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Abstract

Optimal solutions to Markov Decision Problems (MDPs) are very sen-
sitive with respect to the state transition probabilities. In many practi-
cal problems, the estimation of those probabilities is far from accurate.
Hence, estimation errors are limiting factors in applying MDPs to real-
world problems. We propose an algorithm for solving finite-state and
finite-action MDPs, where the solution is guaranteed to be robust with
respect to estimation errors on the state transition probabilities. Our al-
gorithm involves a statistically accurate yet numerically efficient repre-
sentation of uncertainty, via Kullback-Leibler divergence bounds. The
worst-case complexity of the robust algorithm is the same as the origi-
nal Bellman recursion. Hence, robustness can be added at practically no
extra computing cost.

1 Introduction

We consider a finite-state and finite-action Markov decision problem in which the transi-
tion probabilities themselves are uncertain, and seek a robust decision for it. Our work
is motivated by the fact that in many practical problems, the transition matrices have to
be estimated from data. This may be a difficult task and the estimation errors may have
a huge impact on the solution, which is often quite sensitive to changes in the transition
probabilities [3]. A number of authors have addressed the issue of uncertainty in the transi-
tion matrices of an MDP. A Bayesian approach such as described by [9] requires a perfect
knowledge of the whole prior distribution on the transition matrix, making it difficult to
apply in practice. Other authors have considered the transition matrix to lie in a given set,
most typically a polytope: see [8, 10, 5]. Although our approach allows to describe the
uncertainty on the transition matrix by a polytope, we may argue against choosing such a
model for the uncertainty. First, a general polytope is often not a tractable way to address
the robustness problem, as it incurs a significant additional computational effort to handle
uncertainty. Perhaps more importantly, polytopic models, especially interval matrices, may
be very poor representations of statistical uncertainty and lead to very conservative robust
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policies. In [1], the authors consider a problem dual to ours, and provide a general state-
ment according to which the cost of solving their problem is polynomial in problem size,
provided the uncertainty on the transition matrices is described by convex sets, without
proposing any specific algorithm. This paper is a short version of a longer report [2], which
contains all the proofs of the results summarized here.

Notation. P > 0 or P ≥ 0 refers to the strict or non-strict componentwise inequality for
matrices or vectors. For a vector p > 0, log p refers to the componentwise operation. The
notation 1 refers to the vector of ones, with size determined from context. The probability
simplex inRn is denoted∆n = {p ∈ Rn

+ : pT 1 = 1}, whileΘn is the set of n×n transition
matrices (componentwise non-negative matrices with rows summing to one). We use σP
to denote the support function of a set P ⊆ Rn, with for v ∈ Rn, σP(v) := sup{pT v :
p ∈ P}.

2 The problem description

We consider a finite horizon Markov decision process with finite decision horizon T =
{0, 1, 2, . . . , N − 1}. At each stage, the system occupies a state i ∈ X , where n = |X | is
finite, and a decision maker is allowed to choose an action a deterministically from a finite
set of allowable actions A = {a1, . . . , am} (for notational simplicity we assume that A is
not state-dependent). The system starts in a given initial state i0. The states make Markov
transitions according to a collection of (possibly time-dependent) transition matrices τ :=
(P a

t )a∈A,t∈T , where for every a ∈ A, t ∈ T , the n × n transition matrix P a
t contains the

probabilities of transition under action a at stage t. We denote by π = (a0, . . . ,aN−1) a
generic controller policy, where at(i) denotes the controller action when the system is in
state i ∈ X at time t ∈ T . Let Π = AnN be the corresponding strategy space. Define by
ct(i, a) the cost corresponding to state i ∈ X and action a ∈ A at time t ∈ T , and by cN

the cost function at the terminal stage. We assume that ct(i, a) is non-negative and finite
for every i ∈ X and a ∈ A.
For a given set of transition matrices τ , we define the finite-horizon nominal problem by

φN (Π, τ) := min
π∈Π

CN (π, τ), (1)

where CN (π, τ) denotes the expected total cost under controller policy π and transitions τ :

CN (π, τ) := E
(

N−1∑

t=0

ct(it,at(i)) + cN (iN )

)
. (2)

A special case of interest is when the expected total cost function bears the form (2), where
the terminal cost is zero, and ct(i, a) = νtc(i, a), with c(i, a) now a constant cost function,
which we assume non-negative and finite everywhere, and ν ∈ (0, 1) is a discount factor.
We refer to this cost function as the discounted cost function, and denote by C∞(π, τ) the
limit of the discounted cost (2) as N →∞.
When the transition matrices are exactly known, the corresponding nominal problem can
be solved via a dynamic programming algorithm, which has total complexity of nmN flops
in the finite-horizon case. In the infinite-horizon case with a discounted cost function, the
cost of computing an ε-suboptimal policy via the Bellman recursion is O(nm log(1/ε));
see [7] for more details.

