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Abstract

Robustness is a key issue for natural language processing in general and parsing in partic-
ular, and many approaches have been explored in the last decade for the design of robust
parsing systems. Among those approaches is shallow or partial parsing, which produces
minimal and incomplete syntactic structures, often in an incremental way. We argue that
with a systematic incremental methodology one can go beyond shallow parsing to deeper
language analysis, while preserving robustness. We describe a generic system based on
such methodology and designed for building robust analyzers that tackle deeper linguistic
phenomena than those traditionally handled by the now widespread shallow parsers. The
rule formalism allows the recognition of n-ary linguistic relations between words or con-
stituents on the basis of global or local structural, topological and/or lexical conditions.
It offers the advantage of accepting various types of inputs, ranging from raw to chunked
or constituent-marked texts, so for instance it can be used to process existing annotated
corpora, or to perform a deeper analysis on the output of an existing shallow parser. It
has been successfully used to build a deep functional dependency parser, as well as for the
task of co-reference resolution, in a modular way.

1 Introduction

Robustness is a key issue for natural language processing in general and parsing

in particular. It can be broadly defined as the ability for a language analyzer to

provide useful analyses of real-world input text, such as web pages, news, technical

documentation, e-mail or FAQs. Many approaches have been explored in the last

decade for the design of robust parsing systems. Among those approaches is shallow

or partial parsing, which produces minimal and incomplete syntactic structures, of-

ten in an incremental way. After reviewing such approaches, this paper explores

how with a systematic incremental methodology one can go beyond shallow pars-

ing to deeper level of language analysis, while preserving robustness. We describe

a generic system based on such methodology and designed for building robust ana-

lyzers that tackle deeper linguistic phenomena than those traditionally handled by

the now widespread shallow parsers.

The rule formalism allows the recognition of n-ary linguistic relations between



2 S. Aı̈t-Mokhtar, J.-P. Chanod and C. Roux

words or constituents on the basis of global or local structural, topological and/or

lexical conditions. It offers the advantage of accepting various types of inputs, rang-

ing from raw to chunked or constituent-marked texts, so for instance it can be used

to process existing annotated corpora, or to perform a deeper analysis on the out-

put of an existing shallow parser. It has been successfully used to build a deep

functional dependency parser, as well as for the task of co-reference resolution, in

a modular way. After introducing the underlying formalism, this paper illustrates

how we can handle complex linguistic phenomena such as infinitive control and co-

reference resolution. The final section provides some details of the implementation

and the overall computational and linguistic performance of the system.

2 Background and Related Work

Since the Chomskyan generative paradigm (Chomsky 1957), linguistic theoretical

trends have emerged, and abounded in the 80s, especially unification-based gram-

mar theories (e.g. LFG (Kaplan and Bresnan 1982), GPSG (Gazdar et al. 1985),

UCG (Calder et al. 1988), HPSG (Pollard and Sag 1994)). Those theoretical mod-

els were designed to describe and explain the principles and properties that govern

language in all its aspects, although most studies mainly addressed the syntactic

level and proposed formal grammar systems to describe the grammatical structure

of language. However, the lack of robustness is the Achilles heel of parsing systems

that were built on those paradigms. That weakness led researchers in the field,

especially in the last decade, to explore new models and approaches for parsing

that produce useful behavior on real-world texts. The concern has both theoretical

and practical reasons: on the theoretical side, testing theories with real-world (non

artificial) data is, by definition, a requirement for any scientific theory, as far as

empirical sciences are concerned. In practice, the availability of huge amounts of

electronic text documents raised the need for applications capable of processing

those documents automatically, hence capable of parsing real-world texts. The re-

search efforts in that direction have already brought robust parsing systems that

successfully contributed either to the automatic acquisition of linguistic resources

(Grefenstette 1992; Hindle 1994; Briscoe and Carroll 1997; Faure and Nédellec 1999)

or to various NLP applications, such as information extraction (Appelt et al. 1993;

Hobbs et al. 1996; Grishman 1995; Proux et al. 2000), translation memory (Gaussier

et al. 2000) and question answering (Cardie et al. 2000; Moldovan et al. 2000).

There are many references to ‘robustness’ in the literature, but little agreement

on the exact definition of that notion (Ballim et al. 1999; Menzel 1995). However,

the idea of processing real-world textual data is widely shared. We think of robust-

ness as the ability of a language analyzer to provide useful analyses for real-world

input texts. By useful analyses, we mean analyses that are (at least partially) cor-

rect and usable in some automatic task or application. That definition implies two

requirements:

• First, a robust system should produce (at least) one analysis for any real-world

input. The 0-analysis situations are the main problem of traditional parsing
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systems and they are not always due to ill-formed or ungrammatical input.

In many cases, they are due to grammatical syntactic structures of the input

that are not predicted by the linguistic model or the linguistic descriptions of

the parser (Chanod 2000).
• A robust system should also limit the number of concurrent analyses it pro-

duces or at least give indications on which are the preferred ones. Traditional

parsers may produce thousands of possible analyses for long (real-world) sen-

tences, among them many duplicates (spurious ambiguity). Even though the

use of packed representations can handle such ambiguity efficiently, the prob-

lem of selecting the correct analyses shows up when it comes to parsing-based

applications.

Several proposals have been made for measuring the quality of robust parsers

(Black 1996; Carroll et al. 1998). The analyses of the parser are compared against

treebanks, i.e. corpora annotated with a reference annotation scheme (phrase struc-

ture trees) and corrected by humans (Marcus et al. 1994; Sampson 1995). The

constituent-based evaluation methods measure the similarity between phrase struc-

ture or chunk trees by computing the number of matching brackets (Grishman et

al. 1992; Magerman 1995; Collins 1996), while dependency-based methods compare

functional dependency relations and compute precision and recall over them (Lin

1995; Srinivas et al. 1996; Carroll et al. 1998). In the latter case, the reference de-

pendencies are often automatically extracted from treebanks (Lin 1995; Basili et

al. 1999) when they exist for the processed language.

