
Robustness in Real-time Systems

Nicolas Markey∗

LSV – CNRS & ENS Cachan, France
nicolas.markey@lsv.ens-cachan.fr

Abstract

We review several aspects of robustness of real-time sys-
tems, and present recent results on the robust verification of
timed automata.

1 Introduction

Most embedded systems have strong real-time con-
straints, which it is compulsory to take into account in their
modelling and verification. Timed automata [6] have been
introduced twenty years ago for that purpose: they extend
finite-state automata with real-valued clocks, which can be
used to specify how much time may elapse between differ-
ent events in the system. These timing constraints are usu-
ally just conjunctions of atomic constraints, comparing the
value of a clock against an integer. Formally, given a finite
set of proposition AP and a finite alphabet of actions Σ:

Definition 1. A timed automaton is a tuple A = ⟨Q, ℓ, C,
T, I⟩ where Q is a finite set of states, ℓ : Q → 2AP labels
states with the atomic propositions they satisfy, C is a finite
set of clock variables, T ⊆ Q×C(C)×Σ× 2C ×Q (where
C(C) is the set of timing constraints over C) is the set of
transitions, and I : Q→ C(C) assigns an invariant to each
state.

A transition (q, �, �, r, q′) in T indicates that it is allowed
to go from q to q′ only when the values of the clocks satisfy
constraint �. If the transition is taken, all the clocks in r are
reset to zero. Invariants in states are clock constraints that
must be satisfied for being allowed to let time elapse.

Fig. 1 depicts a small example of a timed automaton,
modelling (part of) the driver for a one-button computer
mouse. When a click is received, the driver waits for
a small period of time, until it can decide whether it is a
single- or a double-click. This delay is spent by the right-
most state: when entering this state, clock c is set to zero;

∗This work has been partly supported by the EU FP7 under grant num-
ber ICT-214755 (Quasimodo), and by the French projects ANR-06-SETI-
003 (DOTS) and ANR-2010-BLAN-0317 (ImpRo).

idle c≤50

c≤50

c≤50

click?

c:=0

c=50

c≤50

click?double-click!

c=50

simple-click!

Fig. 1. A timed automaton modelling a com-
puter mouse

as long as c is less than 50 (milliseconds, say), the driver
will wait for a second click. After that delay, it has to leave
the rightmost state, and will then send a single-click
or double-click event.

We will not define the semantics of timed automata more
formally, as the above intuition will be sufficient for un-
derstanding this paper. We refer the interested reader to
the rich literature on the subject [6, 5, 12] for more de-
tails. An important point to notice is that timed automata
are a finite representation of infinite-state systems: a con-
figuration of a timed automaton contains both the state of
the automaton and the (real-valued) valuation of the clocks.
Still, the underlying infinite-state transition system has nice
properties, which make reachability decidable over these
automata. The main ingredient for deciding reachability is
region equivalence: roughly, two clock valuations that sat-
isfy the same timing constraints will lead to the same un-
timed behaviours (i.e., the delays may have to be changed).
Similarly, when a clock value is larger than the maximal
constant it is compared to in the automaton, the exact value
of the clock can be forgotten.

Formally, given a timed automaton A = ⟨Q, ℓ, C, T, I⟩,
write MA for the maximal integer constant appearing in the
timing constraints of A. Two valuations of the clocks of A
are said region-equivalent1 if they satisfy exactly the same

1This definition is not the original one [6], but is simpler and will be
sufficient for our purpose.



x

y

1 2 3

1

2

3

0

Fig. 2. Region equivalence for two clocks

set of timing constraints among{
x ∼ c

x− y ∼ c

∣∣∣∣ x ∈ C, y ∈ C, c ∈ {0, ...,MA},
∼ ∈ {<,≤,=,≥, >}

}
The number of equivalence classes is bounded by

[2MA+ 2](C+1)2 . This equivalence can be used to build the
region automaton ℛA of A, which is a finite-state automa-
ton that can be proved (time-abstract) bisimilar to A, and
can thus satisfy the same untimed properties as A. In par-
ticular:

Theorem 2 ([6]). Reachability can be decided in exponen-
tial time (and is PSPACE-complete) on timed automata.