2.1 The robust control problems

At first we assume that when for each action a and time t, the corresponding transition
matrix P a

t is only known to lie in some given subset Pa. Two models for transition ma-
trix uncertainty are possible, leading to two possible forms of finite-horizon robust control



problems. In a first model, referred to as the stationary uncertainty model, the transition
matrices are chosen by nature depending on the controller policy once and for all, and
remain fixed thereafter. In a second model, which we refer to as the time-varying uncer-
tainty model, the transition matrices can vary arbitrarily with time, within their prescribed
bounds. Each problem leads to a game between the controller and nature, where the con-
troller seeks to minimize the maximum expected cost, with nature being the maximizing
player.

Let us define our two problems more formally. A policy of nature refers to a specific
collection of time-dependent transition matrices τ = (P a

t )a∈A,t∈T chosen by nature, and
the set of admissible policies of nature is T := (⊗a∈APa)N . Denote by Ts the set of
stationary admissible policies of nature:

Ts = {τ = (P a
t )a∈A,t∈T ∈ T : P a

t = P a
s for every t, s ∈ T, a ∈ A} .

The stationary uncertainty model leads to the problem
φN (Π, Ts) := min

π∈Π
max
τ∈Ts

CN (π, τ). (3)

In contrast, the time-varying uncertainty model leads to a relaxed version of the above:
φN (Π, Ts) ≤ φN (Π, T ) := min

π∈Π
max
τ∈T

CN (π, τ). (4)

The first model is attractive for statistical reasons, as it is much easier to develop statistically
accurate sets of confidence when the underlying process is time-invariant. Unfortunately,
the resulting game (3) seems to be hard to solve. The second model is attractive as one
can solve the corresponding game (4) using a variant of the dynamic programming algo-
rithm seen later, but we are left with a difficult task, that of estimating a meaningful set of
confidence for the time-varying matrices P a

t . In this paper we will use the first model of
uncertainty in order to derive statistically meaningful sets of confidence for the transition
matrices, based on likelihood or entropy bounds. Then, instead of solving the correspond-
ing difficult control problem (3), we use an approximation that is common in robust control,
and solve the time-varying upper bound (4), using the uncertainty sets Pa derived from a
stationarity assumption about the transition matrices. We will also consider a variant of
the finite-horizon time-varying problem (4), where controller and nature play alternatively,
leading to a repeated game

φrep
N (Π,Q) := min

a0
max
τ0∈Q

min
a1

max
τ1∈Q

. . . min
aN−1

max
τN−1∈Q

CN (π, τ), (5)

where the notation τt = (P a
t )a∈A denotes the collection of transition matrices at a given

time t ∈ T , and Q := ⊗a∈APa is the corresponding set of confidence.

Finally, we will consider an infinite-horizon robust control problem, with the discounted
cost function referred to above, and where we restrict control and nature policies to be
stationary:

φ∞(Πs, Ts) := min
π∈Πs

max
τ∈Ts

C∞(π, τ), (6)

whereΠs denotes the space of stationary control policies. We define φ∞(Π, T ), φ∞(Π, Ts)
and φ∞(Πs, T ) accordingly.

In the sequel, for a given control policy π ∈ Π and subset S ⊆ T , the notation
φN (π,S) := maxτ∈S CN (π, τ) denotes the worst-case expected total cost for the finite-
horizon problem, and φ∞(π,S) is defined likewise.

2.2 Main results

Our main contributions are as follows. First we provide a recursion, the “robust dynamic
programming” algorithm, which solves the finite-horizon robust control problem (4). We



provide a simple proof in [2] of the optimality of the recursion, where the main ingredient
is to show that perfect duality holds in the game (4). As a corollary of this result, we ob-
tain that the repeated game (5) is equivalent to its non-repeated counterpart (4). Second,
we provide similar results for the infinite-horizon problem with discounted cost function,
(6). Moreover, we obtain that if we consider a finite-horizon problem with a discounted
cost function, then the gap between the optimal value of the stationary uncertainty problem
(3) and that of its time-varying counterpart (4) goes to zero as the horizon length goes to
infinity, at a rate determined by the discount factor. Finally, we identify several classes
of uncertainty models, which result in an algorithm that is both statistically accurate and
numerically tractable. We provide precise complexity results that imply that, with the pro-
posed approach, robustness can be handled at practically no extra computing cost.

