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Abstract

We study issues of robustness in the context of Quantitative Risk Management and

Optimization. We develop a general methodology for determining whether a given risk

measurement related optimization problem is robust, which we call “robustness against

optimization”. The new notion is studied for various classes of risk measures and expected

utility and loss functions. Motivated by practical issues from financial regulation, special

attention is given to the two most widely used risk measures in the industry, Value-at-Risk

(VaR) and Expected Shortfall (ES). We establish that for a class of general optimization

problems, VaR leads to non-robust optimizers whereas convex risk measures generally lead to

robust ones. Our results offer extra insight on the ongoing discussion about the comparative

advantages of VaR and ES in banking and insurance regulation. Our notion of robustness is

conceptually different from the field of robust optimization, to which some interesting links

are derived.
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When a measure becomes a target, it ceases to be a good measure.

– Goodhart’s law, paraphrased by Strathern (1997)

1 Introduction

The main focus of this paper is the study of robustness properties of optimization procedures

within Quantitative Risk Management (QRM). For this, we introduce a novel general framework,

which at the same time is conceptually intuitive and mathematically challenging. A key and,

as we will highlight in the paper, novel question concerns the influence of the choice of the

underlying objective on the resulting robustness properties in risk optimization. In particular,

we are interested in the two most popular regulatory risk measures, the Value-at-Risk (VaR) and

the Expected Shortfall (ES), and their robustness properties in the context of risk optimization.

In QRM, the concept of robustness for risk measures is traditionally studied at the level

of objective functionals without involving optimization problems; see Cont et al. (2010), Kou et

al. (2013), Krätschmer et al. (2014, 2017), Embrechts et al. (2015), and the references therein.

In the literature on robust optimization (see e.g. Ben-Tal et al. (2009)), model uncertainty is

typically incorporated through modifying the objective functional or the constraints.

The paper Cont et al. (2010) compares the qualitative robustness of VaR and coherent

risk measures; the authors conclude that VaR is better in their context. Some later papers,

e.g. Embrechts et al. (2015) and Krätschmer et al. (2014, 2017), put the corresponding arguments

into a different perspective, showing that ES also has certain desirable robustness properties.

Both streams of research assumed that both VaR and, say, ES are applied to the same financial

position. In reality, however, the regulatory choice of a particular risk measure creates certain

incentives, just like any other aspect of regulation. These incentives become effective even

before that risk measure has ever been applied in a risk management context. For instance, once

a specific risk measure has been chosen, portfolios will be optimized with respect to that risk

measure. Thus, in reality, VaR and ES will typically not be applied to the same position, and

so one cannot decouple the technical properties of a chosen risk measure from the incentives it

creates. In other words, a risk measure as a standalone function may be robust, but fail to have

desirable robustness properties when this measure is used within an optimization context.

In our paper, we make a first attempt of taking the incentives created by the choice of

a risk measure into account when assessing the risk measure’s robustness properties. In doing

so, we arrive at completely different, and perhaps somewhat surprising, conclusions concerning

robustness properties than the previous literature. To briefly illustrate our ideas, suppose that

a risk factor is represented by a random variable X arising from a stochastic model (later in the
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paper, X will denote a random vector). An investor has to optimize her position according to

the best of her knowledge, and hence we shall refer to X as the best-of-knowledge model, and

the true model, denoted by Z, is typically unknowable. Ideally, a good model X is statistically

close to Z in a sense to be made clear later. Based on the best-of-knowledge model X and

an objective functional ρ, an optimized position is chosen as a function g(X) of X. Whereas

the position g(X) may have a desirable objective value ρ(g(X)), this does not guarantee that

ρ(g(Z)) is also desirable if Z is “slightly” different from X. In the absence of a perfect model,

which almost always is the case in financial applications, this issue becomes crucially important.