2.1 On the Road to Robustness

Attempts to reach a certain degree of robustness in parsing can be classified into

three main trends. The first trend consists of the extension of parsing systems

based on traditional theoretical models with special (and sometimes front-end)

mechanisms in order to recover analysis when the core parsing system fails, or to

rank and select the best analyses when the system excessively overgenerates. For

instance, (Frank et al. 1998) propose an extension of the LFG projection architec-

ture that incorporates ideas from Optimality theory. It improves parser robustness

by adding low-ranked fallback rules that deal with common ungrammatical input

or marginal constructions. (Ballim and Russell 1994) extend Prolog DCGs for in-

cremental grammar development with a robust parsing method controlled by user-

defined performance thresholds. As part of the VERBMOBIL project, (Kiefer et al.

1999) begins with an HPSG grammar development environment, and adds mecha-

nisms for filtering out rule applications and computing best partial analyses in case

of failure. In the framework of constraint-based dependency parsing, (Menzel and

Schroder 1998; Foth et al. 2000) propose the use of graded constraints, which can be

violated in a controlled way. Other methods integrate lexicalized descriptions and

probability information in the parsing process: for instance, (Briscoe and Carroll

1993) describe a probabilistic parsing model for unification-based grammars. The

supertagging approach of (Srinivas and Joshi 1999), based on the LTAG (Lexical-

ized Tree Adjoining Grammar) framework, integrates rich descriptions in the form
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of supertags (descriptions that combine both phrase structure and dependency in-

formation) and statistical distributions of supertag co-occurrences collected from

annotated corpora.

The second trend is that of probabilistic parsing approaches, which assign the

most probable structure to each input sentence (Magerman 1995; Collins 1996;

Ratnaparkhi 1998; Charniak 2000), using weighted rules that are automatically ex-

tracted from annotated corpora. The rules are assigned probability weights depend-

ing on the frequency of the constituent structures and dependency relations they

define. That probability information is used to resolve lexical and structural ambi-

guity. A similar idea can be applied to pure dependency structures. For instance,

(Samuelsson 2000) proposes a statistical theory of dependency syntax where the

probability of a dependency tree T is the product of all the probabilities of each

node’s having a specific label and being associated with a specific bag of dependen-

cies, given its daughters in the tree T. Those probabilities are computed out of a

treebank, for instance, and are used to define the most likely dependency tree for

a given sentence. It is also worth mentioning here the connectionist approach to

parsing (Jain and Waibel 1990; Henderson and Lane 1998) which, though basically

different from probabilistic parsing, shares with it two important features: robust-

ness is an inherent property of both models and both can be trained automatically

from annotated corpora.

Finally, the third trend for robustness in parsing is the class of approaches known

as (rule-based) shallow parsing. Shallow parsing is based on the idea of revising am-

bitions downwards with regard to the depth and completeness of syntactic analysis.

The goal is to obtain minimal, underspecified though linguistically motivated syn-

tactic structures that are useful by themselves for NLP applications, but are also

viewed as syntactic preprocessing for further deep analysis.

Many parsing systems are hybrid in the sense that they combine different ap-

proaches from the above three classes. Nevertheless, our focus in this paper will be

on robust rule-based parsing. In the following section, we describe in more details

the notion of shallow parsing and give examples of existing shallow parsers.

2.2 Shallow Parsing

Shallow parsing is the incomplete grammatical analysis of texts (also called light

or partial parsing). It produces minimal syntactic structures, where ambiguity is

not resolved, nor fully and explicitly represented. The structures generally specified

by shallow parsers include phrasal heads and their immediate and unambiguous

dependents, and these structures are usually non-recursive. They are referred to as

clusters (Joshi 1960), chunks (Abney 1991; Federici et al. 1996), chains (Grefenstette

1996) or segments (Äıt-Mokhtar and Chanod 1997a). For instance, the analysis

of the sentence “Bill saw the man on the hill with the telescope” will produce a

structure similar to the following annotated sentence:

[ Bill NP ] [ saw V ] [ the man NP ] [ on the hill PP ] [with the telescope PP ]
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which does not specify whether with the telescope is a modifier of saw (that is,

Bill used the telescope in order to see the man) or a modifier of man (Bill saw a

man who has a telescope). Attachment ambiguity is implicit within the flat minimal

structures which, in fact, may represent multiple analyses. In the shallow parsing

approach, such choices are left to more informed subsequent processes.

Another property shared by most shallow parsers is the use of limited linguistic

resources: part-of-speech (POS) categories, morphological features (gender, number,

etc.) and sometimes subcategorization.

Shallow parsers have two important advantages that make them suitable for

practical, real-world NLP applications. First, robustness, which partially results

from their under-specification. Second, computational efficiency: their speed may

vary from dozens to thousands of processed words per second. Speed is necessary

for applications such as data mining, dealing with huge amount of texts.

Joshi’s parser (Joshi 1960) was certainly one of the first systems having the prop-

erties of what are now called shallow parsers, although it was not meant to process

large electronic corpora, which were not available at that time. It was also the first

application of finite-state techniques to parsing, designed as a cascade or sequence of

finite-state transducers, each one performing a particular analysis task: rule-based

POS disambiguation, simple noun phrase (NP) recognition, prepositional phrase

(PP) and adverbial phrase (ADVP) recognition and verb cluster (VC) recognition.

Clauses were annotated with a non-finite-state, iterative mechanism. The cascade

of finite-state transducers allowed a division of the parsing task into subtasks or-

dered by increasing complexity. Parsers with quite similar architectures have been

designed and implemented more recently (Ejerhed and Church 1983; Ejerhed 1988;

Abney 1990; Hobbs et al. 1996; Grefenstette 1996; Äıt-Mokhtar and Chanod 1997a;

Ciravegna and Lavelli 1999).