3 Finite-Horizon Robust MDP

We consider the finite-horizon robust control problem defined in section 2.1. For a given
state i ∈ X , action a ∈ A, and P a ∈ Pa, we denote by pa

i the next-state distribution
drawn from P a corresponding to state i ∈ X ; thus pa

i is the i-th row of matrix P a. We
define Pa

i as the projection of the set Pa onto the set of pa
i -variables. By assumption, these

sets are included in the probability simplex of Rn, ∆n; no other property is assumed. The
following theorem is proved in [2].

Theorem 1 (robust dynamic programming) For the robust control problem (4), perfect
duality holds:

φN (Π, T ) = min
π∈Π

max
τ∈T

CN (π, τ) = max
τ∈T

min
π∈Π

CN (π, τ) := ψN (Π, T ).

The problem can be solved via the recursion

vt(i) = min
a∈A

(
ct(i, a) + σPa

i
(vt+1)

)
, i ∈ X , t ∈ T, (7)

where σP(v) := sup{pT v : p ∈ P} denotes the support function of a set P , vt(i) is the
worst-case optimal value function in state i at stage t. A corresponding optimal control
policy π∗ = (a∗0, . . . ,a∗N−1) is obtained by setting

a∗t (i) ∈ arg min
a∈A

{
ct(i, a) + σPa

i
(vt+1)

}
, i ∈ X . (8)

The effect of uncertainty on a given strategy π = (a0, . . . ,aN ) can be evaluated by the
following recursion

vπ
t (i) = ct(i,at(i)) + σPat(i)

i
(vπ

t+1), i ∈ X , (9)

which provides the worst-case value function vπ for the strategy π.

The above result has a nice consequence for the repeated game (5):

Corollary 2 The repeated game (5) is equivalent to the game (4):

φrep
N (Π,Q) = φN (Π, T ),

and the optimal strategies for φN (Π, T ) given in theorem 1 are optimal for φrep
N (Π,Q) as

well.

The interpretation of the perfect duality result given in theorem 1, and its consequence
given in corollary 2, is that it does not matter wether the controller or nature play first, or if
they alternatively; all these games are equivalent.



Each step of the robust dynamic programming algorithm involves the solution of an opti-
mization problem, referred to as the “inner problem”, of the form

σPa
i
(v) = max

p∈Pa
i

vT p, (10)

where Pa
i is the set that describes the uncertainty on i-th row of the transition matrix P a,

and v contains the elements of the value function at some given stage. The complexity of
the sets Pa

i for each i ∈ X and a ∈ A is a key component in the complexity of the robust
dynamic programming algorithm. Beyond numerical tractability, an additional criteria for
the choice of a specific uncertainty model is of course be that the sets Pa should repre-
sent accurate (non-conservative) descriptions of the statistical uncertainty on the transition
matrices. Perhaps surprisingly, there are statistical models of uncertainty, such as those
described in section 5, that are good on both counts. Precisely, these models result in inner
problems (10) that can be solved in worst-case time of O(n log(vmax/δ)) via a simple bi-
section algorithm, where n is the size of the state space, vmax is a global upper bound on
the value function, and δ > 0 specifies the accuracy at which the optimal value of the inner
problem (10) is computed. In the finite-horizon case, we can bound vmax by O(N).

Now consider the following algorithm, where the uncertainty is described in terms of one
of the models described in section 5:

Robust Finite Horizon Dynamic Programming Algorithm

1. Set ε > 0. Initialize the value function to its terminal value v̂N = cN .

2. Repeat until t = 0:

(a) For every state i ∈ X and action a ∈ A, compute, using the bisection algo-
rithm given in [2], a value σ̂a

i such that

σ̂a
i − ε/N ≤ σPa

i
(v̂t) ≤ σ̂a

i .

(b) Update the value function by v̂t−1(i) = mina∈A(ct−1(i, a) + σ̂a
i ) , i ∈ X .

(c) Replace t by t− 1 and go to 2.

3. For every i ∈ X and t ∈ T , set πε = (aε
0, . . . ,aε

N−1), where

aε
t(i) = arg max

a∈A
{ct−1(i, a) + σ̂a

i } , i ∈ X , a ∈ A.