This provides a way to check simple safety properties of
timed automata, and has been extended to temporal-logic
model checking. Efficient algorithms (based on a varia-
tion of regions called zones, which allow for more efficient
algorithms in practice) have also been developed and im-
plemented in tools like Uppaal and Kronos, leading to a
wide use of timed automata in many industrial case stud-
ies [11, 33, 25].

2 Robustness issues

One problem remains: while timed automata have very
nice algorithmic properties, their semantics is not always
adequate: timed automata are used to model real systems,
in which time cannot be measured as precisely as in this
mathematical model. We now illustrate two of these prob-
lems on concrete examples.

First, the semantics of timed automata assumes that tran-
sitions are immediate. It was already noticed long ago that
this induces undesirable behaviours, the most famous of
which are Zeno executions, where infinitely many transi-
tions can be taken during a single time unit. But these are

by far not the only example: consider for instance the timed
automaton depicted on Fig. 3 (originating from [19]). While
this automaton does not contain Zeno executions, it can be
proved that, along any run, the accumulated time elapsed in
the rightmost state is bounded by 1.

x≤1 x≤1 x≤1

x=1

x:=0

y=1

z:=0

z>0

y:=0

Fig. 3. Non-Zeno timed automaton with a con-
vergence phenomenon

Second, timed automata also assume arbitrary precision
in the value of the clocks. Consider the automaton depicted
on Fig. 4, taken from [28]: it represents one of several simi-
lar components2 (each having a different non-zero id) that
want to access a critical section (represented as their square
state). It can be proved that mutual exclusion is enforced
by these automata: any two of them will never be in their
critical section simultaneously. However, if the timing con-
straints on the transition leading to the critical state is en-
larged to xid ≥ 2 (instead of xid > 2), mutual exclusion is
lost.

xid≤2

r==0

xid:=0

r:=id

xid:=0

r:=0

xid:=0 r=id

xid>2

r:=0

Fig. 4. Fischer’s mutual exclusion protocol

These problems witness the fact that the formal seman-
tics of timed automata is not realistic: it is very convenient
for mathematical reasoning, but is also too precise: some
timed automata may enjoy properties that may be lost if
(arbitrary) small perturbation come into play. On the other
hand, some timed automata may fail to satisfy some proper-
ties because of unreaslistic behaviours (such as Zeno execu-
tions), which will never occur on a physical device. In the
rest of this paper, we review several approaches to these
problems.

2In this example, the components communicate through a shared vari-
able r. This could easily be encoded with standard synchronization with a
central automaton storing the value of the variable.



3 Different approaches to robustness

3.1 Sampled semantics

One natural solution to these problems is to use a
discrete-time semantics [7]: in that semantics, clocks take
integer values (or integer multiples of a fixed granularity),
and are all updated at the same time. This semantics is
closer to the finite-frequency behaviour of microprocessors,
and rules out all kinds of convergent behaviours; however,
it strengthens the synchrony hypothesis, by preventing the
systems to perform any action between two integer dates.
This is not realistic: while the computerized system will
indeed not perform any action between two ticks, the phys-
ical system may evolve continuously. This has been proved
to make a difference, for instance, when modelling digital
circuits [18]: it takes some time in each gate to propagate
changes of the input signal, and the changes cannot be as-
sumed to occur at integer dates (some behaviours might be
lost).

The natural question of the existence of a sufficiently
small sampling rate preserving properties of the dense-time
semantics has been studied in different settings, and turns
out to be quite difficult [27, 2].

On the algorithmic side, the discrete-time semantics is
easier to work with than the real-time one: only punctual
regions are visited, and several problems that are undecid-
able in dense-time become decidable. Still, reachability re-
mains PSPACE-hard, and the gain on the algorithmic side is
not so appealing. The corresponding algorithms have been
implemented for instance in the tool Rabbit [14].

