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ABSTRACT

We study the relationship between adversarial robustness and dif-

ferential privacy in high-dimensional algorithmic statistics. We give

the �rst black-box reduction from privacy to robustness which can

produce private estimators with optimal tradeo�s among sample

complexity, accuracy, and privacy for a wide range of fundamental

high-dimensional parameter estimation problems, including mean

and covariance estimation. We show that this reduction can be

implemented in polynomial time in some important special cases.

In particular, using nearly-optimal polynomial-time robust estima-

tors for the mean and covariance of high-dimensional Gaussians

which are based on the Sum-of-Squares method, we design the �rst

polynomial-time private estimators for these problems with nearly-

optimal samples-accuracy-privacy tradeo�s. Our algorithms are

also robust to a nearly optimal fraction of adversarially-corrupted

samples.

CCS CONCEPTS

• Theory of computation → Sample complexity and general-

ization bounds; Semide�nite programming; •Mathematics of

computing → Multivariate statistics; Probabilistic algorithms; •

Security and privacy → Information-theoretic techniques.
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1 INTRODUCTION

Parameter estimation is a fundamental statistical task: given samples

-1, . . . , -= from a distribution ?\ (- ) belonging to a known family

of distributions P and indexed by a parameter vector \ ∈ Θ ⊆ R� ,
and for a given a norm ∥ · ∥, the goal is �nd \̂ such that ∥\ − \̂ ∥
is as small as possible. Two important desiderata for parameter

estimation algorithms are:

Robustness: If an[-fraction of-1, . . . , -= are adversarially corrupted,

we would nonetheless like to estimate \ . This strong contamination

model for robust parameter estimation dates from the 1960’s, but has

recently been under intense study from an algorithmic perspective,

especially in the high-dimensional setting where -1, . . . , -= ∈ R3
for large 3 . Thanks to these e�orts, we now know e�cient algo-

rithms for a wide range of high-dimensional parameter estimation

problems which enjoy optimal or nearly-optimal accuracy/sample

complexity guarantees.

Privacy: A di�erentially private (DP) [20] algorithm protects the

privacy of individuals represented in a dataset -1, . . . , -= by guar-

anteeing that the distribution of outputs of the algorithm given

-1, . . . , -= is statistically close to the distribution it would generate

given - ′
1, . . . , -

′
= , where -

′
1, . . . , -

′
= di�ers from -1, . . . , -= on any

one sample -8 .

Privacy and robustness are intuitively related: both place re-

quirements on the behavior of an algorithm when one or several

inputs are adversarially perturbed. Already by 2009, Dwork and

Lei recognized that “robust statistical estimators present an excel-

lent starting point for di�erentially private estimators” [19]. More

recent works continue to leverage ideas from robust estimation to

design private estimation procedures [9, 11, 23, 26, 32, 37, 40, 44, 45]

– these works address both sample complexity and computationally

e�cient algorithms.

Despite robustness being useful as a tool in privacy, the relation-

ship between robustness and privacy remains murky. Consequently,

for many high-dimensional estimation tasks, we know polynomial-

time algorithms which obtain (nearly) optimal tradeo�s among

accuracy, sample complexity, and robustness, but known private

algorithms either require exponential time or give suboptimal trade-

o�s among accuracy, sample complexity, and privacy. Indeed, this

is the case even for learning the mean of a high-dimensional (sub-)

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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Gaussian distribution, and for learning a high-dimensional Gaussian

in total variation distance.

We contribute a new technique to design private estimators

using robust ones, leading to:

The �rst black-box reduction from private to robust estimation: Prior

works using robust estimators to design private ones are white box,

relying on properties of those estimators beyond robustness. Black-

box privacy techniques such as the Gaussian and Laplace mecha-

nisms are widely used, but so far do not yield private algorithms for

high-dimensional estimation tasks with optimal accuracy-samples-

privacy tradeo�s, even when applied to optimal robust estima-

tors. For tasks including mean and covariance estimation and regres-

sion, using any robust estimator with an optimal accuracy-samples-

robustness tradeo�, our reduction gives a private estimator with opti-

mal accuracy-samples-privacy tradeo�.

Our basic black-box reduction yields estimators satisfying pure

DP, which work assuming Θ is bounded, and which don’t neces-

sarily admit e�cient algorithms. Two additional properties of an

underlying robust estimator can lead to potential improvements in

the resulting private estimator:

(1) If Θ is convex and the robust estimator is based on the Sum

of Squares (SoS) method, the resulting private estimator can

often be implemented in polynomial time.

(2) If the robust estimator satis�es a stronger worst-case robust-

ness property, satis�ed by many high-dimensional robust

estimators, we can remove the assumption thatΘ is bounded,

at the additional (necessary) expense of weakening from pure

to approximate DP guarantees.

The �rst polynomial-time algorithms to learn high-dimensional Gauss-

ian distributions with nearly-optimal sample complexity subject to

di�erential privacy: Using SoS-based robust algorithms and our

privacy-to-robustness reduction, we obtain polynomial-time esti-

mators with nearly-optimal accuracy-samples-privacy tradeo�s,

for both pure and approximate DP, for learning the mean and/or

covariance of a high-dimensional Gaussian, and for learning a high-

dimensional Gaussian in total variation. In addition, our private

algorithms enjoy near-optimal levels of robustness. Prior private

polynomial-time estimators have sub-optimal samples-accuracy-

privacy tradeo�s, losing polynomial factors in the dimension 3

and/or privacy parameter log 1/X .
Our methods also yield a polynomial-time algorithm for pri-

vate mean estimation under a bounded-covariance assumption,

recovering the main result of [26] with slightly improved sample

complexity. We expect them to generalize to other estimation prob-

lems where Θ is convex and nearly-optimal robust SoS algorithms

are known – e.g., linear regression [34] and mean estimation under

other bounded-moment assumptions [27, 35].

Conclusions on Robust versus Private Estimation: Recent work [23]

shows that private algorithms with very high success probabilities

are robust simply by virtue of their privacy guarantees. This comple-

ments our results, which show a converse – from robust estimators

with optimal samples-accuracy-robustness tradeo�s we get anal-

ogous private estimators (with very high success probabilities).

Together, these hint at a potential equivalence between robust and

private parameter estimation, which can be made algorithmic in

the context of SoS-based algorithms. Our results show such an

equivalence for “nice enough” parameter estimation problems, but

the broader relationship between privacy and robustness is more

subtle; in Section 2 we discuss situations where optimal robust

estimators don’t necessarily yield optimal private ones, at least in

a black-box way.

