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Abstract

Automatic physical database design tools rely on “what-if” interfaces to the query opti-

mizer to estimate the execution time of the training query workload under different candi-

date physical designs. The tools use these what-if interfaces to recommend physical designs

that minimize the estimated execution time of the input training workload. Minimizing

estimated execution time alone can lead to designs that are not robust to query optimizer

errors and workload changes. In particular, if the optimizer makes errors in estimating the

execution time of the workload queries, then the recommended physical design may actu-

ally degrade the performance of these queries. In this sense, the physical design is risky.

Furthermore, if the production queries are slightly different from the training queries, the

recommended physical design may not benefit them at all. In this sense, the physical design

is not general. We define Risk and Generality as two new measures aimed at evaluating

the robustness of a proposed physical database design, and we show how to extend the

objective function being optimized by a generic physical design tool to take these measures

into account. We have implemented a physical design advisor in PostgreSQL, and we use

it to experimentally demonstrate the usefulness of our approach. We show that our two

new metrics result in physical designs that are more robust, which means that the user can

implement them with a higher degree of confidence. This is particularly important as we

move towards truly zero-administration database systems in which there is not the possi-

bility for a DBA to vet the recommendations of the physical design tool before applying

them.
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Chapter 1

Introduction

Pushing the complexity of concurrency issues, optimization, and transaction management

to the database management system (DBMS) has led to a decrease in the cost of complex

software systems. With information technology becoming, more and more, a part of our

everyday life, online systems in areas as diverse as health care, banking, and government

are collecting and processing large amounts of data around the clock, which is managed

by DBMSes for use in on-line transaction processing (OLTP) or decision support system

(DSS) applications. With the decrease in the cost of software and hardware, the cost of

database administration is becoming more significant compared to the total cost of owner-

ship (TCO) [32]. This makes it important to simplify the role of the database administrator

(DBA) by making the task less demanding in terms of time, manpower, and expertise.

An important topic of research in the field of data management is self-managing databases,

which aims at finding solutions towards alleviating the burden on the DBA or, more am-
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bitiously, totally replacing the DBA. The goal is to alleviate some of the tasks that must

be done by the DBA by providing a suite of tools that automates many of the necessary

duties. One important class of these tools is the automatic physical database design tools

that are an integral part of automated database tuning [23].

1.1 Problem Definition

Automatic physical database design tools rely on “what-if” interfaces to the query opti-

mizer to estimate the execution time of the training query workload under different candi-

date physical designs. The tools use these what-if interfaces to recommend physical designs

that minimize the estimated execution time of the input training workload. Minimizing

estimated execution time alone can lead to designs that are not robust to query optimizer

errors and workload changes. In particular, if the optimizer makes errors in estimating

the execution time of the workload queries, then the recommended physical design may

actually degrade performance. In this sense, the physical design is risky. Moreover, if

the production queries are slightly different from the training queries, the recommended

physical design may not benefit them at all. In this sense, the physical design is not gen-

eral. We define Risk and Generality as two new measures to evaluate the robustness of

a proposed physical database design, and we show how to extend the objective function

being optimized by a generic physical design tool to take these measures into account. This

is particularly important as we move towards truly zero-administration database systems
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in which there is not the possibility for a DBA to vet the recommendations of the physi-

cal design tool before applying them. We have implemented a physical design advisor in

PostgreSQL [1], and we have integrated our metrics into this design advisor.

All recent automatic physical design solutions that we are aware of rely on query op-

timizer costing to evaluate the benefit of candidate physical designs, augmenting the op-

timizer with “what-if” interfaces to create hypothetical physical designs. Design decisions

such as choosing an index are based on query optimizer costing. Query optimization is far

from being accurate or optimal. Mitigating query optimizing errors in the field of robust

query optimization and execution has been tackled by various works [8, 9, 29]. However,

there is no physical design advisor that is robust to query optimizer errors. One of the

contributions of this thesis is that we characterize the effect of query optimizer costing

problems in terms of physical design risk. We define a risk metric that quantifies the ro-

bustness of index configurations to optimization errors. Integrating the risk metric into

the design advisor results in physical designs that are more robust.

Automatic physical design literature adopts a workload-based approach. In a workload-

based approach the assumption is that the system is given a representative SQL query

workload that resembles the future workload in the production environment. We refer

to the workload given to the physical design advisor as the training workload. Physical

design tuning tools try to find the physical design (indexes, materialized views, etc.) that

minimizes the estimated runtime of the training workload. We note that if the production

workload is even slightly different from the training workload, the production workload
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may not benefit from the chosen physical design. The difference between the production

and training workloads may be in query frequencies, parameter values, or attribute mixes,

and any of these differences may prevent the production workload from benefiting from

the chosen physical design. In this sense, the physical design is overtrained to the train-

ing workload and lacks generality. We define a metric that quantifies generality, and we

integrate this generality metric into our design advisor to create physical designs that are

more robust.

1.2 Thesis Contribution

• Introducing a risk metric that quantifies the robustness of a given physical design

configuration to query optimizer errors.

• Introducing a generality metric that quantifies the robustness of a given physical

design configuration to workload changes.

• Multi-objective Design Advisor (MODA): A novel technique for physical design tun-

ing that finds more robust physical designs by finding physical configurations that

maximize an objective function combining benefit, risk, and generality.

• Including DBA preferences through weights on the different metrics in MODA that

allow the DBA to specify the relative importance of benefit in estimated execution

time, risk, and generality.
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1.3 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we give the background

and problem definition, and we present the current state of the art in automatic physical

design. In Chapter 3, we explain the motivation behind the risk metric and details about

the sources of errors in query optimizers and their relevance to physical design. We also

define our risk metric and show how to calculate it using Minimal Assumption Extreme

cost Estimation (MAXE). We present the changes to the PostgreSQL DBMS required

for MAXE. In Chapter 4, we present the problem of overtraining in physical design, and

we define our generality metric. Chapter 5 describes the Multi-objective Design Advisor

(MODA) that uses our metrics. In Chapter 6, we give an experimental evaluation of our

approach. Chapter 7 presents related work. Conclusions and suggestion for future work

are presented in Chapter 8.
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Chapter 2

Background and Motivation

Choosing a good physical design (indexes, materialized views, vertical and horizontal par-

titioning, etc.) is an essential task for almost any database workload [23]. Physical design

tuning has a great impact on the performance of database workloads, up to orders of mag-

nitude. Choosing index configurations is an important part of physical design tuning, and

is the focus of this thesis. It is a task that requires much expertise from the DBA and

consumes time and effort. Automatic physical design tools help in this task and might

ultimately replace the DBA. Currently, most commercial database management systems

like IBM DB2 [33], Microsoft SQL Server [5], and Oracle [24] have built-in index tuning

tools, or physical design advisors. These advisors choose a set of indexes that yields good

performance for the given workloads.
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2.1 The State of the Art in Index Tuning

2.1.1 Workloads

DBMS tools, such as Oracle’s Automatic Workload Repository [24], collect workloads over

long periods of time for use in database tuning. Statements collected and tuned are the

SQL DML statements (SELECT, INSERT, UPDATE, and DELETE). Workloads

are collected over a long period of time and are often too large and redundant. Large

workloads hurt the performance of physical design tuning because the time needed to tune

a workload is dependent on the number of statements in the workload. Thus, the collected

SQL statements usually go through a phase of pruning referred to as workload compression.

The goal of workload compression is to reduce the number of statements in the workload

in order to save time in the tuning phase. The key idea of workload compression is to

come up with a reduced set of statements that are representative of the whole workload.

Another important challenge is that workload compression should not take longer than

the benefit in the time compared to tuning the original workload. Current techniques for

workload compression are presented in Chapter 7
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Figure 2.1: Generic architecture for index tuning

2.1.2 Automatic Database Physical Design

Figure 2.1 shows the architecture of a typical physical design advisor. The architecture is

divided into three layers: candidate enumeration, the search algorithm, and the “what-if”

interface inside the DBMS.

1. Candidate Enumeration

Current design advisors use a cost-based approach for index tuning. The typical

approach is that the DBA gives the design advisor a query workload and a space

budget. The estimated cost of the workload is evaluated under various candidate
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index configurations. Given a workload the physical design advisor starts by gener-

ating candidate indexes. These candidate indexes define the space of possible phys-

ical designs. The common strategy for choosing the candidate indexes is selecting

the syntactically relevant indexes by analyzing the queries. For instance, columns

mentioned in the SELECT, WHERE, and ORDER BY clauses are syntactically

relevant. Columns in the SELECT clause may be included as an index suffix (values

included in the leaf nodes of the B-tree only), or as index keys. Columns used in

the WHERE clause are important because they specify which index keys are useful.

Finally, columns mentioned in the ORDER BY clause can be included in index

keys to save sorting time [20].

2. Search Algorithms

Index tuning techniques need some search strategy to find the index configuration

that minimizes the estimated cost of queries under space budget constraints. Enu-

merating all possible index configurations is not feasible because of the exponential

number of possibilities. The problem is further complicated by the issue of index

interaction: the benefit of an index in a configuration depends on other indexes in

this configuration. Thus, current tools use approximate search techniques that use

heuristics and greedy search [20, 31].

3. What-if Interface

It is not feasible to materialize proposed physical designs and then execute queries
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over the workload to evaluate the quality of these designs. Instead, query optimizer

cost estimates are used to evaluate physical designs. Physical design advisors do

not create indexes to evaluate them, since indexes are expensive to create and drop.