3.2 Robust timed automata and tube semantics

A more refined approach has been proposed in [24]: in-
tuitively, it considers only the executions that would still be
accepted (or generated) by the automaton if the delays were
slightly perturbed along that execution. This is a topological
approach: the semantics discards the executions whose set
of neighbour executions that are accepted is not dense. This
is called the tube semantics, reflecting the fact that there
must be a dense “tube” of accepting executions around a
given execution for this execution to be considered valid. In
the example of Fig. 5, the execution in which the delay be-
tween the first two a is 2 (visiting the bottom state) would
be discarded. The same for the execution where this delay
is 1. On the other hand, the executions where this delay is
in (0, 1) are accepted.

It was proved in [24] that safety of robust timed automata
(i.e., deciding whether a bad state is reachable under that
semantics) is in PSPACE. The idea of the algorithm is to
consider the interior automaton: this is a (slightly general-
ized) timed automaton, only involving strict inequalities in

a

x:=0 a

x=2

a

x≤1

a

a

a

Fig. 5. Tube acceptance in timed automata

its timing constraints, and having the same tube language
as the initial automaton. Having only strict inequalities, its
tube language equals its language in the classical semantics,
so that emptiness checking is in PSPACE.

3.3 Probabilistic semantics of timed automata

A quite similar approach has been proposed recently
in [9]: there, a measure on the set of executions of timed
automata is defined, which provides a way of computing
how (un)likely an execution is. Again, executions involv-
ing equality constraints will generally have probability 0, as
would be the case of the execution visiting the bottom state
of the automaton of Fig. 5. However, if no other transition
were available, then this transition, despite its equality con-
straint, would have probability 1. This is the case of the first
transition in the example of Fig. 6. Then, assuming uniform
distributions on the delays, the probability of ending up in
the top-most state when starting with x = 0 in the left-most
state equals 3/4: during the first two time units in the mid-
dle state (when t is between 1 and 3), both transitions have
the same probability to occur. Over the last two time units
(when t is between 3 and 5), only the top-most transition is
available. In the end, the probability of taking this transition
is

1

4

(∫ 3

1

1

2
dt+

∫ 5

3

dt
)

=
3

4
.

a

x=1 a

x≤3

a

x≤5 a

a

Fig. 6. Probabilistic semantics

Over finite paths, verifying whether an LTL property3

holds with probability 1 been proved decidable [9]: it can
be checked on the region automaton, by discarding the tran-
sitions that have probability zero. The problem is harder

3LTL is a logical formalism for expressing properties on sequence of
events, based on modalities such as “until”, “eventually” and “always”.



when considering infinite paths, and has only been proved
decidable on one-clock timed automata [10, 13].

4 Drifting and enlarged semantics

One last approach, which we develop in the rest of this
paper, was introduced in [30]. As opposed to the above ap-
proaches, it extends the set of executions instead of shrink-
ing it: the idea is to assume that there might be some impre-
cision on the values of the clock, hence allowing a transition
at time 2+�where it was only allowed befire time 2. We de-
velop this approach below, and present two results on this
semantics.

4.1 Enlarging the semantics

The approach here is to add imprecision on the values
of the clocks during the runs of the automaton. This is
two-fold: on the one hand, clocks may not have the exact
same speed, resulting in slight drifts, which can accumulate
if they are not synchronized regularly; on the other hand, be-
cause clocks have finite frequency, their value is piecewise-
constant: hence a transition that is to be taken at time t may
also be available at time t+ �. In his seminal paper, Puri de-
fined the enlarged semantics JAK�,� as the semantics of the
hybrid automaton obtained fromA by replacing each guard
of the form a ≤ x ≤ b with a− � ≤ x ≤ b+ �, and making
the clocks evolve at a rate in [1− �, 1 + �].

The interest and usefulness of these semantics has re-
cently been reinforced by [22], in the setting of imple-
mentability. There, yet another semantics is proposed,
in which the timed automaton is run over a (simple) model
of a CPU equipped with a digital clock: the value of the
clock is updated only sporadically, at least once every �P
time units, and may drift at a rate of �; the CPU also has
finite frequency: it sporadically (at least once every �L time
units) performs the following sequence of actions: first,
it reads the value the global clock (from which the values
of the clocks of the automaton are derived); then it evalu-
ates the guards of the transitions; and finally, it takes one
of the possible transitions of the timed automaton. A timed
automaton is said implementable w.r.t. a given condition
if the condition is fulfilled under this semantics, for some
(positive) values of �, �P and �L.