Our motivation can be informally illustrated by Figure 1, which describes a situation in

which the investor faces a Pareto-distributed risk with unknown parameter θ.1 The investor

takes a model X with an estimated parameter θ̂ and optimizes ρ(g(X)) over a certain class

of functions g; details are explained in the caption of Figure 1. We compute the actual risk

ρ(gX(Z)) faced by the investor for ρ chosen as VaR at level 0.99 and ES at level 0.975 as in

BCBS (2016), where gX denote the corresponding optimizing functions (unique in the case of

VaR) using the model X and ρ. As one can see from Figure 1, the perceived risk value ρ(gX(X))

(see Section 2.3 for its interpretation) is similar for ρ being VaR and ES; this also holds for the

actual risk value ρ(gX(Z)) as long as θ > θ̂, meaning that X is an overestimate of the true loss

Z. If, however, the true loss is slightly underestimated, the actual VaR of gX(Z) is substantially

higher than ρ(gX(X)), whereas the actual ES remains almost flat. The intuitive explanation of

this phenomenon is that under VaR it is optimal to concentrate all tail risk on an event whose

probability is so small that it does not affect the measured risk. If, however, the true probability

of that event is underestimated by the model, then the tail risk suddenly does become significant.

Simulation results show that, if θ̂ is computed from a maximum likelihood estimator based on iid

sample points for the a true parameter, then the mean square error measured by the difference

between ρ(gX(X)) and ρ(gX(Z)) is large for the case of VaR, and it is tiny for the case of ES

(see Section 7); this sharp contrast is expected from Figure 1.

In the present paper, we put the above observation into a rigorous quantitative framework

for general risk measures and optimization problems. The contribution and the structure of the

paper are outlined below. In Section 2, we introduce the theoretical framework of robustness

properties of risk measures in the context of optimization problems, referred to as “robustness

against optimization” throughout the paper.2 The framework is quite general and it includes

many practical problems in various fields of applications, not necessarily confined to finance and

insurance. Keeping the problem of risk measures in mind, a class of functional optimization

1The Pareto(θ) distribution function F with parameter θ > 0 is specified as F (x) = 1− x−θ, x > 1.
2We thank Paul Glasserman for suggesting this terminology.
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Figure 1: This plot shows ρ(gX(Z)) for ρ = VaR0.99 (solid) and ρ = ES0.975 (dashed), if
Z is Pareto distributed with parameter θ. We assume that X has a Pareto distribution with
parameter θ̂ = 5 and gX minimizes ρ(g(X)) within the class of all measurable functions g
satisfying the inequality 0 6 g(x) 6 x for all x > 0 and the budget constraint E[γ(X)g(X)] > 1
formulated in Section 3, where we take γ(x) = x for simplicity. The optimizer gX is unique
in the case of VaR (Proposition 3). See Section 7 for more details and additional numerical
simulations.

problems is described in Section 3. These optimization problems are analyzed in Sections 4,

5 and 6 for VaR, convex risk measures, and expected loss (and utility) functions, respectively.

Robustness statements are obtained under general conditions, and further analytical solutions

are available in some special cases. As the main message of our results, we see that, for the

case of VaR which is argued by many as a robust risk measure, its corresponding optimization

is highly non-robust and a small model uncertainty would ruin the optimality of the optimized

positions. In sharp contrast, for many convex risk measures including ES and expected loss

functions, the optimized positions are generally robust. Some simulation resuls, in addition to

those underlying Figure 1, are provided in Section 7. In Section 8, we present some discussions

on the implications of our results for the desirability of specific regulatory risk measures, an on-

going debate in the financial industry (BCBS (2016), IAIS (2014)). Our results yield a (further)

strong argument against using VaR as a risk measure within banking and insurance regulation;

for a related discussion on robustness in the realm of risk sharing, see Embrechts et al. (2018). In

the last section, Section 9, we discuss our notion of robustness in the context of distributionally

robust optimization (e.g. Natarajan et al. (2008), Goh and Sim (2010)). The proofs of all results

are put in the appendix.