Ejerhed’s parser (Ejerhed 1988) is hybrid, extending the stochastic NP recogni-

tion of (Church 1988) with non-recursive clause boundary marking using finite-state

machines. (Abney 1990; Abney 1991; Abney 1996) describe an incremental parser,

Cass, designed as a cascade of finite-state transducers. The whole parsing process

is not a strictly finite-state computation, but each transducer is built from regular

expressions for recognizing phrases (chunks). When a given pattern matches mul-

tiple strings in the input, the longest one is selected. This results in fast parsing

and relatively good accuracy. Processing steps include POS tagging, NP recogni-

tion, other chunkings (adverbial phrases, PPs, non-recursive verb clusters), simplex

(non-recursive) clause recognition and finally function tagging. Cass2 (Abney 1996),

the last version of the parser, is faster still (the finite-state cascade treats around

1300 w/s on a SparcStation 1).

ENGCG (English Constraint Grammar) (Karlsson et al. 1995) was designed as

a shallow functional parser (function tags are assigned to tokens with no explicit

attachment). A particular feature of the parser is that it assigns function tags in

exactly the same way as POS tags. First, each token is given all its possible POS

and function tags, then morphological and syntactic constraint rules are applied to

eliminate incorrect tags. Processing is very efficient (around 1550 words per sec-

ond on a SparcStation10). The non-projective Dependency Parser by (Tapanainen
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and Järvinen 1997) uses ENGCG for POS tagging but has its own dependency

parser based on Tesnière’s model (Tesnière 1959). The system is slightly less effi-

cient (200 words/second, which does not include morphological analysis and POS

disambiguation). However, it improves ENGCG since the analysis is deeper (out-

putting explicit dependencies) and more accurate, achieving reported precisions of

95-98% for subject relations and 89-94% for object relations.

Other parsers are based on modified or enriched versions of context-free gram-

mars. The PLNLP system (Jensen et al. 1993) proposes a systematic approach

to robust parsing. The initial shallow parses are produced by non-prescriptive bi-

nary rules and provide a compact representation of structural ambiguity (e.g. for

PP attachment). Additional functionalities include a multi-pass algorithm for rule

relaxation, ways to reconstruct full parses from partial parses and a ranking pro-

cedure to sort multiple parses. Post-processing procedures applied to the shallow

parses produce richer linguistic representations such as predicate-argument struc-

tures. PLNLP grammars were developed for more than 10 different languages and

were used in such applications as grammar and style checking and translation.

Finally, Fidditch (Hindle 1983; Hindle 1994) is one of the first efficient and large-

scale text parsers (around 1200 words/second on a Sun4). Fidditch assigns phrase

structure trees to sentences. The parser is deterministic so that only one parse

is produced for each sentence. However, the tree structure may be underspecified

in the sense that some phrase nodes are not attached because of ambiguity. The

analysis is performed step by step, using a stack of phrase nodes under construction,

as in Marcus parser (Marcus 1980). Fidditch has been used in the Penn Treebank

Project (Marcus et al. 1994) to provide an initial parse of the corpus which was then

hand-corrected by human annotators. It has also been used to extract subject-verb

and verb-object relation pairs automatically from a 44-million word corpus (Church

et al. 1989).

It is interesting to note that, while the term “shallow” usually refers to chunkers,

some of the systems mentioned above perform regular dependency parsing, in the

sense that they produce explicit functional relations between words, even though

the output may be partial in the case of unpredicted or ungrammatical input.

Examples of such parsers include the FDG parser (Tapanainen and Järvinen 1997),

Sextant (Grefenstette 1996), the link grammar parser (Grinberg et al. 1995), the

IFSP parser (Äıt-Mokhtar and Chanod 1997b) and the Chaos parser (Basili et al.

1999).

2.3 Incrementality

Incrementality is a common feature of many approaches to shallow and robust

parsing, although not always explicitly articulated as such. For instance, the re-

laxed approach advocated by Karen Jensen in the early days of PLNLP includes

the notion that the first phase of parsing produces a preliminary syntactic sketch

where certain linguistic phenomena are ignored or deliberately left underspecified.

A second stage of syntactic elaboration revisits the information contained in the

syntactic sketch and computes deeper predicate-argument structures, using lexical
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information that was mostly ignored during the first parsing phase. Additionally,

the first phase of parsing is itself split into two parsing rounds, the second round

allowing for rule relaxation in case the first round does not produce a full parse.

Although this two-round mechanism is initially meant to parse ill-formed input

(i.e. to provide for robustness in the narrow sense of accounting for ungrammati-

cal utterances), it can also account for syntactic phenomena that are grammatical

but only recognized if no alternative construction can be produced during the first

parsing round.

Later work, largely based on finite-state machinery, is more explicitly based on

the notion of incrementality. For instance FASTUS (Hobbs et al. 1996) includes

different stages such as recognition of fixed expressions, recognition of basic phrases,

recognition of more complex groups, and then recognition of patterns related to

events of interest. In S. Abney’s Cass parser (Abney 1996), cascaded transducers

aim first at resolving small questions sequentially, and then at recognizing major

constituents before analyzing the details of their internal structure. This strategy

is characterized by the notion of islands of certitude, allowing reliable incremental

decisions to be made for selected sub-strings. (Neumann et al. 2000) introduces

a similar view of incrementality with a divide-and-conquer strategy for shallow

parsing of German texts. In a first phase only the topological structure of a sentence

(i.e. , verb groups, subclauses) is determined. In a second phase, phrasal grammars

are applied to the content of the various parts of the main and sub-clauses.

One could even argue that the constraint-based approach advocated by (Karlsson

1990; Karlsson et al. 1995) is somewhat a mirror view on incrementality, as those

constraints encode partial linguistic knowledge that incrementally reduces the scope

of initially unrestricted syntactic analyses.

As those earlier systems demonstrate, incrementality is a methodological prin-

ciple commonly used to build robust, broad-coverage parsers that rely on compu-

tationally tractable syntactic descriptions. This may be explained by two major

properties that clearly distinguish incremental parsing from more traditional ap-

proaches to parsing: self-containment and descriptive decomposition.