This semantics is quite irregular: of course, following
the ideas of [4], it can be modelled as a timed automaton
(as far as only guard enlargements are involved). However,
�L and �P will generally not have the same granularity as
the other constants, which may dramatically increase the
verification time; also, the representation of clock drifts in-
volves rectangular hybrid automata. Moreover, we are more
interested in the parametrized problem: does there exist

positive values for �, �P and �L for which the model be-
haves correctly? Indeed, the aim here is to decide the exis-
tence of a sufficiently precise hardware on which the timed
automaton under study could be safely implemented.

An (over-)approximate solution has been proposed
in [22, 21], using the enlarged semantics: the set of runs of
the automaton under the program semantics is included in
the set of runs under the enlarged semantics, provided that
the enlargement is large enough compared to �, �P and �L.

The enlarged semantics has received much attention
from computer-scientists over the last five years [3, 8, 16,
17, 20, 21, 23, 31, ...]. In the rest of this paper, we develop
two of these results.

4.2 Robust safety checking

Clearly enough, the enlarged semantics4 does add new
behaviours since it may allow a transition at time 1+� when
this transition is only allowed at time 1 in the classical se-
mantics. But what we really mean is whether it allows really
new behaviours, and not just behaviours with slightly differ-
ent clock values. Hence the first natural question is whether
new (and harmful) behaviours are added. This is our first
definition of robustness:

Definition 3. A timed automaton A robustly satisfies a
property � if there exist positive values for � and � for which
all the runs of JAK�,� satisfy �. Automaton A is said to be
robust w.r.t. a set of properties S if A robustly satisfies any
formula of S it satisfies in the classical sense.

The example of Fig. 7 is a case where enlargement does
add extra behaviours [30, 21]. It can be seen as a simplified
version of the MPEG video encoder developed in [1]: the
system receives one new frame every two time units, and en-
codes the frame within the next two time units. In an ideal-
ized world, the system would run perfectly. Unfortunately,
it can be checked that the rightmost state (which, in our ex-
ample, would correspond to losing a frame) can be reached
from the initial state for any positive enlargement. Actually,
the set of reachable clock valuations in each state is depicted
on Fig. 8: the left-hand side of the figure displays the reach-
able configurations in the classical semantics. This can eas-
ily be computed on the region automaton. The right-hand
side of the figure shows the configurations that are reach-
able for any positive enlargement, however small it may be:
this is because the small imprecision on the values of the
clocks can be accumulated by cycling in states ℓ1 and ℓ2.
Of course, the smaller the enlargement, the longer the exe-
cution will have to loop in order to accumulate sufficiently
many imprecision and reach state ℓ3.

4This term encompasses both enlargement of guards and of the rate of
the clocks.



ℓ0 ℓ1 ℓ2 ℓ3
x=1

y:=0

x≤2,x:=0

y≥2,y:=0

x=0∧ y≥2

Fig. 7. A non-robust timed automaton

1

1

2

2

ℓ1

ℓ2

x
0

0

y

Reach(A)

1

1

2

2

ℓ1

ℓ2

ℓ3

x
0

0

y

∩
�>0,�>0

Reach(JAK�,�)

Fig. 8. Reachable configurations

While this example shows that any positive enlargement
may come with extra reachable states, it also indicates how
cycles in the automaton play an important role, by provid-
ing a way of growing the small imprecision into a one-time-
unit gap, and thereby reaching new states. This was for-
malized in [30, 21], where an algorithm is given to com-
pute the set of configurations that can be reached under any
positive enlargement. More precisely, the algorithm com-
putes (under some restrictions that we discuss later) the set∩
�>0,�>0 Reach(JAK�,�), The idea of the algorithm is to

extend the region automaton with extra transitions from re-
gion (ℓ, r) to region (ℓ, r′) whenever the following condi-
tions are met:

∙ (ℓ, r′) belongs to a cycle in the region automaton ofA;

∙ r is a neighbouring region of r′ (in other terms, the
intersection of the closures of r and r′ is non-empty).