They use a “what-if” mode of the query optimizer in which indexes are simulated by

inserting metadata and statistics into the catalog. This approach was first introduced

in [26] and is detailed in [19].

2.1.3 Index Tuning Problem

Current database physical design advisors only consider (a) storage size constraints and

(b) benefit in query optimizer estimated workload running time. For large databases it

is always important to impose a storage size constraint, which is the maximum allowable

size for the proposed configuration, since the space required for useful indexes can be very

large. Definition 1 formally defines the index tuning problem.

Definition 1 Index Tuning Problem:

Given a database D, a workload W consisting of a set of SQL statements, and a storage

constraint S, find the set of indexes with total size less than S that minimizes the estimated

runtime cost of W on D.
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Figure 2.2: Typical tuning scenario

Figure 2.3: Online tuning scenario (no DBA)
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2.2 Motivation for Robustness in Physical Design

Self-managing database literature provides a semi-automatic solution to the index tuning

problem. Figure 2.2 depicts the typical physical design tuning scenario. During production

runs, a stream of SQL statements is logged into the statement repository. Sometimes the

DBA adds more queries from applications in the system (e.g. static prepared statements).

The SQL statements are then collected and compressed by the DBA, sometimes with the

help of a workload compression tool. This workload is given to the physical design advisor

to tune along with a space budget. After tuning the workload using the physical design

advisor the DBA takes the recommended physical design and performs further analysis.

State of the art DBMSes are shipped with a suite of tools that help the DBA in this

debugging and exploratory analysis [5]. Exploratory analysis is done via hypothetical

physical design interfaces that answer “what-if” questions without actually building the

access paths. This iterative process of debugging and analysis ends with choosing the final

physical design.

The classical physical design tuning scenario assumes that the DBA is deeply involved

in the process. Recently, there is a trend towards on-line tuning advisors [16], in which the

DBA is more and more pushed outside of the loop. The desired approach is depicted in

Figure 2.3, with no DBA involved in the process. Queries stream into an SQL statement

repository and are analyzed by the physical design advisor. The physical design recom-

mendations make their way directly to the production environment. It is imperative in

such a scenario, that automatic physical designs become less workload sensitive and more

12



robust, hence more admissible. We argue that the current index tuning problem formu-

lation is not the best in terms of robustness. We argue that even with using exhaustive

cost-driven algorithms, we will not get robust configurations because of two main reasons:

(a) estimated costs suffer from inaccuracies, and (b) the training workload may not be

representative of the production workload.

We introduce two new metrics that quantify the robustness of physical designs: Risk

and Generality, described in Chapters 3 and 4, respectively. Risk captures the estimated

penalty of the worst case scenario if the optimizer assumptions fail. Generality reduces the

effect of workload overtraining. Our approach does not ignore the estimated cost. Our new

metrics define new dimensions for evaluating the quality of a physical design, while benefit

in execution time based on optimizer estimates represents another dimension of quality.

We combine these quality metrics in a weighted sum to evaluate the overall quality of a

physical design. The weights are determined by the user, and they signify the relative

importance of each dimension of quality.
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Chapter 3

Risk

In this chapter we present the risk metric. This metric quantifies the sensitivity of the

estimated benefit of an index configuration to query optimizer errors. It attempts to

measure the effects of the assumptions made by the optimizer in costing the chosen set

of indexes. Our goal in defining this metric is to choose physical designs with minimal

difference between query optimizer costs and the worst case costs that may be encountered

for workload queries.

3.1 Motivating Risk

Query optimizer costing is known for its flaws. To name a few sources for cost inaccuracies:

(a) inaccurate cardinality estimation, (b) inaccurate I/O costing, (c) crude modeling of

buffers sizes and contents, and (d) crude modeling of overheads due to concurrent access
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and transaction management. Flaws in optimizer costing are a major reason for poor

query performance. In most cases, query optimizers perform very well and come up with

near optimal plans but in some cases they pick very bad plans, typically because they

significantly underestimate the cost of the chosen plan.

Query optimizers rely mainly on database statistics to estimate cardinalities, which is

essential for finding optimal plans and estimating their costs. Optimizer cost estimates

are also used by the “what-if” interface that the physical design advisor uses. These

cost estimates depend heavily on the accuracy of the query optimizer cost model and the

data statistics. In general, single column statistics can safely be assumed to be fresh and

accurate. They are cheap to collect and maintain using techniques like [2]. Techniques

like [2, 17] can be used to collect and maintain multi-column statistics. For collecting

statistics to estimate join cardinality, techniques like [10, 11, 12, 25] are used to collect

statistics on intermediate query expressions. Due to the exponential blowup in the number

of possible multi-column and join statistics, and to the complexity of collecting these statis-

tics and representing multi-dimensional distributions, neither of these types of statistics

can be safely assumed to be present in the system or accurate. Hence, query optimizers

rely on assumptions about data distributions. One of the assumptions that is universally

used and that significantly affects accuracy is the independence assumption, used to esti-

mate cardinality for multi-column predicates. Query optimizers that use the independence

assumption to evaluate the joint selectivity of a multi-column predicates uses the product

of the selectivities of each predicate as an estimate of the joint selectivity.
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These assumptions are a major cause of inaccuracies in cost estimation. If the physical

design advisor bases its decisions on inaccurate costs, it may make poor choices. The more

sensitive a physical design is to cost estimation inaccuracies, the more risky it is.

In general, DBAs could detect such inaccuracies using their expertise and domain

knowledge. They would be able to reject risky indexes after doing some query debug-

ging and profiling. However, since we are focusing on online physical tuning [16] with true

zero database administration, there is no DBA to vet the decisions of the physical de-

sign tool. Thus it is important to automatically avoid risky configurations in the physical

designs tools.

3.2 Motivating Examples

To further motivate risk, we focus on errors due to predicate correlation on the TPC-H

Benchmark database with scale factor (1GB) [30]. For these and other examples in this

thesis we are using PostgreSQL. The detailed setup for our experiments is given in Chap-

ter 6. Consider the two columns shipdate and receiptdate in relation LineItem. A

database administrator could deduce through domain knowledge that conjunctive predi-

cates on columns shipdate and receiptdate with the same date range are highly corre-

lated. We would like to examine the estimated cost and runtime cost of selective versus

non-selective and correlated versus non-correlated predicates on these columns, with and

without indexes.
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We choose two time intervals: the High Selectivity time interval is 10 days and the

Low Selectivity time interval is 1 month. We know that range predicates on shipdate and

receiptdate are correlated if the time intervals for both predicates correspond exactly.

On the other hand, if the time interval on receiptdate is before shipdate the predicates

are negatively correlated. Therefore, we create the four queries shown in Figures 3.1-3.4.

In the four queries we SELECT AVG (ExtendedPrice) FROM LineItem where

the predicates on columns shipdate and receiptdate are varied. We ran the queries in

the indexed setup and non-indexed setup. In the indexed setup we create an index on

LineItem(shipdate,receiptdate). Based on our knowledge of the query optimizer, we

know that it will choose the index to execute the queries. In the non-indexed setup, we

have no indexes on relation LineItem, forcing the query optimizer to choose a sequential

scan on the relation. In this example, we would like to show two things: the effect of

correlation on query optimizer costing, and its effect on actual cost.

Figure 3.6 shows the estimated cost of the four queries. In all cases the estimated

cost using a sequential scan is significantly higher than the estimated cost using indexes.

Figure 3.7 shows the actual runtime of the queries. The runtime of the uncorrelated

queries is indeed significantly lower using an index versus using sequential scan. On the

other hand, the runtime of the correlated queries using an index is much worse than the

runtime using sequential scan. The query optimizer makes the error because it is assuming

independence, so it underestimates the combined selectivity of the correlated predicates

on shipdate and receiptdate. This error leads to the benefit of the (shipdate, receiptdate)
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index being estimated to be much higher than it really is. Therefore, this index will most

likely be selected over potentially more useful indexes or even a cheaper sequential scan.

In this sense, the index is risky. The query optimizer and candidate enumeration approach

of the design advisor combined have no means to avoid this. In fact, we argue that a

good design advisor enumeration algorithm must choose indexes on selective predicates as

candidate indexes.

Our goal in this chapter is to avoid risky indexes like this one. The classical approach

to physical design tuning uses the query optimizer costing as the sole cost function. In

this approach, the query optimizer is called repeatedly by the design advisor to estimate

the benefit of using certain indexes. If the query optimizer overestimates the selectivity

of some predicates it will report a lower estimated execution time to the design advisor.

This will cause the design advisor to choose indexes based on wrong information, choosing

less useful or even bad indexes over more useful ones. This has two undesirable effects.