As shown in [2], the above algorithm provides an suboptimal policy πε that achieves the
exact optimum with prescribed accuracy ε, with a required number of flops bounded above
by O(mnN log(N/ε)). This means that robustness is obtained at a relative increase of
computational cost of only log(N/ε) with respect to the classical dynamic programming
algorithm, which is small for moderate values ofN . IfN is very large, we can turn instead
to the infinite-horizon problem examined in section 4, and similar complexity results hold.

4 Infinite-Horizon MDP

In this section, we address a the infinite-horizon robust control problem, with a discounted
cost function of the form (2), where the terminal cost is zero, and ct(i, a) = νtc(i, a),
where c(i, a) is now a constant cost function, which we assume non-negative and finite
everywhere, and ν ∈ (0, 1) is a discount factor.

We begin with the infinite-horizon problem involving stationary control and nature policies
defined in (6). The following theorem is proved in [2].



Theorem 3 (Robust Bellman recursion) For the infinite-horizon robust control problem
(6) with stationary uncertainty on the transition matrices, stationary control policies, and
a discounted cost function with discount factor ν ∈ [0, 1), perfect duality holds:

φ∞(Πs, Ts) = max
τ∈Ts

min
π∈Πs

C∞(π, τ) := ψ∞(Πs, Ts). (11)

The optimal value is given by φ∞(Πs, Ts) = v(i0), where i0 is the initial state, and where
the value function v satisfies is the optimality conditions

v(i) = min
a∈A

(
c(i, a) + νσPa

i
(v)

)
, i ∈ X . (12)

The value function is the unique limit value of the convergent vector sequence defined by
vk+1(i) = min

a∈A

(
c(i, a) + νσPa

i
(vk)

)
, i ∈ X , k = 1, 2, . . . (13)

A stationary, optimal control policy π = (a∗,a∗, . . .) is obtained as
a∗(i) ∈ arg min

a∈A

{
c(i, a) + νσPa

i
(v)

}
, i ∈ X . (14)

Note that the problem of computing the dual quantity ψ∞(Πs, Ts) given in (11), has been
addressed in [1], where the authors provide the recursion (13) without proof.

Theorem (3) leads to the following corollary, also proved in [2].

Corollary 4 In the infinite-horizon problem, we can without loss of generality assume that
the control and nature policies are stationary, that is,

φ∞(Π, T ) = φ∞(Πs, Ts) = φ∞(Πs, T ) = φ∞(Π, Ts). (15)
Furthermore, in the finite-horizon case, with a discounted cost function, the gap between
the optimal values of the finite-horizon problems under stationary and time-varying uncer-
tainty models, φN (Π, T )−φN (Π, Ts), goes to zero as the horizon lengthN goes to infinity,
at a geometric rate ν.

Now consider the following algorithm, where we describe the uncertainty using one of the
models of section 5.

Robust Infinite Horizon Dynamic Programming Algorithm

1. Set ε > 0, initialize the value function v̂1 > 0 and set k = 1.

2. (a) For all states i and controls a, compute, using the bisection algorithm given
in [2], a value σ̂a

i such that
σ̂a

i − δ ≤ σPa
i
(v̂k) ≤ σ̂a

i ,

where δ = (1− ν)ε/2ν.
(b) For all states i and controls a, compute v̂k+1(i) by,

v̂k+1(i) = min
a∈A

(c(i, a) + νσ̂a
i ) .

3. If

‖v̂k+1 − v̂k‖ <
(1− ν)ε

2ν
,

go to 4. Otherwise, replace k by k + 1 and go to 2.

4. For each i ∈ X , set an πε = (aε,aε, . . .), where
aε(i) = arg max

a∈A
{c(i, a) + νσ̂a

i } , i ∈ X .

In [2], we establish that the above algorithm finds an ε-suboptimal robust policy in at most
O(nm log(1/ε)2) flops. Thus, the extra computational cost incurred by robustness in the
infinite-horizon case is only O(log(1/ε)).



5 Kullback-Liebler Divergence Uncertainty Models

We now address the inner problem (10) for a specific action a ∈ A and state i ∈ X .
Denote by D(p‖q) denotes the Kullback-Leibler (KL) divergence (relative entropy) from
the probability distribution q ∈ ∆n to the probability distribution p ∈ ∆n:

D(p‖q) :=
∑

j

p(j) log
p(j)
q(j)

.

The above function provides a natural way to describe errors in (rows of) the transition
matrices; examples of models based on this function are given below.