Intuitively, the second condition implies that if region (ℓ, r′)
is reachable, then, because of the enlargement, a “border”
of region (ℓ, r) can also be reached. Then the first condition
provides a way of really getting into the region. In the end,
the following result holds:

Theorem 4 ([30, 21]). Robust safety is decidable, and
PSPACE-complete (for a restricted class of timed au-
tomata).

As an additional result, it was proved that the algorithm
is also correct when only one kind of imprecision is in-
volved; more precisely, the following equalities hold:∩

�>0,�>0

Reach(JAK�,�) =
∩
�>0

Reach(JAK0,�) (1)

=
∩
�>0

Reach(JAK�,0).

The above approach can easily be extended to LTL robust
model checking: roughly, it suffices to keep track of the
sequence of states visited along cycles which are involved
in the addition of extra transitions in the region automaton.

Theorem 5 ([16]). LTL robust model-checking is decidable,
and PSPACE-complete (under some restrictions).

Theorems 4 and 5 only hold for a subclass of timed au-
tomata: besides boundedness (all clocks must be bounded)
and closure (strict inequalities are forbidden), the theorem
only applies to timed automata whose region automaton
have no weak cycles, i.e., cycles along which some clock is
not reset. Fig. 9 displays an example of a timed automaton
which does not satisfy this assumption. It can be checked
on this automaton that Equation (1) does not hold: the right-
most state is reachable when enlarging the clock constraints
by a positive �, but clock drifts alone will have no effect.

x=0,x:=0

x=0∧ y=1

Fig. 9. A timed automaton with a weak cycle

4.3 Measuring robustness

A more refined approach consists in measuring how
much the behaviour of a timed automaton may change when
introducing imprecision. Following ideas from [26, 32],
we say that two states are � -bisimilar, for � ∈ R≥0, when-
ever the behaviours from one of them can be mimicked from
the other one (and conversely), possibly with slightly differ-
ent delays; the difference between delays can be at most � :
a delay of 1.5 time units from one state can be matched by a
delay in [1.5− �, 1.5 + � ] from the other state, while action
transitions must be matched exactly. � -bisimulations pro-
vide a way of quantifying how close two timed automata are
to one another: we let d(A,ℬ) = �0 when �0 is the lower
bound of the � ’s for which the initial states of both automata
are � -bisimilar (and it is +∞ is no such � exists). Formally,
this defines a pseudo-metric (because the distance can be
zero between two different—even non-bisimilar—timed au-
tomata). Now, robustness can be defined as follows [15]:

Definition 6. A timed automaton A is robust if there exist
positive values for � and � under which JAK�,� and JAK are
� -bisimilar for a finite � .

It must be noticed that this definition of robustness is not
parametrized by a property. Moreover, if a timed automa-
ton is robust (in the sense of Definition 6), then it is robust



w.r.t. any !-regular formula (in the sense of Definition 3).
More interestingly, this second definition opens the way to
a quantitative notion of robustness: a timed automaton has
robustness � when the distance between JAK and JAK�,� is
at most � ⋅ max(�, �). While there is currently no known
procedure for deciding (or measuring) this notion of robust-
ness, the following interesting result has been established
(for guard enlargement only) [15]:

Theorem 7. Given a timed automaton A, we can effec-
tively compute another timed automaton A′ which is ro-
bust (against guard enlargement) and at pseudo-distance 0
from A.

In other terms, any timed automaton can be made ro-
bust. Basically, the idea behind this result is to consider
the region automaton (seen as a timed automaton), and to
strengthen the timing constraints in order to prevent errors
to accumulate. This theoretically comes with an exponen-
tial blow-up, which we currently don’t know if it can be
avoided. On our example of Fig. 7, we can easily come up
with a robust bisimilar timed automaton of the same size,
which is depicted on Fig. 10.

