049), and for the |V | = 8, |E | = 28 SK model, neutral set
sizes ranged from 1,118,512–3,754,464 bond configurations
(0.0044 � |Us|/2|E | � 0.014). As the density increases, with
the SK model being the limiting case for a fixed |V |, the range
of |Us| spans less than half an order of magnitude, while the
less densely connected |V | = 9, |E | = 15 random graphs can
have over an order of magnitude of variation in |Us|, reaching
nearly two orders of magnitude in variation (see Supplemental
Material [50] for an example). This is notably smaller than the
range of variation found in biological GP maps, where maps
with a similar number of genotypes can have more orders
of magnitude of variation. For instance, the RNA secondary
structure GP map with length 12 has 412 ≈ 1.7 × 107 geno-
types and a neutral set size variation of nearly five orders
of magnitude when including the nonfolding phenotype [5].
In comparison, our |V | = 8 SK model has 228 ≈ 2.7 × 108

genotypes (bond configurations) but shows less than half an
order of magnitude of variation in |Us|.

While the range of variation in |Us| for these small spin
glass systems is too small to fully confirm the expected log
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FIG. 2. Linear-linear plot of robustness ρs versus normalized neutral set size |Us|/2|E | for representative random graphs (a) and (b) and
representative SK models (c) and (d). The dashed curve arises from the linear least-squares fit calculated for data on a linear-log scale (see also
Fig. 3). The data are consistent with a logarithmic relationship between robustness and NSS. The plot window is adjusted to ensure that plot
points for all neutral networks are within the viewing window.

scaling, the data in Fig. 3 support the notion that the ro-
bustness is still enhanced when compared to an uncorrelated
random null model. This null model is calculated by taking
each spin glass ground-state mapping �G(J ) and randomizing
the input-output pairings while keeping the subgraph size
the same. A single-bond perturbation J �→ J ′ will result in a
spin configuration s = �G(J ′) being selected with probability
|Us|/2|E |, regardless of �G(J ). Thus, φrs ≈ |Ur |/2|E |, even for
r = s, in the null model.

B. Transition probabilities

Transition probabilities are plotted in Fig. 4 for the largest
neutral network of each spin glass model. As found for biolog-
ically inspired GP maps [8,12], φrs is typically much smaller
than the ρs; this is apparent from comparing the vertical axes
in Figs. 4 and 3. As a null model, we again use

φrs ≈ |Ur |/2|E |, r 
= s. (7)

Overall, for the random graphs, as can be seen in Fig. 4, this
null model curve matches the linear least-squares fit, sug-
gesting that vertices of subgraphs Hr (Ur, Fr ) (for r 
= s) with
nonzero transition probability are approximately randomly

distributed with frequency ≈ |Ur |/2|E | in the neighborhoods
of all vertices v ∈ |Us|. To interpret these findings about ro-
bustness and transition probabilities, consider a vertex v ∈
Hs(Us, Fs). In its set of nearest neighbors, this vertex is ex-
pected to see an overrepresentation (relative to the null model)
of other vertices belonging to Hs(Us, Fs), and it sees a random
assortment of other vertices u ∈ Hr (Ur, Fr ) for various r 
= s
with probability proportional to |Ur |/2|E |. These findings are
in accordance with other GP map studies.

For the SK models, there is less agreement between the null
expectation and the observed lines of best fit. We speculate
that the increased bond density in G is responsible for this
effect on transition probabilities, but our systems are currently
too small to investigate this effect.

C. Size-rank distributions

In the GP map literature, there has been a lot of interest in
phenotype bias, the observation that the neutral set sizes can
vary over many orders of magnitude, which can determine
evolutionary outcomes [11,21] even when natural selection
is also at play. In Fig. 5 we show that such phenotype bias
also exists for spin glass systems. As we already mentioned
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(c) SK Model, |V| = 6, |E| = 15

Pearson r = 0.99
slope = 0.19 ± 0.0096
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(d) SK Model, |V| = 8, |E| = 28
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FIG. 3. Linear-log plot of robustness ρs versus normalized neutral set size |Us|/2|E | for representative random graphs (a) and (b) and
representative SK models (c) and (d). The dashed line is the line of best of fit in the linear-log scale. The data are consistent with a linear
relationship between robustness and the log of NSS. Regression means and 95% confidence intervals are given for the slope of the best fit
lines. The dotted line shows the random null expectation for robustness. The plot window is adjusted to ensure that plot points for all neutral
networks are within the viewing window.
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(c) SK Model, |V| = 6, |E| = 15
Pearson r = 0.78
slope = 1.3 ± 0.44
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(d) SK Model, |V| = 8, |E| = 28
Pearson r = 0.59
slope = 0.041 ± 0.01