If the index is used, it will be involved in a wrong plan that will cause a performance

degradation instead of benefit. At best, if the query optimizer is a learning or proactive

optimizer the index may not be used in the future. In this case, the index will end up

hurting the performance of update statements and wasting a useful part of the disk space

budget.
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3.3 Risk Metric

3.3.1 MAXE Cost

As we have seen in Section 3.2, there is a risk that in the worst case using an index

performs worse than a sequential scan. Therefore, in our approach, we choose to provision

not only for the expected case but also for the worst case. We assume that the query

optimizer returns two costs: a normal cost and a worst case cost. The normal cost is

the unchanged query optimizer estimated cost, while the worst case cost is calculated

assuming the optimizer assumptions are violated in the worst possible way. In this thesis

we concentrate on the independence assumption because as we have seen earlier it is the

most relevant in terms of cardinality estimation so it is a dominating factor in determining

the runtime of an index based plan. Thus, to determine worst case cost, whenever the

optimizer needs to estimate the joint selectivity of multi-column predicates we assume

full correlation instead of assuming independence. We use a pessimistic approach and

assume the worst and instead of multiplying the selectivity we take the minimum of the

selectivities. We call this worst case costing method Minimal Assumptions eXtreme cost

Estimation- or MAXE cost for short.

To support MAXE cost estimation, we need to modify the query optimizer to return two

costs for each operator: the normal cost and MAXE cost assuming worst case cardinality

for multi-columns predicates. We have made these changes in the query optimizer of

PostgreSQL and we describe them in Section 3.5.2. The required changes in any DBMS
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would be similar.

As an example of MAXE cost estimation consider query Q1 on relations R(a, b, c) and

S(a, b, c):

SELECT AVG (S.b) FROM R,S WHERE R.a = S.a and P1(R.b) and P2(R.c);

P1 and P2 are predicates that could be equality, range, or other predicates. Figures 3.8

and 3.9 show the plan chosen by the PostgreSQL query optimizer annotated with normal

and MAXE cost and cardinality, respectively. The optimizer estimated using its normal

assumptions that the combined selectivity of P1 and P2 is very high, generating three

rows. The cost of one sequential scan on relation R and three sequential scans on S is

approximately 603, 070. The cost is then propagated to the aggregate operator which has

a negligible cost so the total cost of the plan is 603, 070. The MAXE cost estimation

relaxes the independence assumption used to calculate the combined selectivity of P1 and

P2 and chooses the minimum selectivity of both predicates. Using the MAXE cost P1 and

P2 are estimated to generate 3257 rows. Therefore, the MAXE cost of the plan is the cost

of one sequential scan over relation R and 3257 sequential scans over relation S which

is approximately 307, 691, 163. The MAXE cost is then propagated to the aggregation

operator. The cost of sorting 3257 rows is 8 and the cost of the MAXE cost of the plan is

307, 691, 171.
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3.3.2 MAXE Gap

MAXE cost depends on the chosen plan, which depends on the index configuration. We

define the MAXE gap as the ratio between the MAXE cost of the workload on index

configuration C and normal cost of the workload on configuration C.

MAXE Gap =
MAXE(W, C)

Cost(W, C)
(3.1)

The primary goal of a physical design advisor is to find the set of indexes that minimizes

the estimated runtime cost. The MAXE gap quantifies how sensitive a plan is to optimizer

costing errors. This sensitivity depends on the available indexes in the configuration, and

it can be used as a measure of the riskiness of the configuration. Thus, a secondary goal

of the physical advisor could be minimizing the MAXE gap to reduce the riskiness of the

chosen physical design.

For example, the MAXE gap of the plan chosen for query Q1 is (307, 691, 171)/(603, 070)

which is approximately 510. This means that in the worst case the query plan may be 510

times worse than expected.

3.3.3 Risk Metric

Directly minimizing the MAXE gap of the configuration chosen by the design advisor can

yield poor results because it ignores the MAXE gap of the original configuration. To

account for the query planner assumptions we take the summation of the inverse of the
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MAXE gap of each query in the workload in the configuration multiplied by the initial

MAXE gap to eliminate the effect of the initial MAXE gap. We normalize the risk metric

by dividing this summation by the number of the queries in the workload and subtracting

one. We end up with a number that quantifies the risk. The smaller the number the higher

the risk.

Definition 2

risk(W, CO, CN) = (

∑
q∈W ( Cost(q,CN )

MAXE(q,CN )
∗ MAXE(q,CO)

Cost(q,CO)
)

|W |
)− 1

CO is the initial default configuration and CN is the configuration being evaluated.

3.4 Examples of Risk in Physical Design

To demonstrate risk in physical design we consider the query templates Q2 and Q3 on

relation R(a, b, c) shown in Figures 3.10 and 3.11, respectively. P1, P2, and P3 are range

predicates with varying selectivity. We create synthetic relations with three attributes

(a, b, c). To be able to control the degree of correlation we generate the three columns a,

b, and c as independent random variables. We then choose a percentage of the rows and

make their a and b columns equal, thereby introducing correlation. In our examples we

construct 11 relations with different degrees of correlation. All relation have 16 million

randomly generated rows. For ease of exposition we follow an intuitive naming scheme for

the relations. Relation R 0 has no correlation because we change 0% of its rows. Relation
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R 10 will has 10% of the tuples with columns a and b correlated, and finally relation R 100

will have all its tuples a and b correlated. We generate uniformly distributed random

variables in the range [1− 16 ∗ 106] for attributes a, b, and c to generate the 11 relations.

3.4.1 Example 1: Bitmap Index Scan

In the first example we set the selectivity of predicates P1(a) and P2(b) to both be 0.1.

Using the independence assumption, the query optimizer will estimate the selectivity of

the WHERE clause in Q2 to be 0.01. Therefore, an index on columns a, b would be

a good candidate index for reducing the execution time of Q2, assuming that tuples are

not correlated. Figure 3.12 shows the effect of correlation on actual execution time of Q2

using the Bitmap Index Scan relational operator on index I(a, b) and the Sequential Scan

operator. The x-axis shows the percent of correlated rows and the y-axis shows the actual

execution time. At R 0, with 0% correlated rows, the independence assumption holds and

the execution time of the bitmap index scan is a fraction of the execution time of the

sequential scan. Therefore, the benefit in execution time of using this index is very high.

The benefit goes down very fast as the degree of correlation increases, and execution time

becomes worse than a sequential scan because the number of I/O requests increases. It is

also useful to note that at higher degrees of correlation the execution time goes down and

becomes similar to the cost of a sequential scan because file system pre-fetching detects

the frequent I/O requests to the same file and pre-fetches the file containing the relation in

a sequential fashion. The figure shows us that index I(a, b) is risky for Q2. The estimated
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cost for query Q2 using this index is 36, 034 while the MAXE cost is 118, 839, giving a

MAXE Gap of 3.3. This MAXE Gap tells us that in some situations the cost of a plan

using this index may be 3.3 times worse than estimated. Thus we can see from the MAXE

Gap that a physical design that has this index is risky.

3.4.2 Example 2: Index Scan

In this example we set the selectivity of predicates P1(a) and P2(b) to 0.001 and 0.001

respectively. Using the independence assumption, the query optimizer will estimate the

selectivity of the WHERE clause as 0.00001. Therefore, an index on columns a, b would

be a good candidate index for reducing the execution time of Q2, but PostgreSQL would

choose an Index Scan operator not a bitmap index scan operator. In this example we

show the effect of correlation on the runtime performance of this index scan operator. The

index scan operator does not sort the record ids (rids) retrieved from the B-tree before

accessing the heap file. It is chosen by the query optimizer for highly selective predicates.

Figure 3.13 shows the effect of correlation on the execution time of query Q2 using index

scan on I(a, b) and sequential scan. The estimated benefit of using the index scan operator

compared to using sequential scan is significantly high. But as shown in the figure the

actual runtime is highly sensitive to the percentage of correlated rows. Here the estimated

runtime cost for Q2 is 301 while the MAXE cost is 29, 410 giving a MAXE Gap of 97.7,

illustrating the riskiness of this index configuration.
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3.4.3 Example 3: Less Risky Designs

In this example we set the selectivity of predicates P1(a), P2(b) and P3(c) to 0.001, 0.001,

and 0.01, respectively. We restrict our choice of index configurations to one index. We

either choose index I(a, b) or I(c). Given I(a, b) the query optimizer will choose to use an

index scan for query Q2 and sequential scan for Q3. Given I(c) the query optimizer will

choose a sequential scan for Q2 and bitmap index scan for Q3. Figure 3.14 reports the

runtime of both queries, once given I(a, b) or I(c). The runtime of both queries using I(c)

is less sensitive to the degree of correlation. Although the estimated benefit of using I(a, b)

is higher than using I(c), using index I(a, b) is more risky.

3.5 Changes to PostgreSQL to calculate MAXE cost

3.5.1 Hypothetical Indexes

We have made changes to PostgreSQL 8.1 to add the server side extensions required for

our work. We added a new keyword HYPOTHETICAL. Starting a CREATE INDEX

command with HYPOTHETICAL will create the index as a hypothetical index. The

PostgreSQL server is allowed to create the index in the catalog but it is preempted before

actually building the index. The index size is an important statistic, so we make sure it is

computed correctly. PostgreSQL does not consult the catalog when asking for the index

size, but rather consults the PostgreSQL storage layer that probes the file system to get

the file size of the index. The necessary changes have been implemented so that the routine
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responsible for this file system probe will return the desired index size of the simulated

index.

3.5.2 Determining MAXE cost

To estimate worst case selectivity, we need to modify two routines:

1. Clause List Selectivity Estimation:

This routine is used by the PostgreSQL query optimizer to compute the selectivity

of conjunctive and disjunctive lists of predicates on the same relation. Predicates

may be any of the following: equality predicates, inequality predicates, or expression

clauses (e.g. like predicates). In this selectivity estimation the optimizer reduces

redundant and overlapping predicates. It then computes the isolated selectivity of

every predicate. The basic assumption used to evaluate the combined selectivity of

the list of predicates is that predicates are independent, so the optimizer multiplies

the selectivities of the predicates to evaluate the overall selectivity. This selectivity

is used to estimate the normal (non-MAXE) plan cost.