ℓ0 ℓ1 ℓ2 ℓ3
x=1

x:=0

x≤2∧ y≤1
x:=0

y≥2∧ 1≤x≤2
y:=0

x=0∧ y≥2

Fig. 10. A robust timed automaton

5 Conclusions and perspectives

We have reviewed several approaches to make the se-
mantics automata more realistic: while being very conve-
nient for modelling and reasoning about real-time systems,
timed automata are governed by a mathematical semantics
that may not reflect the real behaviour of a physical sys-
tem: it may contain unrealistic behaviours on the one hand,
which involve the convergence of time or isolated execu-
tions that are very unlikely; for a non-safety-critical system,
you will not want to take these weird behaviours into ac-
count. On the other hand, the semantics of timed automata
also assumes perfect measurement of time and does not con-
sider the fact that clock values have finite precision. These
small imprecisions may accumulate along the executions,
and lead to unpredicted behaviours.

While the problem has been identified long ago and the
computer-science community has come with various solu-
tions, robustness issues in timed automata remain a very
active research topic: timed automata are now rather well-
understood under their classical semantics, but the problem

of their robustness remains quite open: first, the very defi-
nition of what robustness encompasses is still not precisely
settled; of particular interest is the link between robustness
and implementability. Second, in the different approaches
that have been defined, several important questions remain
open, in particular in the development of efficient algo-
rithms and tools.

A very interesting avenue for further research is to ex-
tend robust verification to robust controller synthesis, where
the aim is to automatically design a controller for a timed
automaton to satisfy a given property. There, robustness
has many more facets, including imperfect information or
the evaluation of the precision needed for the controller
to really achieve its role. Robustness in weighted timed
automata (where extra quantities can be measured besides
time, such as energy consumption) is also a very promising
extension [29], as it may in some cases have better decid-
ability properties than the classical semantics.

Acknowledgements. I thank Patricia Bouyer-Decitre,
Ocan Sakur, and the anonymous referees for helpful com-
ments on earlier versions of this paper.

References

[1] T. Abdellatif, J. Combaz, and J. Sifakis. Model-based im-
plementation of real-time applications. In EMSOFT’10, p.
229–238. ACM Press, October 2010.

[2] P. A. Abdulla, P. Krčál, and W. Yi. Sampled semantics of
timed automata. Logicical Methods in Computer Science,
6(3), September 2010.

[3] S. Akshay, B. Bollig, P. Gastin, M. Mukund, and
K. Narayan Kumar. Distributed timed automata with inde-
pendently evolving clocks. In CONCUR’08, LNCS 5201, p.
82–97. Springer, August 2008.

[4] K. Altisen and S. Tripakis. Implementation of timed au-
tomata: An issue of semantics or modeling? In FOR-
MATS’05, LNCS 3829, p. 273–288. Springer, September
2005.

[5] R. Alur. Timed automata. In CAV’99, LNCS 1633, p. 8–22.
Springer, July 1999.

[6] R. Alur and D. L. Dill. A theory of timed automata. Theo-
retical Computer Science, 126(2):183–235, April 1994.

[7] R. Alur and T. A. Henzinger. Real-time logics: Com-
plexity and expressiveness. Information and Computation,
104(1):35–77, May 1993.

[8] R. Alur, S. La Torre, and P. Madhusudan. Perturbed timed
automata. In HSCC’05, LNCS 3414, p. 70–85. Springer,
March 2005.

[9] Ch. Baier, N. Bertrand, P. Bouyer, Th. Brihaye, and
M. Größer. Probabilistic and topological semantics for
timed automata. In FSTTCS’07, LNCS 4855, p. 179–191.
Springer, December 2007.



[10] Ch. Baier, N. Bertrand, P. Bouyer, Th. Brihaye, and
M. Größer. Almost-sure model checking of infinite paths
in one-clock timed automata. In LICS’08. IEEE Comp. Soc.
Press, June 2008.

[11] G. Behrmann, A. David, and K. G. Larsen. A tutorial on
Uppaal, 2005.

[12] J. Bengtsson and W. Yi. Timed automata: Semantics, algo-
rithms and tools. In Lectures on Concurrency and Petri Nets,
LNCS 2098, p. 87–124. Springer, 2004.

[13] N. Bertrand, P. Bouyer, Th. Brihaye, and N. Markey. Quan-
titative model-checking of one-clock timed automata under
probabilistic semantics. In QEST’08, p. 55–64. IEEE Comp.
Soc. Press, September 2008.