1.1 Results

We �rst recall the de�nitions of di�erential privacy and the strong

contamination model.

De�nition 1.1 (Di�erential Privacy (DP) [18, 20]). Let X be a set

of inputs and X∗ be all �nite-length strings of inputs. Let O be a

set of outputs. A randomized map (“mechanism”)" : X∗ → O sat-

is�es (Y, X)-DP if for every neighboring -,- ′ ∈ X∗ with Hamming

distance 1 and every subset ( ⊆ O, P(" (- ) ∈ () ≤ 4Y P(" (- ′) ∈
()+X . If X = 0, we say that" satis�es pure DP, otherwise" satis�es

approximate DP.

De�nition 1.2 (Strong Contamination Model). For a probability

distribution � and [ > 0, .1, . . . , .= are [-corrupted samples from

� if -1, . . . , -=
8.8 .3.∼ � and .8 = -8 for at least (1 − [)= indices 8 .

1.1.1 Learning High-Dimensional Gaussian Distributions in TV Dis-

tance. We begin with our results on learning Gaussians in total

variation distance.

Theorem 1.3 (Learning Arbitrary Gaussians, Pure DP). As-

sume that 0 < U, V, Y < 1, 0 < [ < [∗ for some absolute con-

stant [∗, and  , ' > 1. There is a polynomial-time (Y, 0)-DP al-

gorithm with the following guarantees for every 3 ∈ N and every

` ∈ R3 , Σ ∈ R3×3 such that ∥`∥ ≤ ' and 1
 · � ⪯ Σ ⪯  · � . Given =

[-corrupted samples from N(`, Σ), the algorithm returns ˆ̀, Σ̂ such

that 3)+ (N (`, Σ),N( ˆ̀, Σ̂)) ≤ U + $̃ ([) with probability at least

1 − V , if1

= ≥ $̃
(
32 + log2 (1/V)

U2
+ 3

2 + log(1/V)
UY

+ 3
2 log 

Y
+ 3 log'

Y

)
.

We are unaware of prior computationally e�cient pure-DP al-

gorithms for learning high-dimensional Gaussians in TV distance;

we believe that state of the art is based on the techniques of [29],2

which would give an algorithm requiring = ≫ 33 samples (and lack

robustness).

Pure-DP necessitates the a priori upper bounds ' and  on ` and

Σ in Theorem 1.3. Under (Y, X)-DP these bounds are avoidable. But,

obtaining a polynomial-time (Y, X)-DP algorithm to learn Gaussians

with optimal samples-accuracy-privacy tradeo�s and without as-

sumptions on `, Σ has been a signi�cant challenge, with progress in

several recent works [3, 31, 37, 48] (see Table 1). These algorithms

require a number of samples exceeding the information-theoretic

optimum by polynomial factors in either 3 , log(1/X), or both.
We give the �rst polynomial-time (Y, X)-DP algorithm for learn-

ing an arbitrary high-dimensional Gaussian distributionwith nearly-

optimal sample complexity with respect to all of: dimension, accu-

racy, privacy, and corruption rate. Ours is the �rst $̃ (32)-sample

1With more careful analysis, we expect that the error bound can be tightened to
U +$ ([ log 1/[ ) , which is expected to be tight for statistical query algorithms [15];
the same goes for our other results on learning Gaussians.
2replacing the Gaussian mechanism with the Laplace mechanism
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polynomial-time robust and private estimator; prior works require

Ω(33.5) samples [3, 48].

Theorem 1.4 (Learning Arbitrary Gaussians, (Y, X)-DP). As-
sume that 0 < U, V, X, Y < 1, and 0 < [ < [∗ for some absolute

constant [∗. There is a polynomial-time (Y, X)-DP algorithm with the

following guarantees for every3 ∈ N, ` ∈ R3 , and Σ ∈ R3×3 , Σ ≻ 0.3

Given = [-corrupted samples fromN(`, Σ), the algorithm returns ˆ̀, Σ̂

such that3)+ (N (`, Σ),N( ˆ̀, Σ̂)) ≤ U+$̃ ([) with probability at least
1 − V , if

= ≥ $̃
(
32 + log2 (1/V)

U2
+ 3

2 + log(1/V)
UY

+ log(1/X)
Y

)
.

The sample-complexity guarantees of Theorems 1.3 and 1.4 are

information-theoretically tight up to logarithmic factors in 3, U, Y,

and log 1/X . The log(1/V)/UY term in each is potentially improv-

able to min(log(1/V), log(1/X))/UY, and the log2 (1/V) term is po-

tentially improvable to log(1/V). However, this still means our al-

gorithms succeed with exponentially small (4−3 ) failure probability,
with no blowup in the sample complexity.

1.1.2 Estimating the Mean of a Subgaussian Distribution. Mean

estimation in high dimensions subject to di�erential privacy has

also received substantial recent attention [9, 11, 12, 26, 29, 32, 33, 39,

40]. We focus on the following simple problem: given (corrupted)

samples fromN(`, � ), �nd ˆ̀ such that ∥` − ˆ̀∥ ≤ U . In the pure-DP

setting, exponential-time estimators are known which achieve this

guarantee using = ≈ 3
U2 + 3

UY samples [11, 32]. Existing polynomial-

time estimators require = ≫ min( 3
U2Y

, 3
1.5

Y ) samples or satisfy a

weaker privacy guarantee [26, 29] (see Table 2). We give the �rst

nearly-sample-optimal pure-DP algorithm:

Theorem 1.5 (Estimating the Mean of a Spherical Subgaus-

sian Distribution). Assume that 0 < U, V, Y < 1, 0 < [ < [∗ for
some absolute constant [∗, and ' > 1. There is a polynomial-time

(Y, 0)-DP algorithm with the following guarantees for every 3 ∈ N,
every ` ∈ R3 with ∥`∥ ≤ ', and every subgaussian distribution �

on R3 with mean ` and covariance � . Given = [-corrupted samples

from � , the algorithm returns ˆ̀ such that ∥` − ˆ̀∥ ≤ U + $̃ ([) with
probability at least 1 − V , as long as

= ≥ $̃
(
3 + log(1/V)

U2
+ 3 + log(1/V)

UY
+ 3 log'

Y

)
.

It is natural to ask whether the identity-covariance assumption

can be removed from Theorem 1.5, since information-theoretically

the assumption of covariance Σ ⪯ � is enough to obtain the same

guarantees. Removing this assumption while retaining polynomial

running time and high-probability privacy guarantees would im-

prove over state-of-the-art algorithms for robust mean estimation

which have withstood signi�cant e�orts at improvement [28].