To compute the MAXE selectivity we select the minimum selectivity of all the pred-

icates, which is the worst case selectivity in the case where all predicates are fully

correlated, and we use this minimum selectivity as the overall selectivity of the pred-

icate list. This MAXE selectivity is then used by the optimizer to estimate MAXE

cost for the query plan.
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2. Cost Bitmap And Node:

This routine estimates the overhead of using an index to access a relation. It calcu-

lates the cost of retrieving rids or values from the B-tree index and not the cost of

accessing the heap file containing the base relation. In this case the query predicates

that match the index will be used to retrieve rids or values from the index. The

cost of accessing the B-tree depends on the combined selectivity of the predicates

matching the index. PostgreSQL uses the independence assumption to evaluate the

combined selectivity.

For the MAXE selectivity, we use, as before, the minimum selectivity of all the pred-

icates (the worst case selectivity in the case where all predicates are fully correlated).

By computing the selectivity of the predicates the number of matching B-tree leaves

could then be estimated. The number of leaves is then used to estimate the number of

sequential and random I/Os needed to access the index. The cost is then propagated

to the calling routine to estimate the total plan cost.

After estimating a worst case selectivity and cardinality we also need to change the cost

estimation functions of PostgreSQL to return two costs instead of one: the original query

optimizer costing, and MAXE cost. A fundamental change that enables this computation,

is changing the Selectivity, Cost, Row, and Group types in PostgreSQL from the double

type to a data structure with two members that are double, one for the normal cost that

is used for query optimization and one for the MAXE cost that is only used by the design
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advisor. These modifications to PostgreSQL required changes in 35 files and involved 2300

lines of code. More details about the changes are given in Appendix A.
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SELECT AVG (ExtendedPrice) FROM LineItem WHERE
shipdate BETWEEN ‘1997-01-28’ and ‘1997-02-28’
AND receiptdate BETWEEN ‘1997-01-01’ and ‘1997-02-01’

Figure 3.1: Low Selectivity, Not Correlated (LN)

SELECT AVG (ExtendedPrice) FROM LineItem WHERE
shipdate BETWEEN ‘1997-01-02’ and ‘1997-01-10’
AND receiptdate BETWEEN ‘1997-01-01’ and ‘1997-01-09’

Figure 3.2: Low Selectivity, Correlated (LC)

SELECT AVG (ExtendedPrice) FROM LineItem WHERE
shipdate BETWEEN ‘1997-01-09’ and ‘1997-01-18’
AND receiptdate BETWEEN ‘1997-01-01’ and ‘1997-01-09’

Figure 3.3: High Selectivity, Not Correlated (HN)

SELECT AVG (ExtendedPrice) FROM LineItem WHERE
shipdate BETWEEN ‘1997-01-04’ and ‘1997-02-04’
AND receiptdate BETWEEN ‘1997-01-01’ and ‘1997-02-01’

Figure 3.4: High Selectivity, Correlated (HC)

Predicate selectivity Correlation Query Name Figure
Low No LN 3.1
Low Correlated LC 3.2
High No HN 3.3
High Correlated HC 3.4

Figure 3.5: Query names and predicates selectivity and correlation
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Figure 3.6: The effect of correlation on the cost of the Bitmap Heap Scan operator.

Figure 3.7: The effect of correlation on the cost of the Bitmap Heap Scan operator.
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Aggregate

cost = 603070 rows = 1

Nested Loop

cost = 603070 rows = 3

Sequential Scan on S

cost = 149490 rows = 4194333
Materialize

cost = 170462 rows = 3

Sequential Scan on R

cost = 170461 rows = 3

Figure 3.8: PostgreSQL optimizer costing

Aggregate

cost = 307691171 rows = 1

Nested Loop

cost = 307691163 rows = 3257

Sequential Scan on S

cost = 149490 rows = 4194333
Materialize

cost = 170465 rows = 3257

Sequential Scan on R

cost = 170461 rows = 3257

Figure 3.9: MAXE costing
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SELECT AVG (c)
FROM R
WHERE P1(a) and P2(b)

Figure 3.10: Query Q2

SELECT AVG (a)
FROM R
WHERE P3(c)

Figure 3.11: Query Q3

Figure 3.12: Execution time vs degree of correlation–Bitmap Index Scan operator
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Figure 3.13: Execution time vs degree of correlation–Index Scan operator

Figure 3.14: A less risky design
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Chapter 4

Generality in Physical Design

4.1 Provisioning for Query Workload-changes

State of the art physical design advisors adopt a cost-based workload-aware approach. This

approach assumes that the production workload will not be different from the training

workload. As discussed in Section 2.1.1, the training workload is collected from past

queries and prepared statements. Therefore, it is possible for the production workload to

be different from the training workload, and it would be desirable for the design advisor to

be able to deal with this possibility. Queries in the production workload could be any list

of valid SQL queries, and they could be different from the training workload in parameter

markers, frequencies, or query templates. We discuss each of these categories of differences

next:

34



1. Parameter Marker Change:

For this type of change query templates and frequencies in the production workload

are the same as the training workload but the parameter marker values are different.

This case is relevant if the main source of query templates is prepared statements

or precompiled applications. In such environments, the query frequencies and the

query templates do not change. On the other hand, the values bound to the parame-

ter markers in future queries will vary depending on the behavior of the application.

Changes in parameter marker values reflect on the desired indexes in two ways. First,

they may make indexes on new candidate column combinations desirable. Second,

they may affect the desired index column order.

We observe that it is possible to effectively provision for changes in parameter marker

values by choosing index configurations that have a higher number of unique index

prefixes. An index configuration with a higher number of unique prefixes will benefit

a wider class of queries, so we say it is more general. We propose a generality metric

that assesses how general the index configuration is along this dimension. Our metric

quantifies how good an index configuration is in terms of the number of unique (non-

redundant) prefixes. The less redundant the prefixes are, the better the generality of

the index configuration.

2. Query Frequency Change:

For this type of change, the query template and the parameter markers do not change
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but query frequencies change. This case is relevant when the mix of application

requests in the production workload is expected to differ from the training workload.

We note that there is room for provisioning for query frequency changes. The design

advisor could recommend an index configuration that benefits many queries although

it is not optimal. A candidate metric that can be used to evaluate how much an index

configuration benefits all the different queries in a workload is the standard deviation

of benefit across query templates. Although this metric may be used to provision for

query frequency changes, we have not explored it further in this thesis.

3. Query Template Change:

If query templates are not fixed, the cost-based workload aware approach is not fit

for index tuning. There is no room for provisioning since the production workload

may be arbitrarily different from any training workload. The best solution for index

tuning in this case is to rely on heuristic-based physical designs.

4.2 Motivating Generality

In this section, we identify the problem of index advisor overtraining. The index advisor

recommends physical designs that perform well for the training workload. However, these

designs may not be optimal if the workload changes. Specifically, we focus on a workload

with changed parameter marker values.

Let us consider the following workload and database. The database has one relation,
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R with five attributes (a, b, c, d, x), each of type decimal. In this synthetic relation, rows

are generated according to a uniform distribution in the range [0− 1]. The attributes are

independent, so query optimizer estimates are accurate. This is appropriate for our goal in

this chapter, which is to provision for changes in the workload, not for optimizer errors. We

have generated a sample R with 4M rows (size on disk 455 MB). We consider a workload

G with four queries, given in Figure 4.1, that has an estimated runtime of 506K optimizer

units on a configuration with no indexes. Let us assume that we have enough space for

building any required indexes. Let us also assume that we are seeking the optimal estimated

runtime configuration. The optimal configuration has four indexes {I(R.a), I(R.a,R.b),

I(R.a,R.b, R.c), I(R.a,R.b, R.c, R.d)}. In this optimal configuration, the index columns

exactly match the query predicates. First, the column combination exactly matches the

query predicates. Second, the column order in the index matches the selectivity of the query

predicates, which minimizes the cost of the index scan. From a cost-based perspective this

configuration is optimal as it gives the lowest estimated runtime, which is 311K optimizer

units. However, it has two main drawbacks. First, the configuration is overtrained in the

sense that it does not provision for parameter marker changes in workload queries. Second,

it seems counter intuitive to build four redundant access paths to achieve the optimal

estimated runtime. The index configuration has only 4 unique leading prefixes which are

listed in Table 4.1. On the other hand, configuration {I(R.a), I(R.b,R.a), I(R.c, R.a, R.b),

I(R.d, R.a, R.b, R.c)} would give a suboptimal estimated cost of 370K optimizer units, but

the number of leading columns in this configuration is 10, listed in Table 4.2. Therefore,
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SELECT AVG (x)
FROM R
WHERE a<0.01

SELECT AVG (x)
FROM R
WHERE a < 0.09 and b < 0.11

SELECT AVG (x)
FROM R
WHERE a<0.25 and b< 0.3 and
c< 0.35

SELECT AVG (x)
FROM R
WHERE a< 0.3 and b< 0.35 and
c< 0.4 and d< 0.45

Figure 4.1: Workload G

Indexes Leading Prefixes
R(a) {R(a)}
R(a, b) {R(a), R(a, b)}
R(a, b, c) {R(a), R(a, b), R(a, b, c)}
R(a, b, c, d) {R(a), R(a, b), R(a, b, c), R(a, b, c, d)}
{R(a), R(a, b), R(a, b, c), R(a, b, c, d)} {R(a), R(a, b), R(a, b, c), R(a, b, c, d)}

Table 4.1: Leading prefixes

it benefits a wider class of queries.