2.3.1 Self-containment

Each incremental parsing operation (incremental rule) is a self-contained opera-

tion, whose result depends on the set of contextual restrictions stated in the rule

itself. The constraints and restrictions are evaluated in light of the background

knowledge available at the time the rule applies in the cascade. If a sub-string

matches the contextual restrictions, the corresponding operation applies without

later backtracking. If the rule does not match, the current accumulated linguistic

interpretation remains unchanged and is passed to the next processing step without

further ado. This leads to grammar readability and ease of maintenance.

This differs radically from classical approaches to parsing, where rules encode

hypothetical local interpretations of sub-strings, yet to be validated by the produc-

tion of a full parse. This requires that a series of independently formulated syntactic

hypotheses finally combine and account for the whole input string in a consistent
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way. Such approaches do not a priori provide means to monitor the combination

of independent local hypotheses. In a sense, it is implicitly assumed that underly-

ing properties of the language, specified or not in the grammar, will spontaneously

select and organize correct grammatical paths during the parsing process.

Such uncontrolled parsing schemes lead to well-known undesirable effects, such

as combinatory explosion when local interpretations multiply, spurious ambiguity

when different sets of rules produce equivalent syntactic interpretations, and fi-

nally parse failure, when a missing interpretation for a given sub-string prevents

the parser from building a full parse. Such side-effects make it impossible, or at

least extremely difficult to build robust grammars based on explicit linguistic de-

scriptions, but in no way are such failures inherent in hand-crafted rule writing

per se, as occasionally claimed. It is an issue of overall parsing strategy, which it-

self reflects strong assumptions about the epistemological value of a computational

grammar, often seen as a mere illustration of a predefined linguistic theory, rather

than a computational device aiming at exploring language constructions in their

full diversity.

2.3.2 Descriptive decomposition

The fact that incrementality preserves parsing from the side effects mentioned above

(combinatory explosion, spurious ambiguity, parse failure) does not alone account

for robustness and broad coverage. To achieve robustness and broad coverage, one

needs to take into consideration the great variety of linguistic constructions occur-

ring in real texts. This requires fine granularity in the linguistic description and

means to control hundreds of specific descriptions in a tractable way. Incremen-

tality is a good methodology for that purpose. It allows one to break down the

linguistic description of a given phenomenon into a large number of autonomous

sub-descriptions.

Descriptive decomposition depends partially on distinctions supported by the

linguistic theory, but also on distinctions imposed by the limitations of NLP sys-

tems themselves. Incremental rules encode observable linguistic facts in light of

the background knowledge accumulated at a given stage of the parsing process.

Linguistic facts and computers being what they are, an essential part of robust

grammar writing has to be devoted to specific contextual restrictions, regardless of

their theoretical value. This duality in grammar writing (linguistic observation on

the one hand, restriction of the computational expressiveness on the other hand)

is essential to robustness. And it is supported straightforwardly in an incremental

framework.

Incrementality, as an additional strength, provides a natural framework for encod-

ing underspecified linguistic descriptions: in an incremental framework, the scope

and field of validity of any given statement is naturally restricted to sub-strings

that have not yet received a competing interpretation in previous statements. The

more explicitly constrained occurrences of linguistic phenomena can be described

at earlier stages of the parsing process. The description of complex or atypical oc-

currences can be deferred to subsequent stages without interfering with phenomena
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earlier described. This leaves the possibility of underspecifying the constraints of

deferred interpretations. But underspecification is not as loose as if constraints were

stand-alone rather than incremental. As rules apply to strings that did not match

competing rules in earlier stages of the incremental process, the underspecified con-

straints in deferred rules build up on the contraposition of constraints stated in

previous steps. In a sense, the accumulated background knowledge is not limited to

the linguistic representation built up as incremental parsing goes; it also includes

some implicit knowledge derived from the fact that some rules did not apply at

earlier stages.

This can be illustrated with agreement control. In various languages, established

standard agreement principles state that noun modifiers must agree in number,

gender and possibly case with the head noun they modify. Similarly, the subject

agrees in number with the verb. Such principles have influenced various syntactic

theories, especially in the paradigm of unification-based grammars. However, one

may identify various causes for agreement failure (not even considering grammar er-

rors). Such causes include phonological constraints, ellipsis, word order, interaction

of syntactic phenomena imposing conflicting constraints, or semantic constraints

prevailing over syntactic constraints (e.g. in English, such sentences as three pints

is not enough, Good and bad taste are inculcated by example or The team are full

of enthusiasm). While unification makes the relaxation of agreement control fairly

cumbersome, if possible at all, such syntactic relaxation is straightforward in an

incremental framework. Preliminary rules such as rule (1) below may impose agree-

ment control to define a subject relation between np#1 and vp#2:

rule (1) subj(#2,#1) = np#1, vp#2 if agree(#2,#1)

while later rules, such as rule (2) below, may not:

rule (2) subj(#2,#1) = np#1, vp#2 if ~subj(#2,?)

If a finite verb has not been assigned a subject after preliminary subject pickup

rules (1) has applied, this finite verb becomes a likely candidate to accept a non-

agreeing subject in rule (2). This rule (2) applies provided the verb has not yet

received a subject, as stated by the condition: if ~subj(#2,?).

Accepting such a relaxed construction in rule (2) has no implication on those

verbs in the input sequence that follow agreement control and have already been

assigned a subject by rule (1). The relaxation control does not reside in the con-

straints attached to the rule itself, but in the incremental organization of the rule

system. This radically simplifies rule writing, as the precise and explicit conditions

under which agreement control does not hold would be very difficult to enumerate

in a computationally tractable way.

Underspecification, and more generally the process of descriptive decomposition

as described above, do not imply a rejection of universal linguistic principles. Such

generalizations are perfectly acceptable, in as much as they hold in corpora and

do not preclude or complicate the description of exceptions and counter-examples.

Such principles can still be exploited in an incremental framework, if they usefully
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restrict the scope of certain parsing stages. But they can be relaxed or ignored in

later stages, if language as produced in real texts so requires.