There is also an analogue for polynomial-time mean estimation

subject to (Y, X)-DP without the ∥`∥ ≤ ' assumption, using $̃ ( 3UY +
3
U2 + log 1/X

Y ) samples. We obtain this result from our approx-DP

framework similar to proving Theorem 1.4: one could alternatively

3We suppress running-time dependence on log , where is the condition number of
Σ; logarithmic dependence on the condition number orthogonal to ker(Σ) is necessary
for learning Gaussians in TV, regardless of privacy or robustness. Note that the sample
complexity has no such dependence on log .

combine Theorem 1.5 with an (Y, X)-DP procedure that obtains

an $ (3)-accurate estimate, such as [22]. The analogue is formally

stated and proven as Theorem 5.2 in the full version of this paper.

Finally, we note that Theorems 1.3 and 1.5 are known to be near-

optimal from standard packing lower bounds [11], and Theorem 1.4

and its approx-DP analogue are also known to be near-optimal,

via the technique of �ngerprinting [29, 30], except, as in Theo-

rems 1.3 and 1.4, that log(1/V)/UY is potentially improvable to

min(log(1/V), log(1/X))/UY. All our algorithmic results are appli-

cations of Theorems 4.1 and 4.2 in the full version of the paper,

which give general tools for turning SoS-based robust estimators

into private ones.

1.2 Related Work

Our work joins three bodies of literature too large to survey here:

on private and high-dimensional parameter estimation, on high-

dimensional statistics via SoS (see [42]), and on high-dimensional

algorithmic robust statistics (see [14]). We discuss other works at

the intersections of these areas.

Private and Robust Estimators: [19] �rst used robust statistics primi-

tives to design private algorithms, a tradition continued by [9, 11, 26,

32, 37, 40, 44]. Some of these works attempt to give generic recipes

for converting robust algorithms to private ones [37, 40], though

do not give a black-box reduction as we do in Lemmas 2.1 and 2.2.

Other works from the Statistics community also investigate connec-

tions between robustness and privacy [7, 8, 45, 46], including local

di�erential privacy [38]. Our black-box reduction from privacy to

robustness can be seen as a generalization of methods of [11, 32],

which also instantiate the exponential mechanism with a score

function counting the minimum point changes to achieve some

accuracy guarantee, but for speci�c robust estimators. A recent

line of work focuses on simultaneously private and robust estima-

tors for high-dimensional statistics [3, 11, 22, 24, 37, 39, 40, 48]; see

Tables 1, 2.

Recall that [23] observes that pure-DP algorithms which suc-

ceed with su�ciently high probability over the internal coins of the

algorithm are automatically robust to a constant fraction of cor-

rupted inputs. While optimal ine�cient private estimators often

satisfy this high-probability requirement, most existing polynomial-

time private estimators do not. Our private estimators have not

only (nearly) optimal sample complexity but also (nearly) optimal

success probability.

Private Estimators via SoS: [26] and [37] pioneer the use of SoS for

private algorithm design. [26] gives a polynomial-time algorithm for

pure-DP mean estimation under a bounded covariance assumption,

using 3
U2Y

samples, and [37] gives a≈ 38-sample (Y, X)-DP algorithm
for learning 3-dimensional Gaussians. [23] uses SoS for private

sparse mean estimation.

On a technical level, our work most resembles [26]; we also

employ SoS SDPs as score functions and leverage tools from log-

concave sampling. However, there are fundamental roadblocks

to using [26]’s strategy for converting SoS proofs into private al-

gorithms in settings beyond mean estimation under bounded co-

variance, as we discuss in Section 2. We provide a blueprint for
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Table 1: Private covariance estimation of Gaussians in Mahalanobis distance, omitting logarithmic factors. Optimal robustness

means the algorithm succeeds even with Ω̃(U)-fraction of corruptions.

Paper Sample Complexity Robust? Poly-time? Privacy

[33] 1
U2 + 1

UY +
min(log ,logX−1 )

Y , 3 = 1 No Yes Pure/Approximate

[29] 32

U2 +
32
√
logX−1

UY + 33/2
√
log logX−1

Y No Yes Concentrated

[11] 32

U2 +
32 log 
UY Optimal No Pure

[1] 32

U2 + 32

UY +
logX−1

Y Optimal No Approximate

[40] 32

U2 + 32

UY +
logX−1

UY Optimal No Approximate

[31] 32

U2 +
(
32

UY +
35/2
Y

)
· (logX−1)$ (1) No Yes Approximate

[37] 38

U4 ·
(
logX−1

Y

)6
Suboptimal Yes Approximate

[3, 48] 32

U2 +
32
√
logX−1

UY + 3 logX−1

Y No Yes Approximate

[3, 48]
33.5 logX−1

U3Y
Optimal Yes Approximate

Thm 1.3 32

U2 + 32

UY +
32 log 

Y Optimal Yes Pure

Thm 1.4 32

U2 + 32

UY +
logX−1

Y Optimal Yes Approximate

Table 2: Private mean estimation of identity-covariance Gaussians in ℓ2-norm, omitting logarithmic factors. Optimal robustness

means the algorithm succeeds even with Ω̃(U) fraction of corruptions.

Paper Sample Complexity Robust? Poly-time? Privacy

[33] 1
U2 + 1

UY +
min(log',logX−1 )

Y , 3 = 1 No Yes Pure/Approximate

[29] 3
U2 +

3
√
logX−1

UY +
√
3 log' logX−1

Y No Yes Concentrated

[11] 3
U2 +

3 log'
UY Optimal No Pure

[32] 3
U2 + 3

UY +
3 log'
Y Optimal No Pure

[1] 3
U2 + 3

UY +
logX−1

Y Optimal No Approximate

[39] 3
U2 +

33/2 logX−1

UY Optimal Yes Approximate

[11, 40] 3
U2 + 3

UY +
logX−1

UY Optimal No Approximate

[26] 3
U2Y

+ 3 log'
Y Suboptimal Yes Pure

Theorem 1.5 3
U2 + 3

UY +
3 log'
Y Optimal Yes Pure

Theorem 1.5+[22] 3
U2 + 3

UY +
logX−1

Y Optimal Yes Approximate

converting a much wider range of SoS-based robust algorithms to

private ones.

Inverse Sensitivity Mechanism: In [4, 5], Asi and Duchi design private

polynomial-time algorithms for statistical problems with an inverse

sensitivity mechanism which is closely related to our black-box re-

duction, as described in (1). However, the focus of their work is

rather di�erent, as they investigate applications to instance-optimal

private estimation, whereas our goal is to understand private es-

timation through the lens of robustness. Furthermore, their study

is centered on one-dimensional statistics, and their analysis is not

black-box.