In general, the overtraining phenomena happens if the design advisor is allowed a

relatively large disk space budget for the given workload. In this case, the design advisor

will choose very specific indexes for every query. These specific indexes are highly likely to

have many common prefixes. On the other hand, with a minimal sacrifice in the estimated

runtime, a more general index configuration may be chosen. Therefore, we consider such

designs naive and overtrained. An expert DBA would never allow these indexes to reach

production unless she has prior knowledge that the index production workload will exactly

match the training workload.
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Indexes Leading Prefixes
R(a) {R(a)}
R(b, a) {R(b), R(b, a)}
R(c, a, b) {R(c), R(c, a), R(c, a, b)}
R(d, a, b, c) {R(d), R(d, a), R(d, a, b), R(d, a, b, c)}
{R(a), R(b, a), R(c, a, b), R(d, a, b, c)} {R(a), R(b), R(c), R(d), R(b, a), R(c, a),

R(c, a, b), R(d, a), R(d, a, b), R(d, a, b, c)}

Table 4.2: Leading prefixes for the alternate configuration

4.3 Generality in Physical Design

With some provisioning, the design advisor may recommend configurations that are general

enough to accommodate changes in parameter markers and query frequencies. Intuitively,

if the design advisor maximizes the number of prefixes it will be able to benefit a wider class

of queries on the same columns. With a slight reduction in performance the design advisor

may provision for a much wider class of workloads and not overtrain for the given training

workload. We have observed that overtrained configurations have redundant indexes that

have a lot of common prefixes.

Our solution is to prevent the index advisor from overtraining by penalizing redun-

dancy in configurations. Before presenting our metric, we present examples on relation R,

described above, to illustrate the importance of the number of index prefixes, and how an

index advisor will react to an increase in the number of queries in the training workload,

further supporting the goal of increasing the number of leading columns. Our examples

will also illustrate the significance of the effect of changes in parameter markers on changes

in the estimated query runtime. In these examples, as in the rest of this chapter, we use
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Index Column Order Estimated Runtime
∅ 180965.54

a,b,c 40158.57
a,c,b 40158.57
b,a,c 44427.38
b,c,a 44427.38
c,a,b 48077.71
c,b,a 48077.71

Table 4.3: Estimated execution time of query Q1 using different index column orders

query optimizer cost estimates since they capture the effects of overtraining without relying

on the actual runtime.

4.3.1 Example 1: Importance of Leading Columns

Query predicates do not have to exactly match index columns. An index I(a, b, c) could

be used to reduce runtime of queries on columns {a, b, d}. In general, an index on columns

{c1, c2, . . . , cn}may replace an index on columns {c1, c2, . . . , cm} where n > m with minimal

decrease in performance.

For example, consider the following query, Q1:

SELECT AVG (x)

FROM R

WHERE a < 0.1 and b < 0.125 and c < 0.15

As shown in Table 4.3, the index column order that matches the predicate selectivities

is the one that provides the minimum estimated execution time. We also note that the
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Index Column Order Estimated Runtime
∅ 180952.82

a,b,c 8899.77
a,c,b 8899.77
b,a,c 24767.27
b,c,a 24767.27
c,a,b 98867.91
c,b,a 98867.91

Table 4.4: Estimated execution time of query Q2 using different index column orders

actual execution time follows a similar pattern. The key point we illustrate in Table 4.3 is

that the column order does not affect the estimated execution time by much. For example,

the index that yields the worst estimated execution time, namely index I(c, b, a) (the one

with reversed column order), is only 19.7% worse than the best index.

On the other hand, there are queries where index column order is very important. For

example, consider the following query Q2:

SELECT AVG (x)

FROM R

WHERE a < 0.01 and b < 0.1 and c < 0.5

As shown in Table 4.4 the index column order has a significant effect on performance in

this case. Thus, it is important for the index advisor to include as many column orders as

possible, potentially choosing column orders that are suboptimal where it does not matter

(e.g. for Q1).
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4.3.2 Example 2: Leading Columns and Overtraining

In this scenario we create a synthetic relation called DB11C . Relation DB11C has 11

decimal columns each generated independently according to a uniform distribution in the

range [0 − 1]. The relation has 4M rows. We generate a workload that contains 100

aggregate queries of the form: SELECT AVG(x) FROM R WHERE P-list

P-list is a list of conjunctive range predicates generated using the following random

process. We first choose a random integer in the range [1, 5] which determines the number

of range predicates to use. We choose the columns to use with each predicate at random

according to a uniform distribution. To determine the selectivity of each predicate we

generate a uniform random variable in the range [1, 10] to determine the selectivity class.

We have chosen 10 different selectivity classes ranging from very high selectivity to very low

selectivity. The predicates in the different selectivity classes have selectivities , {1 ∗ 10−3,

5 ∗ 10−3, 1 ∗ 10−2, 5 ∗ 10−2, 1 ∗ 10−1, 0.5, 0.6, 0.7, 0.8, 0.9}.

We have created three different workloads, which we call the left, right, and uniform

workloads. To generate the left workload we restrict predicates on the first four columns

to the five most selective predicate classes. To generate the right workload, we restrict

predicates on the last four columns to the five most selective predicate classes. For the

uniform workload there are no restrictions on the selectivity classes. We first choose the

number of columns that will be used to generate the query. We then choose which columns

to use. This workload will also be used in our experiments in Chapter 6. In this example

we run a design advisor that resembles state of the art design advisors in that it chooses
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configurations based only on benefit to queries. The design advisor is given a space budget

equal to three times the size of the relation. We vary the number of queries that we use to

train the design advisor, choosing from 100 queries in the left workload described above.

Figure 4.2 shows the number of unique prefixes in the design recommendation versus the

number of queries used as a training workload. As we can see, the number of unique

prefixes increases by increasing the number of queries in the workload, which means that

the design advisor becomes more general and less overtrained as it sees more queries. The

design advisor that saw, say, 20 queries will not be able to benefit the remaining 80 queries

in the workload. Our goal is to avoid this problem and make the design advisor choose

configurations that can benefit queries beyond those seen in the training workload. We

want the design advisor to choose more indexes but we would also like these indexes to be

diverse and not just have redundant prefixes.

4.4 Generality Metric

We introduce a generality metric that assesses the quality of an index configuration in terms

of overtraining. We quantify the redundancy in an index configuration by analyzing the

number of unique leading prefixes in this configuration. A redundant index configuration

suffers from a lower number of index prefixes, which determines the class of query predicates

that can be served by the indexes in the configuration. The generality metric gives a number

from [0 − 1], where 0 means that the given configuration has very low generality while 1
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Figure 4.2: Number of unique prefixes a configuration of size 3DB

means that the index configuration is the most general and has no redundant prefixes. The

generality metric is defined as follows:

Generality(CN) =
Number of Unique Index Prefixes

Maximum Number of Possible Unique Index Prefixes

The number of unique index prefixes is the cardinality of the set containing all the

leading prefixes in the configuration. The maximum number of possible index prefixes is

calculated by adding the number of columns in every index. For example, the configuration

{I(a, b, c), I(b, d)} has two indexes: a three column index and a two column indexes. Index

I(a, b, c) may replace the three indexes {I(a), I(a, b), I(a, b, c)} therefore the maximum
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possible number of index prefixes associated to I(a, b, c) is three. Index I(b, d) may replace

indexes {I(b), I(b, d)} therefore the maximum number of prefixes associated with I(b, d) is

two. Therefore, the maximum number of possible index prefixes is five.

As we show later, this metric can be used to generate more general index configurations

with minimal sacrifice in estimated runtime. This has great benefit if the workload changes,

and it does not result in a big penalty when the workload does not change.
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Chapter 5

Multi-objective Design Advisor

In this chapter we present a design advisor that proposes robust physical designs. Unlike

current design advisors that focus solely on maximizing runtime benefit, our robust index

tuning advisor has an objective function that combines benefit, risk, and generality.

5.1 Combining Benefit, Risk and Generality

In Chapters 3 and 4, we have introduced metrics for risk and generality. These metrics

quantify the quality of a physical design along two new quality dimensions that can be used

in addition to runtime benefit. We now introduce a weighted multi-objective cost function

ρ that combines the benefit in estimated cost, risk and generality quality dimensions into

one overall cost.
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ρ(W, CO, CN , q) = q1 ∗Benefit(W, CO, CN) + q2 ∗Risk(W, CO, CN) + q3 ∗Generality(CN)

ρ takes as input an SQL query workload W which is the training workload. It takes

two physical design configurations CO and CN . CO is the initial (or default) configuration

that we are trying to improve, and CN is the index configuration to be evaluated. CO is

used as a reference configuration when calculating the benefit and risk of configuration CN .

q is a vector that holds three user defined weights that capture the relative importance of

the different metrics. Risk and Generality are the metrics introduced earlier, and Benefit

is defined as:

Benefit(W, C,CO) =
cost(W, CO)− cost(W, C)

cost(W, C)

5.2 Robust Index Tuning Problem

The robust index tuning problem, which we aim to solve, differs from the traditional index

tuning problem in that the goal is to maximize the objective function ρ, defined above. This

simple change in the problem allows robust index tuning advisor to consider (a) storage

size constraints and (b) benefit in query optimizer estimated workload running time but

also take into account (c) provisioning for query optimizers errors and (d) query workload

changes. Definition 3 formally defines the robust index tuning problem.