One may regret that the importance of theoretical assumptions is somewhat

minimized by the flood of erratic linguistic phenomena that abound in real text

and do not conform to axioms but, in the end, this is what robustness is all about.

In light of corpus analysis, the status of principles advocated by major linguistic

theories appears to be more relative than expected, as such principles apply to

core selected constructions rather than in full generality. While a relativization

of linguistic principles is sometimes perceived as a weakness from a theoretical

perspective, especially as it weakens the hope to promote an axiomatic approach to

language processing, we claim that such a relativization gives principles their full

epistemological value. Incrementality provides a natural way of restricting linguistic

principles to limited and validated domains beyond which they no longer apply.

2.3.3 From shallow to deep parsing

As previously indicated in the section on background and related work, early work

in robust parsing concentrated on shallow (i.e. partial or incomplete) parsing. Shal-

low parsers provide some level of syntactic information regarding the structure of

the input string and, occasionally, the relations that hold between such structural

elements. Notwithstanding the incompleteness of such information, it represents a

gain with respect to the absolute shallowness of the input string. As once observed

by J. Hobbs: “We were struck by the strong performance in MUC-3 that the group

at the University of Massachusetts got out of a fairly simple system (Lehnert et al.

1991). It was clear they were not doing anything like the depth of preprocessing,

syntactic analysis, or pragmatics that was being done by the systems at SRI, Gen-

eral Electric, or New York University. They were not doing a lot of processing. But

they were doing the right processing for the task.”

Contrary to traditional parsers, shallow parsers have consistently departed from

dominant linguistic theories. This may have led to the notion that robust parsing

is doomed to remain shallow. In that view, robust and broad coverage parsing is

sometimes seen as a result of overlooking complex linguistic phenomena. It would

simply provide easy solutions to simple sub-problems.

In fact, very shallow parsers, restricted to chunking operations, or relying on poor

and inextensible background lexical information, may not be able to scale up and

tackle more complex phenomena. But such restrictions do not hold for parsers that

achieve higher expressive power and can handle rich data structures. Especially

in an incremental framework, deeper linguistic analysis is always made possible

provided:

• no crucial information is lost during the preliminary parsing phase ;

• finer-grained background information, (e.g. sub-categorization features, corpus-

based evidence) is accessible ;

• deeper linguistic relations can be derived based on a set of core relations

extracted during a preliminary phase of robust analysis.
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Indeed, the level of abstraction produced during a first phase of robust parsing,

e.g. by representing the input as a set of dependency relations, facilitates the de-

scription of deeper syntactic relations. At this stage, the complexity and variability

of the input string has a reduced impact on the complexity of the task. Accumu-

lated syntactic information can be derived from a set of abstract relations, that are

less sensitive to such surface phenomena as word order, long distance, embeddings,

interference of modifiers, adverbials and non-essential complements.

The same incremental methodology can now apply to a somewhat normalized

representation of the surface form. New, fine-grained relations can be derived from

relations obtained at an earlier stage, whenever specific contextual restrictions hold.

Again, it may be that not all the relevant syntactic information will be computed

for any given input, at a given processing stage. But nothing in the incremental

process prevents one from describing deep phenomena, such as infinitive control,

paraphrastic construction, or co-reference, at least in those selected contexts where

the necessary background information is available. And this, at no cost with respect

to robustness.

3 Incremental Deep Parsing

Following the idea that the robustness of rule-based shallow parsing is not tied to

its shallowness but mostly to the incrementality of its linguistic descriptions and

subtasks, we have designed and implemented a generic system for building robust

deep parsers. Incrementality is implemented as ordered rule layers and guaran-

tees robustness. The input sequence goes through the rule layers, getting enriched

when a rule applies, and passing through otherwise, like in cascaded finite-state

parsers (Abney 1996; Grefenstette 1996; Äıt-Mokhtar and Chanod 1997a). How-

ever, the rule formalism has been designed specifically for deep parsing and can

handle rich and fine-grained lexical and dependency descriptions via feature lists.

Linguistic descriptions are organized in ordered modules, depending on their depth

level. Modularity facilitates the maintenance of linguistic data and makes the sys-

tem easily customizable or reusable. For instance, a co-reference resolution module

has been added (Trouilleux 2001) upon a dependency parsing module for French,

using the same rule formalism.

3.1 Overview of the system

Figure 1 shows the global architecture of the system. Its input are sequences of lin-

guistic objects (ranging from raw text to POS-tagged tokens or constituent struc-

tures) from which it produces a deep analysis. The analysis consists of a set of

dependency relations between those objects, by applying dependency rules defined

by a grammarian. By dependency, we mean any linguistic relation between n words

or groups of words. The most obvious particular case is functional dependency rela-

tions. Before performing dependency analysis, the system has three optional mod-

ules (tokenization and morphological analysis, POS disambiguation and chunking)

which are activated depending on the type of input.
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Tokenization and

morphological

analysis

POS disambiguation

(Rule−based or

HMM−based)

Chunking

Dependency analysisDependency rules

Chunking rules

transducers

Lexical FS

POS disambiguation
rules or HMMs

POS−disambiguated

text

Morphogically

analysed text

text

(chunks or constituents)

Resources External input types

Raw text

Processing modules

Analyzed text

Syntactically annotated

Fig. 1. Architecture of the Incremental Deep Parsing System

3.2 A Generic System for Various Inputs

One of the main characteristics of our system is its ability to take as input different

kinds of linguistic objects:

1. A raw ASCII text, possibly enriched with mark-up tags.

2. A sequence of tokenized and morphologically analyzed words. The words are

ambiguously labeled with lexical readings. A lexical reading is a sequence of

features that includes part-of-speech and possibly morpho-syntactic features

such as number, gender, or subcategorization features.

3. A sequence of disambiguated words, where each word has one single lexical

reading. The disambiguation may be performed with any POS tagger.