As Goodhart’s law (Goodhart (1984)) implies, when a risk measure becomes a target, it

ceases to be a good risk measure.3 Nevertheless, to what extent this law applies depends on the

3Dańıelsson (2002) applied Goodhart’s law to risk models by saying that a risk model breaks down when used
for regulatory purposes.
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specific application and each particular risk measure. Our results in this paper thus provide a

quantitative and comparative analysis of Goodhart’s law in the context of financial regulation

and optimization. Combining our negative result on VaR, which is an example of Goodhart’s

law, and our positive result for convex risk measures, our main message may be summarized as:

As regulatory target, all risk measures cease to be good, but some risk measures, VaR in

particular, are much worse than the others.

2 Theoretical framework

2.1 Notation

We work with an atomless probability space (Ω,F ,P). Let Lq be the set of all random

variables in (Ω,F ,P) with finite q-th moment, q ∈ (0,∞), L0 be the space of all P-a.s. finite

random variables, and L∞ the set of all essentially bounded elements of L0. For a positive integer

n, write Lqn = (Lq)n. For a vector x ∈ Rn, |x| is its Euclidean norm. Throughout, for anyX ∈ L0,

FX represents the distribution function of X. The mappings ess-inf(·) and ess-sup(·) on L0 stand

for the essential infimum and the essential supremum of a random variable, respectively. We

write X
d
= Y if the random variables X and Y have the same distribution under P. For x ∈ R,

denote by δx the point-mass probability measure at x. For real numbers or functions x and y,

we write x ∧ y = min{x, y}, x ∨ y = max{x, y}, x+ = x ∨ 0, and x− = (−x) ∨ 0.

2.2 Basic setup of optimization problems

In this section, we first lay out the basic setup for optimization problems when the relevant

information on the underlying economic model is known precisely, that is, the case without

model uncertainty. Let X be an n-dimensional random vector, where n is a positive integer.

The random vector X is called an economic vector, which includes all random sources in an

economic model under study, such as potential losses, traded securities, hedging instruments,

insurance contracts, macro economic factors, or pricing densities.

Let Gn be the set of measurable functions mapping Rn to R. A random variable g(X) where

g ∈ Gn represents a risky position of an investor, in which positive values represent a loss and

negative values represent a gain. This sign convention is in line with the regulatory angle we

follow in several applications in our paper. The investor’s problem is to choose among admissible

positions g(X) for some functions g in an admissible set G ⊂ Gn.
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For a set G ⊂ Gn, we formulate the problem

to minimize: ρ(g(X)) subject to g ∈ G, (1)

where ρ is an objective functional mapping a set containing {g(X) : g ∈ G} to R ∪ {+∞}. Here

one prefers a smaller value of the objective functional over a larger value. Objective functionals

considered may be general; examples include (up to a sign change) mean-variance functionals,

expected utilities, rank-dependent utility functionals, functionals in cumulative prospect theory,

and various risk measures as discussed in Artzner et al. (1999) and Föllmer and Schied (2016).

Our main interest will be, however, in the risk measures Value-at-Risk (VaR) and Expected

Shortfall (ES4).

The elements in the optimization problem (1) can be summarized by an objective functional

ρ and a pair (X,G). We always assume that the domain of the objective functional ρ contains

{g(X) : g ∈ G}, otherwise (1) is meaningless.

Example 1. An illustrative example is the classic problem of hedging in a financial market.

Suppose that an investor currently faces a risk W and would like to hedge against W . She

has access to hedging instruments in a set {g(Y ) : g ∈ G′} where Y is an (n− 1)-dimensional

economic vector and, say, G′ ⊂ Gn−1, n > 2. Typically, the set G′ involves a budget constraint.

Equivalently, she chooses risky positions in the set {W − g(Y ) : g ∈ G′}, which represents all

possible hedged positions she may attain. Note that {W − g(Y ) : g ∈ G′} = {f(X) : f ∈ G}

where X = (W,Y ) is an n-dimensional random vector and

G = {f ∈ Gn : f(w, y) = w − g(y), g ∈ G′, w ∈ R, y ∈ Rn−1};

therefore the hedging problem is a special case of our general setting (1). Here we allow W to

be arbitrarily dependent on Y . If W is a financial risk and Y is the vector of asset prices in a

complete financial market, then it may be that W is a function of Y . On the other hand, if W

represents a property and casualty insurance risk and Y is the vector of asset prices in a financial

market, then it may be reasonable to assume that W and Y are independent.