Contemporaneous work: In independent and simultaneous work, Al-

abi, Kothari, Tankala, Venkat, and Zhang also design e�cient robust

and private algorithms for learning high-dimensional Gaussians

with nearly-optimal sample complexity with respect to dimension;

however, their algorithms require poly(1/Y, log 1/X, 1/U)-factors
more samples than those we present [2]. In another independent

and simultaneous work, Asi, Ullman, and Zakynthinou introduce

the same black-box transformation from robustness to privacy [6].

To contrast the two works: we go beyond this ine�cient reduc-

tion, and also design e�cient algorithms for Gaussian estimation.

On the other hand, they show the transformation gives the op-

timal error for low-dimensional problems, showing tightness of

the robustness-privacy connection in certain settings. Finally, two

works subsequent to ours give computationally-e�cient algorithms

for mean estimation in Mahalanobis distance while requiring only

a near-linear number of samples [10, 17], improving on the expo-

nential time algorithm of [9]. Both new works are based on “stable”

estimators for mean and covariance, where stability is a notion of

robustness di�erent from the one we consider in this work.
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2 TECHNIQUES

2.1 Black-Box Reduction from Privacy to

Robustness

Consider a deterministic4 robust estimator \̂ : datasets → Θ for

a parameter space Θ ⊂ R� , a distribution family P, and a norm

∥ · ∥, with the following guarantee: for a non-decreasing function

U : [0, 1] → R and some = ∈ N, with probability 1 − V over

samples -1, . . . , -= ∼ ?\ ∈ P, for every [ ∈ [0, 1], given any [-

corruption of -1, . . . , -= , the estimator obtains ∥\̂ − \ ∥ ≤ U ([).
That is, U is a function that quanti�es the error achieved by the

estimator for every corruption level [. Let - denote an =-vector

dataset-1, . . . , -= , and 3 (-,- ′) be the Hamming distance between

the datasets -,- ′.
Our key conceptual contribution is the following instantiation of the

exponential mechanism [41]: Given Y > 0,-1, . . . , -= and a threshold

[0 ∈ [0, 1], the mechanism picks a random \ ∈ Θ + U ([0) · � ∥ · ∥
with:

P(\ ) ∝ exp(−Y · score- (\ )) where

score- (\ ) = min{3 (-,- ′) : ∥\̂ (- ′) − \ ∥ ≤ U ([0)} , (1)

where � ∥ · ∥ is the unit ball of ∥ · ∥. In words: the mechanism assigns

each \ within distance U ([0) of Θ a score given by the number of

input samples which would have to be changed to obtain a dataset

- ′ for which the robust estimator \̂ (- ′) is close to \ , and samples

\ with probability ∝ exp(−Y · score- (\ )). If Θ is unbounded these

probabilities are not well de�ned; in that case pure-DP guarantees

are not obtainable anyway, due to packing lower bounds [25]. Later,

we use a truncated version of (1) to allow unbounded Θ with (Y, X)-
DP.

The general idea to instantiate the exponential mechanismwhere

the score of some \ is the number of inputs which must be changed

tomake some function \̂ take the value (approximately) \ appears to

be folklore; see for instance the inverse sensitivity mechanism of [5].

Our contribution is (a) to show that for (1) to have nontrivial utility

guarantees, it su�ces for \̂ to be robust to adversarial corruptions,

and (b) to show how to implement variants of (1) in polynomial

time.

To elucidate the role of and how to set the threshold parameter

[0: if the target bound on the error of our private estimator is some

value U , we can think of [0 as the maximum amount of contami-

nation a robust estimator could tolerate if the goal was to achieve

the same error U . This will depend on the distribution class P; for

example, if we consider the class of distributions with bounded co-

variance Σ ⪯ � , then the appropriate setting is [0 = Θ(U2) [13, 47].
The exponential mechanism enjoys (2Y, 0)-DP, but the question

of utility remains. Suppose that -1, . . . , -= ∼ ?\ ∗ . How small is

∥\ − \∗∥? The following lemma bounds this quantity in terms of

the robustness of \̂ . Despite its simplicity, we are not aware of a

similar result in the literature.

4If we are not concerned with running time, the deterministic assumption is without
loss of generality, as any randomized estimator can be converted to a deterministic
one with at most a constant-factor loss in accuracy, by enumerating over all choices
of the estimator’s internal random coins and selecting an output which is contained in
a ball which contains at least 50% of the mass of the estimator’s output distribution.

Lemma 2.1. Suppose a dataset -1, . . . , -= ∼ ?\ ∗ , where the pa-

rameter vector \∗ ∈ Θ ⊆ R� . For any threshold [0 ∈ [0, 1], a random
\ drawn according to (1) has ∥\ − \∗∥ ≤ 2U ([0) with probability at

least 1 − 2V , if

= ≥ max
[0≤[≤1

� · log 2U ([ )
U ([0 ) + log(1/V) +$ (log[=)

[Y
. (2)

Observe that the $ (log[=) term in (2) is negligible compared to

� log
2U ([ )
U ([0 ) ≥ � log 2 if = ≪ 2� .

The sample complexity in (2) is a maximum over the parameter

[; we pay a cost in samples depending on the underlying robust

estimator’s robustness pro�le, taking the worst case over all corrup-

tion levels [. The price at each [ scales roughly as the log-volume

of the set of solutions which satisfy the robust estimator’s accuracy

level under [-corruptions. The more robust the estimator is, the

smaller this volume will be, matching the intuition that settings

which permit more robust estimation also are easier to privatize.

A robust analogue of Lemma 2.1, in which the dataset -1, . . . , -=
is a contamination of i.i.d. samples from ?\ ∗ , follows by a similar

proof.

Proof. Condition on the (1 − V)-probable event that the ro-

bustness guarantees of \̂ hold with respect to - . Consider \ with

score [=. By de�nition, ∥\ − \̂ (- ′)∥ ≤ U ([0) for some - ′ with
3 (-,- ′) ≤ [ · =. By robustness, ∥\̂ (- ′) − \∗∥ ≤ U ([). Using trian-

gle inequality, ∥\ − \∗∥ ≤ U ([0) + U ([) ≤ 2U ([), assuming [ ≥ [0.
In summary, any \ with score [= is within distance 2U ([) of \∗.