4. A sequence of constituent structures such as NP, PP, VP, S, etc. A sentence

does not need to have a constituent structure where all the constituents are

grouped into a single top node. Besides, the constituents may correspond

to traditional phrase-structure constituents as well as to chunks (core con-

stituents).

Hence, our system is able to handle an input sequence produced by any mor-

phological analyzer, POS tagger or any full or partial constituent parser. Its input

may also consist of POS or syntactically annotated corpora, such as the Brown

corpus (Kucera 1992) or the Penn treebank (Marcus et al. 1994). The only condi-

tion is that the input sequence complies with the XML DTD that is predefined in

the system. As partial or shallow parsers that produce chunked structures for raw
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Det[def:+]

the

Noun[sing:+,lem:dog]

Verb[pres:+,trans:+,lem:dog]

dog

Noun[plur:+,lem:sleep]

Verb[pres:+,trans:+,pers:3,lem:sleep]

sleeps

Fig. 2. Internal representation of morphologically analyzed text

text are now widespread, the system’s ability to process those structures is partic-

ularly suitable. It allows going beyond shallowness to a deeper syntactic analysis,

featuring explicit functional relations between words, while preserving robustness.

The system can also be used for inter-sentential analysis, as has been shown for

co-reference resolution.

3.3 A Common Representation of the Input Sequence

The basic input sequence to the parser represents any segment of text, typically a

sentence, but not necessarily (e.g. for the task of co-reference, the basic sequence is a

paragraph or even the whole text). The basic input sequence is described by specific

grammatical constraints, which identify the sequence delimiters (e.g. sentence or

paragraph delimiters) used to split the input stream.

Whatever the type of input is, i.e. whatever the level of pre-processing performed

on the input string and whatever the scope of the delimiters defined for the input

sequence, the system initially relies on a unified representation: a sequence of con-

stituent trees. The nodes of the trees are labeled with POS or constituent labels,

and are associated with a bag of features, in the form of attribute-value pairs. Ini-

tially, the internal trees correspond to the input trees when the input is of type (4).

When the input is of type (1), (2), or (3), each input word is assigned a pre-terminal

node, i.e. it is mapped to a lexical tree where the root node is labeled with one or

more POS labels together with their respective features, and the single leaf node is

labeled with the wordform itself (see figure 2).

3.4 Pre-processing Modules

The system includes three optional pre-processing modules that can be activated

before the dependency analysis itself. The activation of those modules depends on

the nature of the input and on the linguistic strategy selected by the grammarian.

Those modules are:

1. A tokenizer and a morphological analyzer based on finite-state lexical trans-

ducers (Karttunen 1994), to be used when the input is merely raw text.

2. A POS disambiguation module, optionally used when the input is a sequence

of ambiguously tagged words.

3. A rule-based constituent/chunk analysis module, when the input is a sequence

of lexical trees with no constituent structure.
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Below, we briefly describe the optional disambiguation and chunking modules.

3.4.1 POS disambiguation

This module consists of a stochastic POS tagger (based on HMMs (Cutting et al.

1992)) and a rule-based POS disambiguation mechanism. Those two mechanisms

can be used sequentially, and the latter can improve POS tagging precision when

it comes to long-distance constraints and fine-grained lexical information (e.g. sub-

categorization) that cannot be captured easily with an HMM. The disambiguation

rules apply on a single lexical node to keep that node’s most likely part of speech,

depending on its ambiguity class and the non-limited surrounding context.

3.4.2 Chunking

The role of the chunking rules is to group sequences of categories into structures

(chunks) in order to facilitate the dependency analysis. Those rules are organized in

layers that apply on the input sequences of categories one after the other. The parser

manipulates a stack of lists of nodes, where each level in the stack corresponds to

the application of a layer of rules. Each layer pushes onto that stack its own list

that comprises two sorts of nodes:

• If a rule matches a sub-sequence of nodes, then the resulting mother node is

copied into the list.

• The nodes that are not recognized by any rules are simply directly copied

from the list of the previous level to the current list.

Hence, a new mother node is only available to the next layer, not to the current

one, which means that a chunking rule is not recursive (i.e. it cannot apply more

than once on the same part of the input). Therefore, the rules have less generative

power than CFG rules. Still, it is possible to define embedded chunks by writing

the relevant rules in different layers, since the number of embeddings in natural

language constituents is finite in practice.

Two sorts of rules are available for chunking:

1. ID/LP (Immediate Dominance and Linear Precedence) rules (Gazdar et al.

1985) that identify partially ordered bags of nodes in the input sequence of

categories;

2. Sequence rules that identify ordered sub-sequences of nodes

A layer can only accept one sort of rules, but both sorts of rules may be meshed

together in a grammar on the condition that they are defined in distinct layers.

Besides, chunking rules may include constraints on the context where they apply

and on the feature values of selected nodes.

At each stage of the process, a parallel structure to the stack is built that connects

mother nodes to their daughters and sister nodes together. When all layers have

applied, a default TOP node is built upon the nodes of the top list to form a full

tree.
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3.5 Dependency Analysis

The system aims at producing dependency relations between words or chunks. We

use the term dependency, though the modeled linguistic relations may go beyond

functional or syntactic dependency relations. Such relations are defined by depen-

dency rules that state topological and logical constraints for the relation to hold.

The constraints involve linear and structural properties of the constituent trees

and/or the set of dependency relations that have been computed prior to the cur-

rent rule under scope. Hence, the parser has a bipartite input: the initial constituent

tree and the incremental set of dependencies. This naturally makes the analysis sen-

sitive to the order of the rules: dependency rules are applied in sequence and rely on

the evolving background knowledge stored in the syntactic tree and in the depen-

dency set. However, each rule applies to all input parts that match the conditions

specified in the rule, and potentially yields multiple outputs. Additionally, the same

dependency relation may be defined within different rules, corresponding to different

topological contexts or to different logical constraints, especially as the dependency

set increases. Contrary to most linguistic formalisms that define functional relations

over trees, such as in LFG (Kaplan and Bresnan 1982), the structural constraints

of our dependency rules are not limited to local trees (i.e. the current level of the

words or constituents involved in the relation). Instead, they may cover any part

at any level of the whole tree sequence. We can express complex constraints such

as: a node X is followed by a node Y , both part of a local tree with a root node

Z, while Z has a root node T which in turn is preceded by another node U . These

constraints are expressed with regular tree matching patterns (Thatcher 1987), and

may additionally refer to the feature-value pairs of selected nodes.