FIG. 4. Transition probability φrs (for r 
= s versus normalized neutral set size |Us|/2|E | for the largest neutral network s of representative
random graphs (a) and (b) and representative SK models (c) and (d). The transition probability φrs is, starting with a bond configuration that
maps to ground state s, the probability that a single bond perturbation would now cause a change to ground state r, with r 
= s. To see the r 
= s
transition probabilities compared to the r = s case, see the Supplemental Material [50]. Here, the dashed line is the line of best of fit in the
linear-log scale; the dotted line is the identity line (in which abscissa = ordinate). In (d), for the SK model, the line of best fit deviates most
from the identity line (which is outside the viewing area), but the data are consistent with a linear fit, as for the other models. Regression means
and 95% confidence intervals are given for the slope of the best fit lines.

in the robustness section, the range of variation in |Us| for our
small spin glass systems is observed to be smaller than what
the biological GP maps exhibit. Nonetheless, the rank plots
show a consistent behavior independent of spin glass graph
topology G. Recent work on GP maps has suggested that there
are two main classes of rank plots [9,14,51]. For the first class,
the distribution of neutral set sizes obeys a Zipf-like power
law, which arises from models in which input site ordering
is strongly constrained (including Boolean neural networks
[52,53]). The other class is a log-normal distribution, which
appears, for example, in RNA secondary structure GP maps
[11,51]. An open question is whether or not these spin glass
systems also fall into one of these two classes. The current
systems are still too small to conclusively answer this ques-
tion, but the log-log rank versus size plots in Supplemental
Material [50] suggest a deviation from Zipf’s law.

D. Effects of bond perturbation on ground-state spin
configuration

Our single-bond perturbation numerical experiments are
informative regarding the nature of the ground state in the
T = 0 glassy phase. Our robustness calculations have already

shown that a single-bond perturbation often leads to no change
in the ground state, much more often than what the random
null model predicts. Given that the robustness is equivalent to
the normalized mean degree within a neutral network, we can
understand robustness at the individual bond level by looking
at the relationship between the degree of an individual vertex
within the neutral network and various physical parameters
such as ground-state energy. We can ask, how is the degree
within a neutral network related to the ground-state energy?
How many spin flips occur in the ground-state energy when
a single bond is perturbed? Is the unperturbed ground state a
local minimum in the energy landscape generated by the new,
perturbed bond configuration?

From the degree distributions within neutral networks with
|E | = 15 (shown in the Supplemental Material [50]), we see
that the range of degrees for the vertices in most neutral
networks tends to span from 4 up to 15. In the Supplemental
Material [50], we empirically confirm the expected result that
the degree of a vertex is positively correlated with its between-
ness centrality; that is, there tends to be a larger number of
shortest paths passing through vertices with higher degree.
Intuitively, one should then expect that vertices with higher
degree have ground states, which are more energetically stable
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FIG. 5. Plot of normalized induced subgraph size log10(|Us|/2|E |) (equivalent to the NSS or frequency) versus the rank of the size for
(a) and (b) random graphs and (c) and (d) SK models. All the models exhibit a similar rapid decay of the neutral set size.
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(a) EA1D Graph with |V| = |E| = 11
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FIG. 6. Results for 1D Edwards-Anderson model: (a) Graph representation of the 1D Edwards-Anderson model with |V | = 11, (b) neutral
set size versus rank plot on log-log scale, (c) degree distribution of neutral set vertices, and (d) robustness ρs versus log of the normalized
neutral set size |Us|/2|E |. The dashed line is the analytical result from Eq. (8).

to bond perturbation. In other words, the ground-state energy
is sufficiently low, and the minimum is deep such that a
single-bond perturbation tends not to change the ground state.
This trend is what we see in the numerical results presented
in the Supplemental Material [50], where we also discuss
the different scenarios when ground-state change due to bond
perturbation does occur.

E. Analytically tractable special case: 1D
Edwards-Anderson model

The Edwards-Anderson (EA) model is a special case,
which deserves individual treatment. The EA model, the orig-
inal theory of spin glasses [30], is simply a spin glass on a
lattice with nearest-neighbor interactions only.

For the 1D Edwards-Anderson (EA) model with periodic
boundary conditions, the topology of which is shown in
Fig. 6(a), the behavior of ρs is analytically tractable. Let us
call a bond configuration with an even number of antiferro-
magnetic interactions (Ji j = −1) an even bond configuration
and a bond configuration with an odd number of antiferromag-
netic interactions an odd bond configuration.

Every even bond configuration has an exactly determinable
ground state with no spin frustration, which can be found
using the following algorithm:

1. Choose an arbitrary site i, and set the ith spin to si = +1
or si = −1 arbitrarily.

2. Determine si+1 by setting si+1 = Ji,i+1si, so si+1 = si if
Ji,i+1 = +1 or si+1 = −si if Ji,i+1 = −1.

3. Continue to si+2 by similarly setting si+2 = Ji+1,i+2si+1,
and continue around the entire spin chain until we have
set si−1. At this point one can check and confirm that
−Ji−1,isi−1si = −1, so all bonds are satisfied, and each pair-
wise interaction decreases the energy by the same amount
(= −1).