Let +A be the volume of a radius A ∥ · ∥-ball. Any \ such that

∥\ − \̂ (- )∥ ≤ U ([0) has score 0. The normalizing factor implicit in

(1) can be lower bounded by the contribution due to these points,

or+U ([0 ) · exp(−Y · 0) = +U ([0 ) . Combining this with the argument

above, the probability of seeing \ with score [= with [ > [0 in a

draw from (1) is at most
+2U ([)
+U ([0 )

exp(−Y[=). Summing over all scores

≥ [0=, the overall probability of seeing some \ with score greater

than [0 is at most

=∑
C=[0=

+2U (C/=)
+U ([0 )

· exp(−YC)

=

=∑
C=[0=

+2U (C/=)
+U ([0 )

· exp(−YC) · C2 · 1/C2

≤ $ (1) · max
[0≤[≤1

{
([=)2 ·

+2U ([ )
+U ([0 )

· exp(−Y[=)
}
,

where the inequality is Hölder’s. This quantity is at most V for =

as in (2). So, with probability at least 1 − V the random \ will have

score at most [0=, meaning ∥\ − \∗∥ ≤ 2U ([0). At the beginning,
we conditioned on a (1 − V)-probable event, so the overall failure

probability is at most 2V . □

Consequences of Lemma 2.1: Applied to robust mean estimators with

optimal error rates under bounded :-th moment assumptions, for

any : ≥ 2, Lemma 2.1 gives optimal pure-DP estimators under

those same assumptions, recovering the main results of [32]; ap-

plied to robust linear regression (with known covariance) [16], it

yields a pure-DP analogue of the nearly-optimal regression result
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of [39]; and so on. The same argument can be adapted to perform

covariance-aware mean estimation5 and covariance-aware linear

regression, recovering pure-DP versions of the results of [9, 39],

using a robust estimator of mean and covariance.

To illustrate, we apply Lemma 2.1 to Gaussian mean estimation.

With = ≫ 3/U2 samples from a 3-dimensional Gaussian N(`, � ), it
is possible to estimate the mean under [-contamination with error

∥ ˆ̀ − `∥ ≤ $ (U + [), if [ < 1/2. For Y-DP guarantees, we need

to restrict to the case of ∥`∥ ≤ ' for some (large) ' > 0; we will

assume that even for [ ≥ 1/2, ∥ ˆ̀∥ ≤ '.

Plugging such a robust ˆ̀ into Lemma 2.1, and choosing [0 = U ,

there are two interesting cases: [ = $ ([0) and [ = 1. In the

former, U (2[0)/U ([0) = $ (1), so we get the requirement = ≥
$ ( 3+log(1/V )UY ), and in the latter U (1) = ', so we get the additional

requirement = ≥ 3 log'
Y , meaning that we obtained an Y-DP estima-

tor with accuracy $ (U) using = samples,

= ≫ 3 + log(1/V)
UY

+ 3 log'
Y

+ 3

U2
.

This is tight up to constants [11, 25]. Similarly tight results can be

derived for mean estimation under bounded covariance, covariance

estimation, linear regression, and more. We remind that the result-

ing private algorithms are not computationally e�cient, though

we will see how this approach can be made e�cient for several

interesting cases.

When Is Lemma 2.1 Loose? More re�ned analyses of the construction

(1) are possible. In particular, if the robust estimator \̂ enjoys the

property that the volume of the sets of possible values it assumes

under [-corrupted inputs are substantially smaller than+2U ([ ) , the
bound in Lemma 2.1 can be improved accordingly (at the cost of

breaking black-box-ness in the analysis.)

As an example, consider estimating the mean of a Gaussian

N(`, � ) to ℓ∞ error U . Using a similar argument as in the ℓ2 exam-

ple above, Lemma 2.1 gives a sample-complexity upper bound of
log3

U2 + 3
UY +

3 log'
Y . But, because 3)+ (N (`, � ),N(`′, � )) ≈ ∥`−`′∥2,

it’s possible to construct a robust estimator ˆ̀ such that under [-

corruptions, ∥ ˆ̀−`∥∞ can only be as large as[ if ∥ ˆ̀−`∥2 ≈ ∥ ˆ̀−`∥∞;

otherwise ∥ ˆ̀ − `∥∞ is much smaller. This a�ords better control

over the volumes of candidate outputs with a given score [= than

the [-radius ℓ∞ ball would o�er. Using this, we show in Appendix E

in the full version of the paper that $̃ ( log3
U2 + 32/3

UY2/3
+

√
3
UY + 3 log'

Y )
samples are enough, in the pure-DP setting.

From Robustness to (Y, X)-DP: If \̂ has a nontrivial breakdown point

– i.e., a fraction of corruptions [ beyond which it admits no error

guarantees, then Lemma 2.1 doesn’t give a nontrivial private esti-

mator. For example, in the Gaussian mean estimation setting, if we

remove the assumption ∥`∥ ≤ ', then when [ ≥ 1/2 no estimator

has a �nite accuracy guarantee (i.e., U ([) is unbounded for such [).

By relaxing from pure to (Y, X)-DP, however, we can design pri-

vate estimators even from robust estimators \̂ which have a break-

down point. Our reduction in this case, however, requires \̂ to

satisfy a worst-case robustness property, because we will need to

appeal to robustness to ensure not only accuracy, as in Lemma 2.1,

but also privacy, which is inherently a worst-case guarantee.

5a.k.a., mean estimation in Mahalanobis distance

Simple adaptations of standard robust estimators of mean and

covariance, and robust regression algorithms, have such worst-case

robustness guarantees. This approach gives an alternative to the

high-dimensional propose-test-release framework of [40], and the

approach of [9], for building approx-DP estimators from robust esti-

mation primitives; we can recover their results on covariance-aware

mean estimation and linear regression with (Y, X)-DP guarantees.

This approach carries the advantages of black-box-ness and po-

tential polynomial-time implementability, since SoS-based robust

estimators for mean and covariance have the required worst-case

behavior.

Consider again a deterministic robust estimator \̂ : datasets →
Θ ∪ {reject} for a parameter \ ∈ R3 , which takes = inputs and

returns either some element of Θ or reject. Let P be a distribution

family, ∥ · ∥ be a norm, U : [0, 1] → R be a non-decreasing function,

= ∈ N, and [0, [∗ ∈ [0, 1]. We continue to employ score- (\ ) as
de�ned in (1). Suppose as before that with probability 1 − V over

samples -1, . . . , -= ∼ ?\ ∈ P, for every [ < [∗, given any [-

corruption of -1, . . . , -= , ∥\̂ − \ ∥ ≤ U ([). And, suppose that \̂

has the following worst-case robustness property: for any input

- = -1, . . . , -= , if \̂ (- ) ≠ reject, then for every [ < [∗, given any

[-corruption - ′ of - , either \̂ (- ′) = reject, or ∥\̂ (- ′) − \̂ (- )∥ ≤
U ([∗).