Example 2. In Markowitz’s portfolio selection, an investor wishes to find an optimal allocation

vector w ∈ Rn based on a return vector Y ∈ L2
n for n stocks. The problem can be described as

the minimization of E[g(Y )] where g ∈ G′ and G′ consists of all functions g ∈ Gn that are of the

4A formal definition of VaR and ES is given in Section 3. ES is also known as CVaR, CTE, AVaR and
TVaR, depending on the context (see e.g. Pflug and Römisch (2007), McNeil et al. (2015) and Föllmer and Schied
(2016)). We use the term ES to be consistent with the Basel Committee on Banking Supervision (BCBS (2016)),
because our study is motivated by the comparative advantages of VaR and ES in regulation; see discussions in
Section 8.
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form g(y) = λ(w>y)2 − w>y for w ∈ Rn satisfying
∑n
i=1 wi = x0. Here, λ > 0 is a risk-aversion

parameter and x0 represents the budget constraint of the investor.

In this section, we keep the choice of (X,G) as generic as possible. Special cases and

examples are studied in Sections 3-6.

2.3 Uncertainty and robustness against optimization

We proceed to put uncertainty into the optimization problem (1) described above. For

X ∈ L0
n, G ⊂ Gn and an objective functional ρ, denote by ρ(X;G) the minimum possible value

of ρ, namely,

ρ(X;G) = inf{ρ(g(X)) : g ∈ G},

and by GX(ρ) the set of optimizing functions, that is,

GX(ρ) = {g ∈ G : ρ(g(X)) = ρ(X;G)}. (2)

Note that GX(ρ) might be an empty set. Throughout this paper, the notation gX will refer to a

generic element gX ∈ GX(ρ), and gX(X) will be called an optimized position.

We shall use X to represent our (perceived) model for the underlying economic vector.

In practice, the model X is obtained based on stochastic assumptions and statistical inference,

and it may not represent a true model for the underlying economic vector. In other words,

the optimization problem (1) is often subject to severe model uncertainty. To reflect this issue,

let Z ⊂ L0
n be a set of possible economic vectors including X; Z may be interpreted as the

set of alternative models.5 Suppose that the real economic vector Z ∈ Z is different from the

perceived economic vector X. The information we have at hand is about X rather than Z, and

we shall refer to X as the best-of-knowledge model and Z as the true model, which is unknowable.

We have to make decisions according to the best of our knowledge, that is, as in (2), choosing

gX ∈ GX(ρ) optimizing our objective ρ. The real but unknown position gX(Z) may be different

from the perceived optimal position gX(X). If Z and X are close to each other according to

some (pseudo-)metric π (e.g. L∞-metric on the space of bounded random vectors), we would

like ρ(gX(Z)) to be close to ρ(gX(X)) in order to make sense of the position gX(Z), which may

no longer be optimal. In other words, we naturally would desire some continuity of the mapping

Y 7→ ρ(gX(Y )) at Y = X.

5For instance, Z can be a parametric family of risk models and hence corresponds to parameter uncertainty
of the underlying risk models. Each component of the vector X may have a different economic meaning. Some
of them may be subject to more severe model uncertainty whereas others may be free of model uncertainty. This
can be reflected in the choice of Z which may be contained in a low-dimensional subset of the set of n-random
vectors.
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Note that, in our situation, there is no point in analyzing the problem of optimizing g(Z)

over g ∈ G, because Z is unknown. This makes our framework conceptually different from the

stream of research on stability of the set of optimizers under model uncertainty. In Section

8.2, using examples from financial regulation, we make explicit this very important distinction

between our paper and other approaches in the literature.

Putting this into the hedging context of Example 1, suppose that the real economic vector

Z ∈ Z is different from X and an investor has the real risk W = h(Z) to hedge. The information

she has is about X, and she hedges W by choosing gX from a set of available instruments G′.