More formally, the syntax of a dependency rule is the following:

|<subtree pattern>| if <conditions> <d term>

<subtree pattern> is a tree matching expression that describes structural prop-

erties of part of the input tree (possibly the whole tree).

<conditions> is any Boolean expression built up from dependency terms, linear

order statements and the operators & (conjunction), | (disjunction) and ~

(negation).

<d term> is a dependency term of the form name<f list>(a1, a2, ..., an), where

name is the name of the dependency relation, <f list> is a list of features

associated with that dependency relation, and a1, a2, ..., an are the arguments.

A dependency rule states that a dependency term d term is added to the set of

dependency relations for the current input if <conditions> are satisfied within the

current set of dependency relations and <subtree pattern> matches successfully

a part of the current input. All the arguments of d term should be variables that

are also expressed in the conditions and/or the pattern. Thus, the satisfaction of

<conditions> and/or the successful match of <subtree pattern>, as a side effect,

instantiate the arguments of the new dependency term, which in turn is added to

the current set of dependency relations. As a special case, dependency rules may

also modify or even delete existing dependencies.
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Since the application of a rule at a given stage depends on the background infor-

mation produced by the previous stages, the correct choice of increments is impor-

tant and is made on the basis of the identification of various linguistic phenomena

and the (possibly multiple) configurations of each phenomenon. The incremental

order is determined in such a way that basic and simple phenomena are always

described before more complex ones. For a given phenomenon, general and de-

fault configurations are modeled before more specific cases and exceptions. The

management of such incremental rules is relatively tractable, provided that each

dependency relation in the analysis output is mapped with the identifier of the rule

that generates it. It is indeed easy to examine the behavior of each individual rule

by inspecting its output and comparing it with its input, i.e. the output of the

preceding rules. If a given rule in the incremental sequence of rules produces an

unexpected output while all the preceding rules behave correctly, then the property

it models is not true, or at least not correctly formalized by the rule expression.

For more details on the syntax and semantics of the rules, we describe four

examples that illustrate how dependency rules can be written to define different

types of linguistic relations.

3.5.1 Example 1: surface relations and regular tree pattern

Dependency rules for surface syntactic relations usually feature a regular tree pat-

tern for the constituent or chunk trees. The label of their top node represents the

constituents. We refer to the features associated with the nodes (or with a depen-

dency) using square brackets. Sister nodes (i.e. sharing the same mother node) are

separated with a comma. It is also possible to go down and describe the internal

structure of a constituent at any level, using curly brackets. The following rule de-

fines a verb-complement dependency relation, as between enjoyed and wine in the

chunked sentence:

SC[ [NP John] [FV has always enjoyed]] [NP good wine].

The rule defines a dependency of type vcomp between 2 words #1 (enjoyed) and

#2 (wine) if #1 is the head of a finite verb chunk (FV) that has a trans feature (i.e.

accepts a direct complement), and the FV is within an SC (clause chunk) followed

by an NP chunk with no time feature (i.e. not a time expression), and the head of

which is #2. The vcomp dependency relation is assigned the feature dir (for direct

verb complement).

|SC{?*, FV[trans:+]{?*,#1[last:+]}},NP[time:~]{?*,#2[last:+]}|

vcomp[dir=+](#1,#2)

This sample rule has no condition on the current dependency relation set and

would derive a relation noted vcomp[dir](enjoyed,wine) from the above example

sentence.
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3.5.2 Example 2: coordination and shared functions

Some dependency relations can be derived from logical constraints bearing on the

current set of dependency relations. For instance, let us consider the sentence: John

peels and then eats an apple, and let us assume that the current set of depen-

dency relations include an object relation between #2 (eats) and #3 (apple), noted

vcomp[dir](eats, apple) and a generic coordination relation between #1 (peels)

and #2 (eats), noted coorditems(peels, eats). Then, the following rule

if ( coorditems(#1[trans:+],#2) & vcomp[dir:+](#2,#3) &

~vcomp[dir](#1,?))

vcomp[dir=+](#1,#3)

infers an object relation between #1 (peels) and #3 (apple), on the condition that

the first coordinated verb is transitive (#1[trans:+]) and has not yet been assigned

a direct complement (~vcomp[dir](#1,?)).

3.5.3 Example 3: infinitive control

An example of a deep syntactic relation is the subject of infinitive verbs (infini-

tive control). The following rule describes infinitive control by objects, as in Mary

orders Fred to close the window. If there is a predefined dependency relation of

type vcomp[inf] (i.e. an infinitive complement) between a verb #1 (orders) and

an infinitive verb #2 (to close), and if #1 has the feature infctrl set to obj, and

#1 has another (non infinitive) complement #3 (Fred), then #3 is the subject of the

infinitive complement #2. This can be stated as follows:

if ( vcomp[inf](#1[infctrl:obj],#2) & vcomp([inf:~]#1,#3) )

subj(#2,#3)

3.5.4 Example 4: co-reference

The dependency rules can also define inter-sentential relations. The system has

been successfully used for the task of co-reference resolution (Trouilleux 2001). An

example of such rules is shown below. It shows conditions both on the current

relation set and on the constituent structures. Let us assume that S is the top node

of a sentence, SC is the top node of a clause, FV is the label of a finite verb chunk,

subj is the label of the subject functional relation, and within is a structural

relation that is true if the second argument is embedded within the first argument.