47



Definition 3 The Robust Index Tuning Problem:

Given a database D, a workload W consisting of a set of SQL statements, a storage con-

straint S, and a vector of weights on the different quality metrics q, find the set of indexes

that maximizes ρ(W, CO, CN , q), with total size less than S.

That is, we want to solve:

arg max
CN

ρ(W, CO, CN , q)

subject to: size(CN) < S

5.3 Multi Objective Design Advisor-MODA

We have implemented a design advisor that optimizes the multi-objective cost function

described above and so finds index configurations that solve the robust index tuning prob-

lem. We call our design advisor the Multi Objective Design Advisor (or MODA). If the

user chooses to set the weights on risk and generality to zero, MODA will behave similarly

to a normal index tuning advisor. On the other hand, if the user increases the weight

on risk and generality, MODA will be biased towards choosing designs that provision for

query optimizer errors and workload changes.

Algorithm 1 shows the behavior of our MODA system. In this thesis we want to examine

the effects of the two proposed metrics–risk and generality–on the behavior of a design

advisor. Hence, to focus on these two metrics, we have chosen to create a comprehensive
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index tuning advisor that is guaranteed to choose index configurations that are similar to or

better than state of the art index tuning advisors. State of the art tuning advisors use many

techniques that significantly reduce the tuning time but that may reduce the quality of the

chosen solution. First, index advisors ignore index interaction, meaning that the benefit

of using an index is computed once compared to the default configuration [20, 31]. This

is not accurate since the benefit of an index changes depending on what other indexes are

available. Second, index advisors use further syntactic pruning techniques [21] that reduce

the size of the search space but may prune away the optimal solution. Our algorithm does

not do any pruning that would affect the quality of chosen the index configuration. We only

prune syntactically irrelevant index columns and indexes that do not benefit any query in

the workload. We also re-evaluate the benefit of all candidate indexes after choosing each

index to take index interaction into account. Our algorithm only considers indexes on up

to three columns to reduce the number of candidate indexes.

Algorithm 1 presents the outline of the MODA index recommendation process. In

line 1 We start by generating candidate indexes by syntactically analyzing the workload.

We consider any column mentioned in the SELECT, WHERE, ORDER BY, and

GROUP BY clauses as a candidate index column. We also consider all combinations of

two or three candidate columns as candidate indexes. Then, in lines [2−4] we evaluate the

current workload on the default configuration to get the initial estimated cost and MAXE

cost of the workload. Next, in lines [7 − 11] we use the “what-if” interface to evaluate

the benefit and risk of every index. We also evaluate the generality of the configuration
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given each index. Then in lines [19−26] we take the best candidate index that fits the size

budget and add it to the chosen set. To include index interaction in our future calculations

we hypothetically create the indexes in the chosen set then we re-evaluate all the indexes.

If an index gives a zero benefit we remove this index from the candidate indexes so it does

not get re-evaluated in future iterations. We stop when there is no index with benefit in

the candidate indexes that fits our size budget.

We have implemented the server side extensions required for MODA in PostgreSQL,

as described in Chapter 3. The client side MODA application connects to this modified

server and recommends index configurations for a given workload.
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Algorithm 1 Multi-Objective Design Advisor - (MODA)

MODA(W ,S,C0,q)
1 cands← GenerateCands(W )
2 CN ← C0

3 cost0 ← cost(W,C0)
4 MAXE0 ←MAXE(W,C0)
5 for i← 0 to |cands|
6 do
7 Create Hypothetical Index(cand[i])
8 cand[i].benefit← benefit(cost0, cost(W ))
9 cand[i].risk ← risk(W, cost0,MAXE0, CN )

10 cand[i].generality ← Generality(conf ∪ cand[i])
11 cand[i].MODACOST ← q1 ∗ cand[i].benefit + q2 ∗ cand[i].risk + q3 ∗ cand[i].generality
12 if (cand[i].benefit <= 0)
13 then
14 remove cands[i] from cands
15
16 Drop Hypothetical Index(cand[i])
17
18 Sort cands on MODACOST
19 if there is an index in cands with size < S
20 then
21 conf ← conf ∪ cand[i]
22 S ← S − cand[i].size
23 Create Hypothetical Index(cand[i])
24 goto 5
25 else
26 return conf
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Chapter 6

Experimental Evaluation

6.1 Experimental Setup

In our experiments we use PostgreSQL server modified as described in Section 3.5. The

client side MODA application is written in C++. All the experiments are run on a machine

with dual 3.4GHz Intel Xeon CPUs and 4.0 GB of RAM running Fedora Core 6. The

memory settings for PostgreSQL are 100MB for shared buffers, 100MB for temporarily

buffers, and 50MB for working memory. Different experiments use different databases and

workloads, described in their respective section.
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6.2 Evaluating Risk

In our first experiment we evaluate the impact of the risk metric. We use a TPC-H database

with scale factor 1 (1GB), but we skew the data generator for TPC-H to introduce correla-

tion among columns (lineitem.quantity, lineitem.discount) and (part.container, part.size)

and (partsupp.availqty, partsupp.supplycost).

For our first experiment, we use the 11 queries listed in Appendix B. In Figure 6.1 we

show the effects of varying the weight on the risk metric in the MODA design advisor on

the 11 synthetic queries for a disk space budget of 2.4GB. The weight on generality is set to

0. Due to correlation in the data, the design chosen when the weight on the risk is 0 is not

good. However, by increasing the weight on the risk metric, the design advisor will start

shifting toward configurations that are less risky, (i.e. more robust plans), so execution

time decreases up to a certain point. After this point the design advisor starts to choose

bad designs because it de-emphasizes benefit too much. The point at which the weight

on risk is 0 resembles the performance of a traditional design advisor. It is clear that the

risk-aware design advisor performs much better than such a traditional design advisor. In

Figure 6.2, we show the effects of the risk on the standard 22 TPC-H benchmark queries,

given that the design advisor space budget is 2.4GB. We observe that while increasing

the weight on risk the execution time decreases until a certain point where it stays fixed.

As before, we observe that the risk-aware design advisor performs better than the normal

design advisor on the skewed TPC-H database.
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Figure 6.1: Effects of risk on synthetic workload on the TPC-H database

Figure 6.2: Effect of risk on TPC-H benchmark queries
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6.3 Generality

To evaluate the generality metric, we use the synthetic workloads left, right, and uniform

and the synthetic relation DB11C described in Section 4.3.2.

In Figures 6.3-6.8, we vary the size of the index configuration from two times the

database size (1.64 GB) up to five time the database size (4.1 GB). In each experiment

we vary the number of statements given to the design advisor from 2 to 100, choosing

statements from the left workload. The figures show the number of unique prefixes in

the index configuration recommended by the MODA design advisor with the weight of

0 on generality and risk. We observe that as the number of statements given to the

design advisor increases, the number of unique prefixes in the recommended configuration

increases, which indicates that as the design advisor sees more queries it generates more

unique prefixes and becomes less overtrained. The generality metric aims to reduce the

overtraining by maximizing the number of unique prefixes even with a small number of

queries seen.
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Figure 6.3: Number of unique prefixes in configuration of size 2DB

Figure 6.4: Number of unique prefixes in configuration of size 2.5DB
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Figure 6.5: Number of unique prefixes in configuration of size 3.5DB

Figure 6.6: Number of unique prefixes in configuration of size 4DB

57



Figure 6.7: Number of unique prefixes in configuration of size 4.5DB

Figure 6.8: Number of unique prefixes in configuration of size 5DB
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In our next experiment, we study the effectiveness of our generality metric on capturing

the number of unique prefixes and helping the design advisor maximize it. We vary the

index configuration size from 0.5 times to 10 time the database size. We use 100 statements

from the left workload. As the size of the configuration increases the number of unique

index prefixes chosen by the design advisor increases as shown in Figure 6.9. The figure

shows values for five different weights on generality (GW). The weight on risk is set to 0

for all experiments. When the weight on generality is set to 0, the design advisor behaves

like a traditional design advisor. As the weight on generality increases the design advisor

starts to maximize the number of unique index prefixes more rapidly than the traditional

design advisor. In Figure 6.10, we show the value of our generality metric against the size

of the configuration. We see that generality grows more rapidly with increasing the weight

on the generality metric, which shows that the design advisor is indeed able to maximize

this metric and choose more general designs when the weight on generality is increased.