In this case, h(Z) − gX(Z) is the remaining risk she actually faces after hedging. Under this

setting, assuming the quality of model X is good, Z should be close to X in some sense, and she

would naturally desire some continuity of the function Y 7→ ρ(h(Y )− gX(Y )) at Y = X.

The admissible set G is not subject to model uncertainty, as the investor knows which po-

sitions she can choose in the optimization problem. For instance, in the above hedging example,

a budget constraint that determines G is not affected by the model assumptions made for X; it

is simply the observed prices for the hedging instruments.

In light of the above consideration, we endow the set Z of all possible economic vectors with

a pseudo-metric π. Common choices of π are the L∞, the Lq, the Wasserstein, and the weak

(pseudo-)metrics; see Example 3 below. The reason for considering a pseudo-metric instead of a

metric is to be able to incorporate objective functionals based on the distributions of risks, for

instance, law-invariant risk measures and expected utility functions.6

Definition 1. We call (G,Z, π) an uncertainty triplet if G ⊂ Gn and (Z, π) is a pseudo-metric

space of n-random vectors. For a given uncertainty triplet (G,Z, π), we say that an objective

functional ρ is compatible if ρ maps G(Z) = {g(Z) : Z ∈ Z, g ∈ G} to R ∪ {+∞}, and

ρ(g(Y )) = ρ(g(Z)) for all g ∈ G and Y, Z ∈ Z with π(Y,Z) = 0, i.e. Y and Z are indistinguishable

under the pseudo-metric π.

Definition 2. Let (G,Z, π) be an uncertainty triplet. A compatible objective functional ρ is

robust against optimization at X ∈ Z for (G,Z, π) if there exists gX ∈ GX(ρ) such that the

function Y 7→ ρ(gX(Y )) is π-continuous at Y = X.

In this paper, we are mainly interested in robustness in the sense of Definition 2, and it

should not be confused with the classic qualitative robustness of risk measures as studied in

e.g. Cont et al. (2010), Kou et al. (2013), Krätschmer et al. (2014) and Embrechts et al. (2015).

6Because of the extensive use of simulation and estimation methods for risk evaluation, uncertainty at the level
of distributions is the most common in risk management practice; on the other hand, in optimization problems,
risks with identical distributions are not equivalent (see our functional optimization problems in Section 3). For
this reason, we do not use the equivalent class induced by the pseudo-metric.
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On the other hand, in contrast to the robust optimization literature (e.g. Goh and Sim (2010),

Wiesemann et al. (2014)), our focus is the robustness of objective functionals in optimization,

instead of how to solve particular optimization problems. As such, our setup and methodology

are also different from classic ones in the optimization literature. Section 8.2 contains further

discussions on the formulation of Definition 2, including some possible alternatives.

Below we give three prominent examples of π, which will appear throughout the paper.

Example 3. (i) For a subset Z of L∞n , the L∞-metric π∞n is defined as

π∞n (X,Y ) = ||X − Y ||∞ = ess-sup(|X − Y |), X, Y ∈ Z. (3)

(ii) For q ∈ [1,∞) and a subset Z of Lqn, the Lq-metric πqn is defined as

πqn(X,Y ) = ||X − Y ||q = (E[|X − Y |q])
1
q , X, Y ∈ Z. (4)

(iii) For a subset Z of L0
n, the pseudo-metric πWn is defined as

πWn (X,Y ) = πP (FX , FY ), X, Y ∈ Z. (5)

where πP is the Prokhorov metric over the set of probability distribution measures.7 In this

case, convergence in πWn is equivalent to convergence in distribution (or weak convergence).

One could also replace πP in (5) by a Wasserstein metric over probability measures, and

obtain a Wasserstein pseudo-metric on a suitable subspace of L0
n.