Then the rule below selects the possible antecedent candidates for a pronoun.

|S#3,S{SC{?*,FV{?*,#1[last]}}}|

if ( subj[imperso:~](#1,#2[pron,clit,p3,indef:~]) & within(#3,#4) )

coref(#2,#4)

The rule states that if a pronoun #2 is the subject of a verb #1 (and not an imper-

sonal subject), and if there is a word #4 occurring within a sentence #3, expressed by

the relation within(#3,#4), then there is a potential co-reference relation between
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the pronoun #2 and the word #4, given that the structural conditions are satisfied,

i.e. sentence S#3 precedes the sentence S where the verb #1 is embedded as the

finite verb of the main clause. This rule is only a first step towards co-reference

resolution. Next steps apply other constraints (e.g. agreement control) in order to

eliminate unlikely candidates.

4 Implementation

The parser engine has been written in C++. This choice allows for a smooth in-

tegration of the parser as a library (a DLL for instance) in any projects that need

linguistic tools. It includes preprocessing components such as a tokenizer, a mor-

phological analyzer and a built-in part-of-speech disambiguator, which cane be in-

tertwined with chunking rules. Since the parser sequentially processes a grammar, it

does not require a complex algorithm to maintain concurrent analyses in memory.

This reduces the memory footprint of the parser, since only one set of linguistic

data is used throughout the whole analysis. For instance, the parser does not have

to cope with the complex selection of a rule at a given moment; it rather applies

those rules one after the other on the syntactic tree. Still, this architecture might

face the same efficiency problem as more traditional approaches: a rule may be

tried over the tree and fail, which proves to be a costly process. To overcome this

problem, the parser relies on a binary coding of features and syntactic categories

(Roux 1996; Roux 1999).

5 A Deep Parser for French

Among others, the system introduced in this paper has been used to build a broad

coverage dependency parser for French. The input of the parser is a raw text,

which is tokenized and morphologically analyzed by the integrated morphological

analyzer. The latter is based on finite-state lexical transducers (Karttunen 1994)

and produces a sequence of words labeled with (possibly) ambiguous readings. Be-

side the POS, words are associated with morphological features (number, tense,

etc.), and subcategorization features.

5.1 POS Disambiguation and Chunking

The disambiguation module was fed with 292 rules that eliminate unlikely readings.

Even though the methodology is the same as in the finite-state POS tagger described

in (Chanod and Tapanainen 1995), we took advantage of the richer expressive power

of the current formalism and the richer linguistic information available in the form

of feature lists. In particular, we made use of the subcategorization features at this

stage, for instance in order to disambiguate the frequent word des (prep+article

or article). The overall precision rate of the disambiguation module is above 98%.

The chunking module has 121 rules that describe chunks such NP, PP, FV (Finite

verb chunk), SC (Sub-Clause). A chunk is defined as the core part of a traditional
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constituent phrase that starts at the beginning of the constituent and ends with its

head (Äıt-Mokhtar and Chanod 1997a).

5.2 Syntactic Dependency Parsing

We have defined a set of 22 syntactic dependencies; each of them may be refined

with features. For instance, the dependency subject is marked with the feature

passive when the clause is in passive voice. Some of the dependencies are surface

dependencies, such as subject, verb complement, verb adjunct, noun modifier, co-

ordination, etc. Others are deeper, such as the infinitive control dependency, shared

dependency relations within coordinated items, or the antecedent dependency be-

tween relative pronouns and their antecedents. In the current version of the French

parser, 199 dependency rules perform the recognition of all those dependency rela-

tions. They involve conditions on the structural properties of the words, their linear

order, their categories and morphological features, their subcategorization proper-

ties and even some rough semantic features (time, location). Subcategorization is

exploited as indicative information rather than strong constraints. For instance,

in the case of ambiguous PP attachment, priority may be given, as a heuristic, to

verb-complement or noun-complement relations, instead of noun-modifier relations.

6 Evaluation

The system has been tested with the grammar of French described above, on

a corpus of newspaper articles (from Le Monde), containing 7300 sentences of

23 words on average. The parser requires 8 MB of memory (plus 12 MB for the

tokenizer/morphological analyzer). It runs at a speed of 1300 words per second on

a Pentium II 500. That speed includes tokenization, morphological analysis, POS

disambiguation, chunking and dependency parsing.

As for the linguistic performance of the French parser, we have evaluated the

precision and the recall of the subject dependency (including coordinated subjects,

infinitive control and subject relative antecedent), and direct complements of verbs.

For subject, precision and recall were respectively 93.45% and 89.36%, while the

figures for verb complements were 90.62% and 86.56%. Using the system for the

task of co-reference resolution, (Trouilleux 2001) reports a precision of 81.95% and

a recall of 79.95

Since each dependency relation in the output is associated with the identifier of

the rule that produces it, it is possible to evaluate the precision of each dependency

rule and therefore track incorrect or unreliable linguistic (incremental) descriptions,

which helps improving the overall quality of the analyzer.

7 Conclusion and Future Directions

This paper gave an overview of (rule-based) robust shallow parsing approaches,

and pointed out incrementality in linguistic descriptions and processing as a widely

shared property of those approaches. We investigated that property and argued
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that it is a key to robustness, which is not tied to shallowness. We described a

generic system for robust incremental deep parsing that we have designed and im-

plemented following that observation. We showed how incrementality and the rule

formalism allow for the proper and robust handling of deeper linguistic phenomena

than shallow/surface syntax. The incremental rules apply on a bipartite but consis-

tent representation of the structure of the input (constituent tree and dependency

set). The system accepts multiple input forms, ranging from raw to syntactically

annotated texts, which makes it possible to reuse annotated corpora or existing

shallow parsers as preprocessors. It allows for linguistically deep and computation-

ally efficient grammars to parse unrestricted texts at high speed. This system opens

the way to new research development and practical applications for content anal-

ysis. It has already been used over a variety of corpora, for linguistic tasks such

as structural disambiguation and co-reference resolution, or applications such as

knowledge extraction. Ongoing and future work includes, on the one hand, gram-

mar development for a number of European and non-European languages, and, on

the other hand, an extension of our incremental approach towards robust semantic

processing, especially targeted at fine-grained knowledge extraction.
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