Lemma 2.2. Let [0 < [∗ ∈ [0, 1] be such that [∗= is a su�ciently

large constant. For every Y, X > 0, there is an ($ (Y),$ (42YX))-DP
mechanism which, for any \∗, takes -1, . . . , -= ∼ ?\ ∗ and with

probability 1 − V outputs \ such that ∥\ − \∗∥ ≤ 2U ([0), if

= ≥ $ ©­«
max

[0≤[≤[∗

� · log 2U ([ )
U ([0 ) + log(1/V) + log[=

[Y
+ log(1/X)

[∗Y
ª®¬
.

Before proving the lemma, we need a preliminary claim.

Proposition 2.3. Suppose for a dataset - there exists \ such that

score- (\ ) < 0.2[∗=. Then there exists a ball of radius 2U ([∗) which
contains every \ ′ with score- (\ ′) < 0.4[∗=.

Proof. Since there exists some \ such that score- (\ ) < 0.2[∗=,
there’s some. ∼0.2[∗ - such that \̂ (. ) ≠ reject: this is because we

can consider any such . which has score. (\ ) = 0, and thus \̂ (. )
outputs an element of Θ and not reject. Similarly, for any other

\ ′ with score- (\ ′) ≤ 0.4[∗=, there’s some / ∼0.4[∗ - such that

∥\ ′−\̂ (/ )∥ ≤ U ([0). By triangle inequality,/ ∼0.6[∗ . , so byworst-

case robustness of \̂ , ∥\ ′ − \̂ (. )∥ ≤ ∥\ ′ − \̂ (/ )∥ + ∥\̂ (/ ) − \̂ (. )∥ ≤
U ([0) + U ([∗) ≤ 2U ([∗). □

Proof of Lemma 2.2. First, let 6 : Z → R be a function with

the following properties: for C < 0.1[∗=, 6(C) = 1, for C > 0.2[∗=,
6(C) = 0, and for all C , 4−Y6(C + 1) − X ≤ 6(C) ≤ 4Y6(C + 1) + X . Such
a function exists since = ≫ log 1

X
/[∗Y.

This is not hard to show: one could, for example, consider the

function which, for C over the interval [0.1[∗=, 0.2[∗=], �rst de-
creases by a multiplicative factor of 4−Y (i.e., 6(C + 1) = 4−Y6(C))
until some point C∗ when 6(C∗) ≤ X . Then, we set 6(C) = 0 for

all C > C∗. This satis�es the requirements on the function for all

C ≤ C∗ with X = 0, and for C > C∗ with Y = 0. We need that

X ≥ exp(−(C − 0.1[∗=)Y) is satis�ed by some C in the interval
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[0.1[∗=, 0.2[∗=] (roughly speaking, to allow enough multiplicative

4−Y decreases to accumulate in order to cancel out the remainder

with a subtractive X shift), which we can take to be C∗. Rearranging
the inequality, we get C ≥ log(1/X)/Y + 0.1[∗=. But for C∗ to lie

in the stated interval, we need log(1/X)/Y + 0.1[∗= ≤ C ≤ 0.2[∗=,
which is satis�ed as long as = ≫ log(1/X)/[∗Y, as claimed.

The mechanism is as follows. Given - = -1, . . . , -= , let ) =

min\ ∈Θ score- (\ ). First, output reject with probability 1 − 6() ).
If reject is not output, output a sample from the distribution on

Θ + U ([0)� ∥ · ∥ where

P(\ ) ∝
{
score- (\ ) if score- (\ ) < 0.3[∗=

0 otherwise

and � ∥ · ∥ is the unit ball for the norm ∥ · ∥.
Proof of privacy: The reject phase of the mechanism clearly

satis�es (Y, X)-DP, because score- (\ ) can change by at most 1

when- is replacedwith neighboring- ′, and based on the de�nition
of 6.

Now we turn to the sampling phase. Let -,- ′ di�er on one

sample. Let ),) ′ be the numbers computed in the reject phase of

the mechanism; we may assume ),) ′ ≤ 0.2[∗=, since otherwise
on both -,- ′ the mechanism outputs reject with probability at

least 1 − X . We show that the mechanism above, conditioned on

not rejecting, satis�es ($ (Y),$ (42YX))-DP; then the overall result

follows by composition.

For brevity, we abbreviate score- to B- . For any ( ⊆ Θ+U ([0) ·
� ∥ · ∥ , we can bound its associated weight via∫

\ ∈(
4−YB- (\ ) · 1(B- (\ ) < 0.3[∗=)

≤ 4Y
∫
\ ∈(

4−YB- ′ (\ ) ·
[
1(B- ′ (\ ) < 0.3[∗=)

+ 1(B- ′ (\ ) ∈ [0.25[∗=, 0.35[∗=]
]
.

To see why, �rst note that for any \ we have |B- (\ ) − B- ′ (\ ) | ≤ 1.

This implies that 4−YB- (\ ) ≤ 4Y4−YB- ′ (\ ) . Similarly, if B- (\ ) ≤
0.3[∗=, it also implies that at least one of the following must be true

(potentially both): B- ′ (\ ) ≤ 0.3[∗= or B- ′ (\ ) ∈ [0.25[∗=, 0.35[∗=]
(we use the fact that [∗= is at least a su�ciently large constant).

Normalizing to get a probability, we have

P
-
(\ ∈ () ≤ 4Y · 6

ℎ
≤ 4Y · 6

ℎ′
,

where

6 =

∫
\ ∈(

4−YB- ′ (\ ) ·
[
1(B- ′ (\ ) < 0.3[∗=)

+ 1(B- ′ (\ ) ∈ [0.25[∗=, 0.35[∗=])
]
,

ℎ =

∫
\ ∈Θ+U ([0 )�∥·∥

4−YB- (\ ) · 1(B- (\ ) < 0.3[∗=),

ℎ′ = 4−Y
∫
\ ∈Θ+U ([0 )�∥·∥

4−YB- ′ (\ ) ·
[
1(B- ′ (\ ) < 0.3[∗=)

− 1(B- ′ (\ ) ∈ [0.25[∗=, 0.35[∗=])
]
.

The denominator ℎ′ is split into two terms with a similar argument

as used for the numerator 6.