2.4 Basic properties on robustness and continuity

We first explain a few basic properties about Definition 2. Robustness against optimization

is a joint property of (ρ,X,G,Z, π), and only a π-neighbourhood of X in Z matters in the

definition. If ρ is robust against optimization at X for (G,Z, π), then ρ is also robust against

optimization at X for (G,Z ′, π) if X ∈ Z ′ ⊂ Z, and the same holds true for (G,Z, π′) if π′ is a

stronger pseudo-metric than π. On the other hand, if the optimization problem does not admit

a solution, that is, GX(ρ) = ∅, then ρ is not robust against optimization at X.

Robustness of ρ relies on both some continuity of ρ on G(Z) and some continuity of functions

in GX(ρ). In what follows, we give a few general results where GX(ρ) contains a continuous

function. Whereas these results are fairly simple, they could nevertheless be useful in situations

7Precisely, πP (µ, ν) = inf {ε > 0 : µ(A) 6 ν(Aε) + ε and ν(A) 6 µ(Aε) + ε for all A ∈ B(Rn)}, where Aε =
{x ∈ Rn : ||x− y|| < ε for some y ∈ A} and || · || is the Euclidean norm.
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where G is nice enough. However, later we will see that in many representative problems, GX(ρ)

does not necessarily have any continuous elements for commonly used risk measures such as VaR

and convex risk measures; their robustness properties will be investigated in Sections 4 and 5.

For a bijection g ∈ Gn and a pseudo-metric space (Z, π) of n-dimensional random vectors,

let (g(Z), πg) be another pseudo-metric space defined as

πg(g(X), g(Y )) = π(X,Y ) for X,Y ∈ Z.

Proposition 1. Suppose that for an uncertainty triplet (G,Z, π), X ∈ Z and a compatible

objective functional ρ, GX(ρ) contains a bijection g, and ρ is πg-continuous on g(Z). Then ρ is

robust against optimization at X for (G,Z, π).

Next we look at the basic settings of Z = L∞n , Z = Lqn, and Z = L0
n, equipped with the

L∞ metric π∞n in (3), the Lq metric πqn in (4), and the pseudo-metric πWn in (5), respectively.

Proposition 2. Let ρ be a compatible objective functional for the uncertainty triplet (G,Z, π)

and X ∈ Z.

(i) Suppose (Z, π) = (L∞n , π
∞
n ). If GX(ρ) contains a continuous function g : Rn → R and ρ is

π∞1 -continuous, then ρ is robust against optimization at X for (G,Z, π).

(ii) Suppose (Z, π) = (Lqn, π
q
n), q ∈ [1,∞). If GX(ρ) contains a continuous and linearly grow-

ing8 function g : Rn → R and ρ is πq1-continuous, then ρ is robust against optimization at

X for (G,Z, π).

(iii) Suppose (Z, π) = (L0
n, π

W
n ). If GX(ρ) contains a continuous function g : Rn → R and ρ is

πW1 -continuous, then ρ is robust against optimization at X for (G,Z, π).

Proposition 2 provides simple criteria for verifying robustness of some objective functionals

based on continuity of the optimizing functions in GX(ρ). As we shall see in Sections 4-5, for

the popular risk measures VaR and ES, such criteria may not be very useful, as typically the

optimizing functions lack the corresponding continuity. More detailed analyses are needed to

draw meaningful conclusions for these objectives, which will be the focus of the next few sections.

3 A class of functional optimization problems

Our main interest is in the robustness of risk measures in optimization, and in particular,

Value-at-Risk (VaR) and Expected Shortfall (ES). Here, a positive value of Y represents a loss

8A function g : Rn → R is linearly growing if for some C > 0, |g(y)| 6 C|y| for all y ∈ Rn with |y| > 1. This
property is satisfied by, for instance, Lipschitz-continuous functions.
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and a negative value represents a gain. The VaR at confidence level p ∈ (0, 1) is defined as

VaRp(Y ) = inf{x ∈ R : P(Y 6 x) > p} = F−1Y (p), Y ∈ L0,

and the ES at confidence level p ∈ (0, 1) is defined as

ESp(Y ) =
1

1− p

∫ 1

p

VaRs(Y )ds, Y ∈ L0. (6)

Note that ESp(Y ) may take the value ∞ if Y is not integrable. In addition, we write

ES1(Y ) = VaR1(Y ) = ess-sup(Y ) = sup{x ∈ R : P(Y 6 x) < 1}.