4. If
∑|V |

i=1 hisi < 0, then all spins need to be flipped si →
−si. If

∑|V |
i=1 hisi > 0, then all the spins are kept as is. The

ground-state energy is exactly Egs = −|V | − ∑|V |
i=1 hisi, and

we have now ensured
∑|V |

i=1 hisi > 0.
Having an even number of antiferromagnetic interactions will
ensure that the last spin si−1 does not experience frustration,
and the bond between the last spin si−1 and the first spin si

contributes a negative amount to the energy: −Ji−1,isi−1si =
−1. On the other hand, odd bond configurations will always
have one bond at which there is frustration, and there will be
a positive contribution to the energy −Ji−1,isi−1si = +1. The
ground state for odd bond configurations will be identical to
the ground state of one of the neighboring even bond con-
figurations, but the energy will, of course, be higher. Exactly
which neighboring bond configuration that is depends on the
random fields hi.

Because an odd bond configuration has the same ground
state as one of its neighboring even bond configurations, the
neutral network Hs(Us, Fs) for every ground state must be a
star graph S|Us|−1 that has |Us| nodes, with one central node
corresponding to an even bond configuration, and |Us| − 1 pe-
ripheral nodes corresponding to odd bond configurations. The
number of nodes of each star graph neutral network depends
on the random fields hi. Figure 6(c) shows that the degree
distribution matches our theory that all neutral networks are
star graphs; for each neutral network, there is one node with
|Us| − 1 neighbors, and |Us| − 1 nodes with one neighbor.

To calculate robustness, we note that the star graph
S|Us|−1 has |Us| nodes and |Fs| = |Us| − 1 edges. Plugging
|Fs| into Eq. (5) immediately gives us that the robustness
is

ρs = 1

|Us||E |
∑
v∈Us

deg(v) = 2

|E |
(

1 − 1

|Us|
)

. (8)

The points in Fig. 6(d) fall exactly along this curve. The max-
imum number of nodes in the star graph is |Us| = |E | + 1 =
|V | + 1 because each even bond configuration has at most
|E | = |V | neighboring odd bond configurations. A size-rank
plot is also shown for the 1D EA model in Fig. 6(b).

The 1D EA model serves as an example in which linear-
log scaling is not seen for ρs. Nevertheless, the relationship
between robustness and subgraph size found in the 1D EA
model exhibits a ρs that is significantly higher than would
be expected from a random mapping �G of inputs to out-
puts, so this 1D model still exhibits enhanced robustness.
For the 2D EA model we could not find an analytically
tractable ρs.
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IV. DISCUSSION

Our main result is that, by studying the mapping from
spin glass bond configurations to the T = 0 ground state, we
observe several properties that are also observed for other
input-output maps, such as the GP maps found in biology
and computer science. These include (i) redundancy, in that
many genotypes in the context of GP maps, or bond con-
figurations in this case, map the same output (a phenotype
for the GP maps, or a ground state for the spin glasses), (ii)
phenotype frequency bias, in that the number of bond config-
urations (genotypes) mapping to the ground state (phenotype)
vary significantly, and (iii) enhanced mutational robustness,
in that the probability of a single-bond perturbation changing
the ground state is larger than expected from a random null
model, and moreover that the robustness of a ground state to
single-bond perturbations often scales in the same way with
the logarithm of the NSS (the number of bond configurations
mapping to a ground state) as found for biological GP maps
[9,10,12,16,17]. Another interesting result, also seen for GP
maps [8,12] is that, in contrast to the robustness, the transition
probabilities, defined as the likelihood of a flip of the spin
yielding a different ground state, do scale proportionally to
the NSS, as one would expect from a random model. The
similarity to the GP map behavior suggests that there may be a
more universal argument (based, for example, on algorithmic
information theory [54,55]) for these scaling properties.

Our spin glass models are relatively small because finding
the ground state of a spin glass is typically computationally
expensive and scales badly with system size. Depending on
graph topology, finding the ground state of a spin glass can
be NP hard [47]. Knowledge that the robustness of a ground
state is large may potentially offer improvements to ground-
state-finding algorithms by providing a measure of stability
of certain ground states as a function of parameter space. It
would also be interesting to check some of our results on

significantly larger graphs. We find, for example, that all our
subgraphs that map to the same ground state form only a
single component; that is, they are connected by single-bond
perturbations. Will this percolation property hold for larger
systems, or will these subgraphs start to fragment?

Mapping epistatic interactions onto spin glass Hamiltoni-
ans to derive sequence-to-fitness maps has been especially
important for the study of viral evolution [35–39]. These
models typically have continuous J , so it will be interesting
to see if the kind of scaling properties of robustness that we
find here for the ±J spin glasses carry over to these more
complex systems. If, as we expect, a concept akin to high
robustness persists, then this may have implications for the
stability of fitness peaks to environmental changes, and may
affect how easy it is to find continuously increasing paths to
fitness maxima [24].

Another potentially interesting future direction of research
is to explore these results about robustness in the com-
plementary setting of the sensitivity of Boolean functions
[25–28]. It would be interesting to see whether similar high
robustness-low sensitivity results can be found in this related
context.
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