Likelihood Models: Our first uncertainty model is derived from a controlled experiment
starting from state i = 1, 2, . . . , n and the count of the number of transitions to different
states. We denote by F a the matrix of empirical frequencies of transition with control a in
the experiment; denote by fa

i its ith row. We have F a ≥ 0 and F a1 = 1, where 1 denotes
the vector of ones. The “plug-in” estimate P̂ a = F a is the solution to the maximum
likelihood problem

max
P

∑

i,j

F a(i, j) log P (i, j) : P ≥ 0, P1 = 1. (16)

The optimal log-likelihood is βa
max =

∑
i,j F a(i, j) log F a(i, j). A classical description

of uncertainty in a maximum-likelihood setting is via the ”likelihood region” [6]

Pa =




P ∈ Rn×n : P ≥ 0, P1 = 1,
∑

i,j

F a(i, j) log P (i, j) ≥ βa




 , (17)

where βa < βa
max is a pre-specified number, which represents the uncertainty level. In

practice, the designer specifies an uncertainty level βa based on re-sampling Bmethods, or
on a large-sample Gaussian approximation, so as to ensure that the set above achieves a
desired level of confidence.

With the above model, we note that the inner problem (10) only involves the set
Pa

i :=
{

pa
i ∈ Rn : pa

i ≥ 0, pa
i

T 1 = 1,
∑

j F a(i, j) log pa
i (j) ≥ βa

i

}
, where the pa-

rameter βa
i := βa −

∑
k &=i

∑
j F a(k, j) log F a(k, j). The set Pa

i is the projection of
the set described in (17) on a specific axis of pa

i -variables. Noting further that the like-
lihood function can be expressed in terms of KL divergence, the corresponding uncer-
tainty model on the row pa

i for given i ∈ X , a ∈ A, is given by a set of the form
Pa

i = {p ∈ ∆n : D(fa
i ‖p) ≤ γa

i }, where γa
i =

∑
j F a(i, j) log F a(i, j) − βa

i is a func-
tion of the uncertainty level.

Maximum A-Posteriori (MAP) Models: a variation on Likelihood models involves Maxi-
mum A Posteriori (MAP) estimates. If there exist a prior information regrading the uncer-
tainty on the i-th row of P a, which can be described via a Dirichlet distribution [4] with
parameter αa

i , the resulting MAP estimation problem takes the form

max
p

(fa
i + αa

i − 1)T log p : pT 1 = 1, p ≥ 0.

Thus, the MAP uncertainty model is equivalent to a Likelihood model, with the sample
distribution fa

i replaced by fa
i + αa

i −1, where αa
i is the prior corresponding to state i and

action a.

Relative Entropy Models: Likelihood or MAP models involve the KL divergence from the
unknown distribution to a reference distribution. We can also choose to describe uncer-
tainty by exchanging the order of the arguments of the KL divergence. This results in a



so-called “relative entropy” model, where the uncertainty on the i-th row of the transition
matrix P a described by a set of the formPa

i = {p ∈ ∆n : D(p‖qa
i ) ≤ γa

i }, where γa
i > 0

is fixed, qa
i > 0 is a given ”reference” distribution (for example, the Maximum Likelihood

distribution).

Equipped with one of the above uncertainty models, we can address the inner problem
(10). As shown in [2], the inner problem can be converted by convex duality, to a problem
of minimizing a single-variable, convex function. In turn, this one-dimensional convex
optimization problem can be solved via a bisection algorithm with a worst-case complexity
of O(n log(vmax/δ)), where δ > 0 specifies the accuracy at which the optimal value of the
inner problem (10) is computed, and vmax is a global upper bound on the value function.

Remark: We can also use models where the uncertainty in the i-th row for the transition
matrix P a is described by a finite set of vectors, Pa

i = {pa,1
i , . . . , pa,K

i }. In this case the
complexity of the corresponding robust dynamic programming algorithm is increased by
a relative factor of K with respect to its classical counterpart, which makes the approach
attractive when the number of ”scenarios”K is moderate.

6 Concluding remarks

We proposed a “robust dynamic programming” algorithm for solving finite-state and finite-
action MDPs whose solutions are guaranteed to tolerate arbitrary changes of the transi-
tion probability matrices within given sets. We proposed models based on KL divergence,
which is a natural way to describe estimation errors. The resulting robust dynamic program-
ming algorithm has almost the same computational cost as the classical dynamic program-
ming algorithm: the relative increase to compute an ε-suboptimal policy is O(N log(1/ε))
in the N -horizon case, and O(log(1/ε)) for the infinite-horizon case.
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