We next simplify the denominator ℎ′. Because, by assumption,

there is \ ′ such that score- ′ (\ ′) < 0.2[∗=, there is a ball of ra-

dius U ([0), contained in Θ + U ([0) · � ∥ · ∥ , of points with score at

most 0.2[∗=; we can hence lower-bound the �rst term
∫
4−YB- ′ (\ ) ·

1(B- ′ (\ ) < 0.3[∗=) ≥ exp(−Y · 0.2[∗=) ·+U ([0 ) , where+U ([0 ) is the
volume of a ∥ · ∥-ball of radius U ([0).

We can use Proposition 2.3 to upper-bound the magnitude of the

second term in the denominator,∫
4−YB- ′ (\ ) · 1(B- ′ (\ ) ∈ [0.25[∗=, 0.35[∗=])

≤ exp(−Y · 0.25[∗=) ·+2U ([∗ ) ,

which is at most X times the lower bound on the �rst term, under

our hypotheses on the lower bound for =. Overall, we obtain

P
-
(\ ∈ () ≤ 42Y

1 − X · � + �
�

≤ 42Y

1 − X · �,

where

� =

∫
\ ∈(

4−YB- ′ (\ ) · 1(B- ′ (\ ) < 0.3[∗=)

� =

∫
\ ∈(

4−YB- ′ (\ ) · 1(B- ′ (\ ) ∈ [0.25[∗=, 0.35[∗=])

� =

∫
\ ∈Θ+U ([0 )�∥·∥

4−YB- ′ (\ ) · 1(B- ′ (\ ) < 0.3[∗=)

� =
(
P
- ′
(\ ∈ () + P

- ′
(B- ′ (\ ) ∈ [0.25[∗=, 0.35[∗=])

)
.

Using Proposition 2.3 in the same fashion to bound the last term,

this is at most 42Y P- ′ (\ ∈ () + $ (42YX), which completes the

privacy proof.

Proof of accuracy: Observe that with probability at least 1 − V
over samples-1, . . . , -= , the reject phase of themechanism accepts

with probability 1. Conditioned on it doing so, the remainder of the

accuracy proof parallels the proof of Lemma 2.1, except instead of

allowing [ ∈ [[0, 1] we can now limit it to [ ∈ [[0, [∗]. □

2.2 Algorithms

Even if the robust estimator \̂ can be computed in polynomial

time, the sampling problem in (1) lacks an obvious polynomial-

time algorithm, for two reasons. First, computing the score of a

single \ ∈ Θ given an input dataset - appears to require solving a

minimization problem over all other datasets - ′. Second, even if

computing the scores were somehow made e�cient, the resulting

sampling problem might still be computationally hard. Our main

technical contribution is to overcome both of these hurdles in the

context of learning high-dimensional Gaussian distributions.

2.2.1 Background: Sum of Squares and Robust Estimation. The Sum

of Squares method (SoS) uses convex programming to solve multi-

variate systems of polynomial inequalities. It is extremely useful

for designing polynomial-time robust estimators.

De�nition 2.4 (SoS Proof). Let ?1 (G) ≥ 0, . . . , ?< (G) ≥ 0 be a

system of polynomial inequalities in variables G1, . . . , G= . An in-

equality @(G) ≥ 0 has a degree 3 SoS proof from ?1 ≥ 0, . . . , ?< ≥ 0,

written {?1 ≥ 0, . . . , ?< ≥ 0} ⊢G
3
@ ≥ 0, if for each multiset

( ⊆ [<] there exists a sum of squares polynomial @( (G), such
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that deg(@( (G) ·
∏
8∈( ?8 (G)) ≤ 3 and such that

@(G) =
∑

(⊆[<]
@( (G) ·

∏
8∈(

?8 (G) .

SoS proofs form a convex set described by a semide�nite program

(SDP), so they have duals:

De�nition 2.5 (Pseudoexpectation). Let R[G]≤3 be the set of de-

gree at most 3 polynomials in variables G1, . . . , G= . A linear operator

Ẽ : R[G]≤3 → R is a degree 3 pseudoexpectation if Ẽ1 = 1 and

Ẽ?2 ≥ 0 for any ? of degree at most 3/2. A pseudoexpectation Ẽ

satis�es a system of polynomial inequalities ?1 ≥ 0, . . . , ?< ≥ 0,

written Ẽ |= ?1 ≥ 0, . . . , ?< ≥ 0, if for every ( ⊆ [<] and every ? ,

we have Ẽ
∏
8∈( ?8 · ?2 ≥ 0 when the degree of this polynomial is

at most 3 , where ∥? ∥ is the ℓ2-norm of the vector of coe�cients of

? in the monomial basis.

The by-now standard approach to use SoS to robustly estimate a

�-dimensional parameter \ in a norm ∥ · ∥ works as follows. For
[-corrupted - = -1, . . . , -= from ?\ ∗ , de�ne a degree-$ (1) system
of polynomial inequalities A(-, \, I) where \ = \1, . . . , \� , I =

I1, . . . , I (=� )$ (1) are some indeterminates. With high probability,

A(-, \, I) should (a) be satis�ed by some choice of I when \ = \∗,
and (b) should have A(-, \, I) ⊢$ (1) ⟨\ − \∗, E⟩ ≤ U for every E in

the dual ball of ∥ · ∥.
To give a robust estimation algorithm, on input [-corrupted

- , we can obtain Ẽ which satis�es A(-, \, I) using semide�nite

programming,6 and then output \̂ = Ẽ\ . Applying Ẽ to the SoS

proofs A ⊢\,I
$ (1) ⟨\ − \

∗, E⟩ ≤ U , we get ∥Ẽ\ − \∗∥ ≤ U .

Lemma 2.6 (Informal, implicit in [36]). There existsA with the

above properties with respect to = ≫ 3/[2 [-corrupted samples from

N(\∗, � ), for any \∗ ∈ R3 , where ∥ · ∥ = ℓ2, and U = $̃ ([).

2.2.2 Robustness to Privacy, Algorithmically. For this technical

overview, we focus on mean estimation in the pure-DP setting; sim-

ilar ideas extend to covariance estimation and (Y, X)-DP. Even for

the SoS-based robust mean estimation algorithm described above,

which we call kmz, given - we do not know how to e�ciently

compute

score- (\ ) = min{3 (-,- ′) : ∥kmz(. ) − \ ∥ ≤ U} , (3)

much less sample from the distribution (1). At a very high level, will

tackle these challenges by using the polynomial system A(-, \, I)
underlying kmz to design an SoS-based relaxation of the above score

function, SoS-score- (\ ), which has favorable enough convexity

properties that we will be able to both e�ciently compute it and

sample from the distribution it induces (both up to small error).