Finally, Figure 6.11 shows that there is an almost negligible penalty in the estimated cost

compared to the traditional design advisor. Thus, the generality aware design advisor

generates more general designs with a minimal sacrifice in performance.
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Figure 6.9: Effect of increasing size constraint on number of unique prefixes

Figure 6.10: Effect of increasing size constraint on generality metric
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Figure 6.11: Effect of increasing size constraint on performance
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In our final experiment, we demonstrate the usefulness of maximizing generality in

physical designs. Generality should help the design advisor avoid overtraining for the

given training workload. To verify this, we train the design advisor with a left workload

consisting of 100 queries, and we test performance with right and uniform workloads of 100

queries. In Figures 6.12 to 6.20 we vary the disk space available for the configuration from

1 times the database size to 5 times the database size in increments of 0.5 the database

size. The figures show the estimated runtime for the training and test workloads, varying

the weight on generality while keeping the weight on risk 0. As we can see, increasing

the weight on generality does not hurt the performance of the training workload but it

improves the performance of the test workloads. This becomes more apparent as the disk

space budget increases because at the lower disk budget the configuration size is too small

to allow for overtraining. Thus we can see that generality helps the design advisor generate

physical designs that benefit not only the training workload, but also previously unseen

test workloads.
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Figure 6.12: Performance on training and test workloads for configuration size 1DB

Figure 6.13: Performance on training and test workloads for configuration size 1.5DB
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Figure 6.14: Performance on training and test workloads for configuration size 2DB

Figure 6.15: Performance on training and test workloads for configuration size 2.5DB
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Figure 6.16: Performance on training and test workloads for configuration size 3DB

Figure 6.17: Performance on training and test workloads for configuration size 3.5DB
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Figure 6.18: Performance on training and test workloads for configuration size 4DB

Figure 6.19: Performance on training and test workloads for configuration size 4.5DB
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Figure 6.20: Performance on training and test workloads for configuration size 5DB
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Chapter 7

Related Work

7.1 Physical Design Advisor

Physical design advisors employ different techniques for candidate enumeration and search.

Some techniques find optimal configurations in polynomial time but under some relax-

ations to the problem. By removing space constraints and assuming no updates in the

workload, [13] guarantees finding an optimal physical design. Work detailed in [28] em-

ploys an integer programming technique to find optimal physical designs by only relaxing

the space constraint. To find the best configuration without relaxing the problem, the ap-

proach adopted in the literature is to prune the number of configurations to approximate

the optimal algorithm in reasonable time [20]. The technique detailed in [31] uses the

query optimizer to choose all relevant indexes then models the problem as a 0-1-knapsack

problem to choose the best set of indexes that satisfy the space constraint. Work shown
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in [13] introduces a relaxation based approach for index and materialized views tuning.

The tuning advisor starts by selecting the optimal configuration for each query to come up

with an optimal overall configuration C∗. Then, to satisfy the constraint on the size of the

configuration, the tuning advisor reduces C∗ by merging access paths. Index merging is

done by fitting indexes with common columns into higher order indexes [21]. MV merging

is done by fitting intersecting MVs into other MVs through query rewriting techniques.

Another technique starts by merging the physical designs and reducing them into smaller

ones that satisfy the space constraint [14].

In [15, 16], this approach is used for online tuning, but the important notion of ro-

bustness is not discussed. In [6], the authors introduce a richer model of workloads that

captures the temporal aspects of an SQL workload. If the database has more than one

workload that are different at different times, the proposed tuning advisor will be able to

separately tune the separate workloads instead of finding a design that will benefit the

union of all workloads. This diversity in workloads and designs also increases the impor-

tance of robustness.

Vertical and horizontal partitioning of relations on disks impacts the performance of

queries on databases that exist on multiple disks. Vertical partitioning is projecting differ-

ent attributes of the relation on different disks. This allows for minimizing the number of

pages needed to be read in order to scan the relation. Horizontal partitioning is positioning

different portions of the relation on different disks. The partitioning method may be hash

based or simply range based. Horizontal partitioning allows for parallelizing disk access
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to the same relations. In [4, 7] the authors introduce workload aware techniques that

attempt to find an optimal vertical and horizontal partitioning for relations in a database.

Studying robustness in the context of physical design aspects beyond indexes such as MVs

or partitioning, is an interesting direction for future work.

7.2 Robust Query Optimization

Work shown in [8] formulates the estimated runtime of relational operators in query plans

as probability distribution functions based on the selectivity of predicates. The user defines

a threshold (a percentage), and the robust query optimizer chooses plans whose costs are

guaranteed to be optimal with probability larger than the given threshold.

Indeed a physical design advisor that uses a “what-if” interface to a robust query

optimizer would yield robust physical designs. The work shown in [8] provides theoretical

guarantees on the query execution cost which may be used to calculate cost guarantees for

the entire workload. In our work we choose not to adopt this technique for reducing risk

because it is a sampling based technique that will not scale when the optimizer is called a

large number of times. The robust query optimizer does not use the database statistics to

estimate cardinalities but instead executes the operators on a sample of the database. This

may be reasonable when optimizing one query but in a design advisor the query optimizer

is called thousands of times and this will not scale. Therefore, we elect to choose a cheaper

approach for assessing the potential for errors in a query plan.
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7.3 Workload Compression

Many index tuning techniques employ a simple approach for compressing workloads by

choosing the most expensive X% of the queries [5, 20, 24, 33]. This approach has inherent

problems. For example, queries need to be costed before determining the physical design,

while the cost of a query is highly dependent on the physical design. Moreover, in the case

of skewed workloads, where just a few queries are in the X%, many statements will be

pruned out. This may cause the design advisor to miss many candidate columns or even

tables. More principled approaches are given in [18, 27]. In [18] the authors introduce a

generic workload compression technique that may certainly be applied to physical design

tuning. In this approach one provides a single distance function between two statements.

Statements are then partitioned using the K −meanoid algorithm to yield a reduced set

of centers. Similar statements are placed in the same partition, while statements of low

similarity are placed in different partitions. Intuitively, picking the center of each partition

would give a good representative of the partition. The algorithm achieves higher degrees

of accuracy through further optimizations. In [27] a sampling technique is employed to

choose a candidate subset of the workload that represents the entire workload. In this

work, a statistical primitive for evaluating the confidence that the sample is representative

of the whole is used to choose good subsets (i.e., compressed workloads) in a short time.

Finally, the representative workload produced has a conservative probabilistic guarantee

that the estimated runtime of the configuration tuned on the compressed workload will

be no larger than the performance of the configuration tuned on the original workload by
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certain threshold defined by the user.

7.4 Automatic Statistics Collection

Data distribution statistics are critical for accurate cost estimation and query optimiza-

tion. Automatic collection and maintenance of data distribution statistics is an active

area of research. Collecting all possible multi-column statistics is infeasible. Therefore,

workload aware techniques are employed to analyze queries and identify a reduced set of

critical multi-column statistics. Intuitively, the critical multi-column statistics are those

that produce estimates that differ most in accuracy for the given workload from estimates

produced without the statistics. Many statistics collection techniques (e.g. [10, 11, 12])

use a variant of the Extreme Cardinality Estimation technique [22]. In the Extreme Car-

dinality Estimation technique the workload is evaluated once using no statistics and this

forcing the query optimizer to rely on “magic numbers”. The sensitivity of the different

cardinalities and costs to the values of these magic numbers is analyzed, and the most

sensitive cases indicate the statistics that are most critical to have. In addition to the work

on determining which statistics to collect, there is also work on when to collect statistics [3].

All this work in the area of automatic statistics collection aims at reducing errors in

the cardinality estimates made by the optimizer. Recall that our risk metric evaluates

the potential for choosing bad plans due to erroneous cardinality estimates. Thus, as the

cardinality estimates become more accurate, the riskiness of different physical designs is
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reduced. In the limit, if the optimizer makes no mistakes, there is no need for measuring or

minimizing risk in physical designs. However, we argue that optimizers will always make

errors since they rely on a model of the data distributions that is necessarily lossy (since

we want to minimize the space required for the model). Thus, while work on automatic

statistics collection may reduce the riskiness of physical designs, it will never eliminate it

completely.
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Chapter 8

Conclusion and Future Work

As we increasingly move towards database systems with truly zero administration, physical

design advisors need to make recommendations that are more robust, since they will be

implemented without being verified by a DBA. In this thesis, we present two dimensions

for measuring the robustness of a physical design and two metrics for evaluating the quality

of a physical design along these dimensions.

We introduced the risk metric that assess confidence in the query optimizer costing of

the benefit of an index to a query workload. This metric is based on the MAXE cost that

estimates the cost of a plan under the worst case cardinality assumptions. The wider the

gap between the estimated cost and the MAXE cost, the lower the confidence in query

optimizer costing, and hence the higher the risk. We use the risk metric to assess the

robustness of index configurations to query optimizers errors.

Our second metric is the generality metric that assess the robustness of an index config-
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uration to changes in the query workload. The generality metric penalizes configurations

with high degrees of redundancy in index prefixes. We show that traditional index advisors

that focus solely on minimizing estimated runtime can overtrain on the given workload.

These index advisors may choose indexes with redundant index prefixes as long as these

indexes benefit workload queries even slightly. If there is enough diversity in the workload

queries, this overtraining will be reduced. Our generality metric aims at reducing this

overtraining even for small workloads with low diversity. This makes the recommended

physical design useful not only for the training workload, but also for previously unseen

queries that come in the future.

To incorporate risk and generality into a design advisor, the main change required is

to modify its objective function to include these two quality measures in addition to the

traditional quality measure of benefit to workload queries. We present a multi-objective

cost function that combines the three metrics using a weighted sum, where the weights

indicate the relative importance of the different quality dimensions. We have implemented

a simple design advisor that uses our cost function and performs a greedy search (modified

to account for index interaction) on an exhaustive space of candidate indexes, and we have

implemented the required server-side extensions for our design advisor in PostgreSQL. We

show experimentally using this implementation that our approach does indeed generate

designs that are more robust.
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8.1 Future Work

8.1.1 More Types of Robustness

In this thesis we have examined robustness to specific types of errors and workload changes.