[14] D. Beyer, C. Lewerentz, and A. Noack. Rabbit: A tool for
BDD-based verification of real-time systems. In CAV’03,
LNCS 2725, p. 122–125. Springer, July 2003.

[15] P. Bouyer, K. G. Larsen, N. Markey, O. Sankur, and
C. Thrane. Timed automata can always be made imple-
mentable, 2011. Submitted.

[16] P. Bouyer, N. Markey, and P.-A. Reynier. Robust model-
checking of linear-time properties in timed automata. In
LATIN’06, LNCS 3887, p. 238–249. Springer, March 2006.

[17] P. Bouyer, N. Markey, and P.-A. Reynier. Robust analysis
of timed automata via channel machines. In FoSSaCS’08,
LNCS 4962, p. 157–171. Springer, March-April 2008.

[18] J. A. Brzozowski and C.-J. H. Seger. Advances in asyn-
chronous circuit theory part II: Bounded inertial delay mod-
els, MOS circuits, design techniques. EATCS Bulletin,
43:199–263, February 1991.

[19] F. Cassez, T. A. Henzinger, and J.-F. Raskin. A compari-
son of control problems for timed and hybrid systems. In
HSCC’02, LNCS 2289, p. 134–148. Springer, March 2002.

[20] C. Daws and P. Kordy. Symbolic robustness analysis of
timed automata. In FORMATS’06, LNCS 4202, p. 143–155.
Springer, September 2006.

[21] M. De Wulf, L. Doyen, N. Markey, and J.-F. Raskin. Robust
safety of timed automata. Formal Methods in System Design,
33(1-3):45–84, December 2008.

[22] M. De Wulf, L. Doyen, and J.-F. Raskin. Almost ASAP se-
mantics: From timed models to timed implementations. For-
mal Aspects of Computing, 17(3):319–341, 2005.

[23] C. Dima. Dynamical properties of timed automata revisited.
In FORMATS’07, LNCS 4763, p. 130–146. Springer, Octo-
ber 2007.

[24] V. Gupta, T. A. Henzinger, and R. Jagadeesan. Robust timed
automata. In HART’97, LNCS 1201, p. 331–345. Springer,
March 1997.

[25] K. Havelund, A. Skou, K. G. Larsen, and K. Lund. For-
mal modelling and analysis of an audio/video protocol: An
industrial case study using Uppaal. In RTSS’97, p. 2–13.
IEEE Comp. Soc. Press, December 1997.

[26] T. A. Henzinger, R. Majumdar, and V. S. Prabhu. Quantify-
ing similarities between timed systems. In FORMATS’05,
LNCS 3829, p. 226–241. Springer, September 2005.

[27] T. A. Henzinger, Z. Manna, and A. Pnueli. Timed transi-
tion systems. In REX’91, LNCS 600, p. 226–251. Springer,
1992.

[28] K. J. Kristoffersen, F. Laroussinie, K. G. Larsen, P. Petters-
son, and W. Yi. A compositional proof of a real-time mutual
exclusion protocol. In TAPSOFT’97, LNCS 1214, p. 565–
579. Springer, April 1997.

[29] N. Markey and P.-A. Reynier. 1-clock priced timed automata
with energy constraints and imperfect information. In GA-
SICS’10, September 2010.

[30] A. Puri. Dynamical properties of timed automata. In
FTRTFT’98, LNCS 1486, p. 210–227. Springer, September
1998.

[31] M. Swaminathan, M. Fränzle, and J.-P. Katoen. The sur-
prising robustness of (closed) timed automata against clock-
drift. In IFIPTCS’08, IFIP Conference Proceedings 273, p.
537–553. Springer, September 2008.

[32] C. Thrane, U. Fahrenberg, and K. G. Larsen. Quantitative
analysis of weighted transition systems. Journal of Logic
and Algebraic Programming, 79(7):689–703, October 2010.

[33] S. Yovine. Kronos: A verification tool for real-time sys-
tems. International Journal on Software Tools for Technol-
ogy Transfer, 1(1-2):123–133, October 1997.