The SoS robustness proofs which A enjoys will be enough for us

to apply an argument like Lemma 2.1 to prove accuracy of the

resulting estimator, and it will be private by construction.

First, we describe an attempt at an SoS relaxation of SoS-score,

which will have several �aws we’ll �x later. We can introduce more

6This ignores some issues of numerical accuracy which turn out to be important; see
below.

indeterminates - ′
1, . . . , -

′
= ,F1, . . . ,F= , \

′, and consider

BC =
{
F2
8 = F8 ,

=∑
8=1

F8 = = − C, F8-8 = F8- ′
8 ,

}
∪ A(- ′, \ ′, I) ,

(4)

which is satis�ed when - ′ is a dataset with 3 (-,- ′) ≤ C and

A(- ′, \ ′, I) is satis�ed. Let

SoS-score- (\ ) = min C s.t. ∃ degree $ (1) Ẽ in variables

- ′,F, \ ′, I, Ẽ |= BC , ∥Ẽ\ ′ − \ ∥ ≤ U . (5)

Privacy and Accuracy for SoS-score: Suppose for a moment that SoS-

score solves our computational problems. Does it lead to a good

private estimator, when we sample from the distribution P(\ ) ∝
exp(−Y · SoS-score- (\ ))? Standard arguments show privacy; the

main question is accuracy.

It turns out the relaxation is tight enough that the proof of

Lemma 2.1 still applies! The key step in that proof is to argue

via robustness that if \ has low score, then ∥\∗ − \ ∥ is small. To

establish the corresponding statement for SoS-score, we need to

show that if -1, . . . , -= ∼ N(\∗, � ) and Ẽ |= BC for C = [=, then

∥Ẽ\ ′ − \∗∥ ≤ $̃ ([). This is slightly stronger than what we already

know from the SoS proofs associated to A, because now we have

indeterminates- ′ which represent[-corrupted samples, rather than

a �xed collection of [-corrupted samples, and we need BC ⊢-
′,\ ′,F,I

$ (1)
⟨\ ′−\∗, E⟩ ≤ $̃ ([). Luckily, the SoS proofs of [36] readily generalize
to show this.

In fact, [36]’s SoS proofs already show this in part because within

the “auxiliary” indeterminates I they already use variables like our

- ′ andF . This means that (4), (5), while closely following our black-

box reduction strategy, contain an unnecessary layer of indirection.

When we implement this strategy in detail (see Sections 5, 6, and 7

in the full version of this paper), we remove this indirection for

simplicity.

On “Satis�es”: An important technical di�erence between our score

function and that of [26] is that the Ẽs it involves must have Ẽ |=∑=
8=1F8 = = − C , rather than something weaker, like Ẽ

∑=
8=1F8 =

= − C . While in some applications of SoS this “satis�es” versus

“in expectation” distinction is minor, it is actually crucial for our

accuracy guarantees – if we only required Ẽ
∑=
8=1F8 = = − C , we

could have Ẽ which satis�es the rest of BC but has ∥Ẽ\ ′ − \∗∥ ≥
Ω('), just by taking Ẽ to be the moments of a distribution which

has allF8 = 0 with probability 1/C .
However, this creates two signi�cant technical challenges. First,

for bit-complexity reasons, no polynomial-time algorithm to check

if there exists Ẽ satisfying a given system of polynomials is known –

existing techniques to �nd Ẽs work best in the context of satis�able

polynomial systems [43]. We sidestep this challenge by generalizing

a technique from the robust statistics literature, which searches for

Ẽ which approximately satis�es a system of polynomials, to the

setting where those polynomials may be unsatis�able. Ultimately,

we �nd a further-relaxed score function SoS-score′
-
, which we

evaluate to error g in (=3 log 1/g)$ (1) time.

Quasi-Convexity, Sampling, and Weak Membership: The second chal-

lenge is that SoS-score- (\ ) need not be convex in \ – if it were,
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we could sample from P(\ ) ∝ exp(−Y · SoS-score- (\ )) with log-

concave sampling techniques, as in [26]. Indeed, consider \0 and \1
with corresponding scores C0, C1 witnessed by Ẽ0, Ẽ1. The problem

is that 1
2 (Ẽ0 + Ẽ1) need not satisfy

∑=
8=1F8 ≥ = −

1
2 (C0 + C1), even

though it does have 1
2 (Ẽ0 + Ẽ1) [

∑=
8=1F8 ] ≥ = −

1
2 (C0 + C1).

SoS-score- (\ ) is quasi-convex in \ , meaning that its sub-level

sets (C = {\ : SoS-score- (\ ) ≤ C} are convex for all C . This is

good news: if we discretize the range of possible scores [0, =] into
C1, . . . , C=$ (1) (replacing SoS-score with a version rounded to the

nearest C8 ), we can hope to compute the volumes +8 = Vol((C8 ), as
well as sample uniformly from the (C8 s, using standard techniques

for sampling from a convex body. Then, we could sample \ by

�rst sampling a score C8 with probability proportional to 4−YC8 (1 −
4−Y (C8+1−C8 ) )+8 , then drawing uniformly from (C8 .

Approximate sampling and volume algorithms for convex bodies

typically access the body via a weak membership oracle, meaning

that the oracle is allowed to give incorrect answers to query points

very near the body’s boundary.7 We have access to an oracle which

computes SoS-score- (\ ) up to exponentially-small errors. Ideally,

we’d create a weak membership oracle by answering a query about

(C8 by checking if SoS-score- (\ ) ≤ C8 , but if SoS-score- is not

Lipschitz, a small error in computing this value may translate to

answering a query incorrectly about some \ far from the boundary

of (C8 . That is, we may not notice if (C8+2−= is much larger than (C8 .

However, because SoS-score- is bounded in [0, =] and the sub-

level sets are convex, we are able to show that (C8+2−= could only

be much larger than (C8 at a small-measure set of C8s. Thus, if we

choose our discretization C1, . . . , C=$ (1) randomly, with very high

probability our approximate score oracle for SoS-score- translates

to a weak membership oracle for the (C8 s (see Lemma 4.7 in the full

version of the paper).

Putting it Together: Thus, by modifying SoS-score- by (a) rounding

to the nearest threshold C8 , thresholds chosen randomly, and (b)

accounting for some numerical errors, we obtain a polynomial-time-

samplable proxy for (1). Theorems 4.1 and 4.2 in the full version of

the paper capture this strategy formally.
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