It would be interesting to expand our work to include other notions of robustness such as

protecting against errors made by the optimizer for reasons other than cardinality esti-

mation inaccuracy, robustness to changes in query frequencies in the workload, and even

robustness to fundamental changes in the query templates.

8.1.2 Interaction With Statistics

In this thesis we have assumed that the query optimizer does not have multi-column statis-

tics or join statistics. Many database systems are moving to include workload aware col-

lection of multi-column and join statistics. The MAXE cost could be adapted to work

with such systems. If the statistics needed to evaluate the cost of an operator are available

in the system, the MAXE costing can be the same as the estimated cost. MAXE cost

would be used only to counterbalance assumptions made by the query optimizer when the

statistics are not present. Another, interesting direction is to make the choice of which

statistics to collect depend on the statistics that would maximize the confidence in the

selected physical design.
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8.1.3 Robustness in Online Automatic Physical Database Design

Online techniques for physical design tuning such as [16] assume zero database administra-

tion, which necessitates the use of robust tools that provision for query optimizer errors and

query workload changes. It would be interesting to examine the effects of using techniques

similar to what we presented in this thesis to augment online tuning tools.

8.1.4 When to Re-tune?

In [15], the authors raise the problem of how to automatically decide when to re-tune the

physical design of the database. The technique relies only on monitoring changes in the

estimated runtime benefit. It would be useful to include our benefit and risk metrics when

deciding when to re-tune.

8.1.5 Materialized Views and Physical Data Layout

This thesis does not tackle issues concerning choosing materialized views (MVs) and phys-

ical data layout but this is very relevant as future work. Risk and generality metrics may

be used to assess the quality of a set of indexes and materialized views. The risk metric

will examine the query optimizer‘s confidence in costing the queries in the workload. The

generality metric will prevent design advisor overtraining, e.g., choosing very specific MVs

that exactly match the queries in the workload. The problem of generalizing MVs is very

relevant when provisioning for future workload changes. Risk and generality may also be
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important in the case of deciding physical data layout such as, vertical and horizontal

partitioning of data on disks.
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Appendix A

Changes in PostgreSQL Optimizer

A.1 Modified Data Structures in postgres.h

1. typedef struct

{

double sel;

double worst;

}Selectivity;

2. typedef struct

{

double rows;

double wroes;
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}Rows;

3. typedef struct

{

int64 cost;

int64 wcost;

}Cost;

4. typedef struct

{

int64 rows;

int64 wroes;

}Count;

5. typedef struct

{

long groups;

long wgrops;

}Groups;

A.2 List of Affected Header files

This is the list of the header files changed in the PostgreSQL source code.
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1. include/

(a) postgres.h

2. include/optimizer/

(a) cost.h

(b) plancat.h

(c) planmain.h

3. include/utils/

(a) selfuncs.h

4. include/executor/

(a) nodeHash.h

5. include/nodes/

(a) plannodes.h

(b) relation.h

(c) nodes.h

6. src/bin/psql/

(a) sql help.h
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A.3 List of Files Changed in PostgreSQL

This is the list of files changed in the PostgreSQL source code.

1. backend/optimizer/geqo/

(a) geqo pool.c

2. backend/optimizer/util/

(a) restrictinfo.c

(b) pathnode.c

(c) clauses.c

(d) plancat.c

3. backend/optimizer/util/adt/

(a) selfuncs.c

4. backend/optimizer/path/

(a) allpaths.c

(b) clausesel.c

(c) costsize.c

(d) indxpath.c

(e) orindxpath.c
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5. backend/optimizer/plan/

(a) createplan.c

(b) planmain.c

(c) planner.c

(d) planagg.c

(e) subselect.c

6. backend/commands/

(a) explain.c

7. backend/executor/

(a) nodeHash.c

(b) nodeHashjoin.c

(c) nodeAgg.c

(d) nodeSubplan.c

8. backend/executor/

(a) nodeAgg.c

9. backend/nodes/

(a) print.c
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(b) outfuncs.c

10. backend/catalog/

(a) index.c

11. backend/parser/

(a) parser.c

12. backend/tcop/

(a) postgres.c

A.4 Calculating the MAXE Selectivity

In Section A.1, we list the added data structures that we have used to calculate the MAXE

cost. The Selectivity data structure is used by the PostgreSQL optimizer to store se-

lectivity of predicates. Selectivity estimation is done mainly in the routines found in the

files named clausesel.c and selfuncs.c. We have modified the routines in file clausesel.c

to generate the traditional selectivity as well as the MAXE selectivities. We have created

the selectivity data structure as a C++ struct type containing two doubles, one to store

the traditional selectivity estimation and one to store the MAXE selectivity estimation.

Figures A.1 and A.2 show a code snippet from the file clausesel.c where the combined

selectivity of predicate list are calculated. Figures A.3 and A.4 show the modified code we

use to calculate the MAXE selectivity estimation.
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foreach (l,clauses)

{

.

.

s1 = s1 * s2;

.

.

}

Figure A.1: Original code to calculate the selectivity of a predicate list

foreach (l,clauses)

{

.

.

selec = selec * subselec;

.

.

}

Figure A.2: Original code to calculate the selectivity of a predicate list on an index

foreach (l,clauses)

{

.

.

s1.sel = s1.sel * s2.sel;

//Newly added line

s1.worst = MIN (s1.worst,s2.worst);

.

.

}

Figure A.3: Modified code to calculate the MAXE selectivity of a predicate list
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foreach (l,clauses)

{

.

.

selec.sel = selec.sel * subselec.sel;

//Newly added line

selec.worst= MIN (selec.sel,subselec.sel);

.

.

}

Figure A.4: Modified code to calculate the MAXE selectivity of a predicate list on an index

A.5 Calculating the MAXE cost

The selectivity of predicates is used by other routines to calculate the numbers of rows

satisfying these predicates. Therefore we have created the Rows data structure that

contains two double types, again one double type for each kind of costing. We store the

number of rows calculated based on the traditional selectivity estimation and the number

of rows calculated based on the MAXE selectivity estimation in this structure. The number

of rows are mainly calculated at the file named costsize.c. The number of rows satisfying

a predicate are then used to estimate the runtime cost of an operators. Therefore, we

have created Cost data structure with two double types, one to store the cost based on

the traditional number of rows estimate and the other based on the MAXE estimate. In

Figure A.5, we show a code snippet of the modified code in file costsize.c used to calculate

the number of rows and cost based on the MAXE selectivity.

In order not to affect the traditional query planing that happens mainly in routines
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tuples_fetched.rows = clamp_row_est(indexSelectivity.sel * baserel->tuples.rows);

//Newly added line

tuples_fetched.wroes = clamp_row_est(indexSelectivity.worst * baserel->tuples.wroes);

.

.

if (nbytes.cst > work_mem_bytes)

{

startup_cost.cost += seq_page_cost * npages.cost;

run_cost.cost += seq_page_cost * npages.cost;

}

//Newly added if block

if (nbytes.wcost > work_mem_bytes)

{

startup_cost.wcost += seq_page_cost * npages.wocst;

run_cost.wcost += seq_page_cost * npages.wcost;

}

Figure A.5: Modified code to propagate the MAXE cost

found in the file planmain.c, all the decisions made by the optimizer are based on the

traditional cost. In other words, the query optimizer is oblivious of the MAXE costing.

Finally, the structures Count and Groups are used to estimate the number of unique rows

and the of groups satisfying a predicate when optimizing aggregation queries. Optimization

of these aggregate queries happens mainly in the file names planagg.c.
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Appendix B

TPC-H Variant Workload

select sum (l_extendedprice)

from lineitem

where l_shipdate > date ’1998-01-01’;

select sum (l_extendedprice)

from lineitem

where l_commitdate > date ’1998-01-01’;

select sum (l_extendedprice)

from lineitem

where l_receiptdate > date ’1998-01-01’ ;
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select sum (l_extendedprice)

from lineitem

where l_shipdate > date ’1998-09-01’ and l_commitdate > ’1998-09-01’;

select sum (l_extendedprice)

from lineitem

where l_shipdate > date ’1998-10-17’ and l_commitdate > ’1998-10-17’;

select sum (l_extendedprice)

from lineitem

where l_receiptdate > date ’1998-09-01’ and l_commitdate > date ’1998-09-01’;

select sum (l_extendedprice)

from lineitem

where l_receiptdate > date ’1998-10-22’ and l_commitdate > date ’1998-10-22’;

select sum (l_extendedprice)

from lineitem

where l_shipdate > date ’1998-09-01’ and l_receiptdate > date ’1998-09-01’ ;
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select sum (l_extendedprice)

from lineitem

where l_shipdate > date ’1998-11-14’ and l_receiptdate > date ’1998-11-14’;

select sum (l_extendedprice)

from lineitem

where l_receiptdate > date ’1998-09-01’ and l_commitdate > date ’1998-09-01’

and l_shipdate > ’1998-09-01’;

select sum (l_extendedprice)

from lineitem

where l_receiptdate > date ’1998-07-07’ and l_commitdate > date ’1998-07-07’

and l_shipdate > ’1998-07-07’;
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