We summarize some well known robustness properties of VaRp and ESp for p ∈ (0, 1) below.

1.) VaRp is continuous with respect to convergence in distribution, and hence (Wasserstein)

Lq-convergence for q ∈ [1,∞], at X if and only if the inverse cdf of X is continuous at p;

see, e.g., Proposition 7.3.1 in Shorack (2000).

2.) It follows immediately from 1.) and (6) that ESp is continuous with respect to convergence

in distribution on every uniformly integrable subset of L1. In particular, ESp is continuous

with respect to Lq-convergence for q ∈ [1,∞]. On the other hand, ESp is not continuous

with respect to convergence in distribution on any set containing L∞+ .

In addition to VaR and ES, we will consider two general classes of convex risk measures, as well

as expected utility and loss functions, which will be introduced in Sections 5 and 6.

Next, we describe a general class of functional optimization problems. For an n-dimensional

random vector X, two measurable functions v : Rn → R∪{−∞} and w : Rn → R, a measurable

price density γ : Rn → (0,∞), and a constant x0 ∈ R, we consider the following set

G =
{
g ∈ Gn : v 6 g 6 w and E[g(X)γ(X)] > x0

}
. (7)

The corresponding optimization problem is

to minimize: ρ(g(X)) subject to v 6 g 6 w, E[γ(X)g(X)] > x0. (8)

The optimization problem (8) is called ‘functional’ because the objective is optimized over a

large set of n-variate functions.

Intuitively, the functions v and w describe lower and upper bounds on admissible functions
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g ∈ G, while the condition E[g(X)γ(X)] > x0 describes a budget constraint.9 Hence, the problem

(8) represents portfolio optimization with given budget, which is a classic problem in quantitative

finance, and includes many interesting special cases. Below we present two simple examples, one

in the context of a complete financial market and the other one in the context of insurance

design. Since this problem has attracted substantial interest in its own right, we will en passant

contribute to the corresponding literature; see Remark 1.

Example 4 (Optimal investment). The optimization problem (8) connects as follows with

continuous-time optimal hedging problems in a complete market with an arbitrary number of

primary assets. Suppose that S = (St)t∈[0,T ] is a d-dimensional semimartingale admitting a

unique local martingale measure Q with price density γ = dQ/dP on F = FST . We can interpret

S as the discounted price process of d risky securities. The fact that Q is unique is equivalent to

the completeness of the model. Let X be a random vector with σ(X) = FST , which represents

market randomness (such a random vector exists under mild conditions such as continuity of

S). In this context, for an investor who needs to pay a random wealth f(X) at time T , it is

a natural task to minimize, e.g., ρ(f(X) − VT ), where VT := VT (X) is the discounted time-T

value of a self-financing trading strategy satisfying a cost constraint on the initial investment V0

and certain other constraints such as v(X) 6 VT 6 w(X) for some functions v and w. By mar-

tingale arguments, the initial investment satisfies V0 = E[γ(X)VT ]. On the other hand, market

completeness implies that S has the martingale representation property, and so every feasible

functional g(X) can be represented in the form f(X)−VT , where V is again the value process of

some self-financing trading strategy. So, by letting g(x) := f(x)− VT (x), we arrive at a special

case of (7).

Example 5 (Insurance design). The problems of insurance design, pioneered by Arrow (1963),

can also be described by (8). Let X > 0 represent a random future loss to an insured, and

f(x) represent the amount of payment from the insurer if the realized loss X is equal to x; f is

called an insurance indemnity function. Suppose γ > 1 is a constant, and γE[f(X)] is used to

price the insurance contract with payment f (premium based on the expected payment is called

the actuarial premium). Let y0 be the budget of the insured. The standard optimal insurance

problem of the insured with risk measure ρ is

to minimize: ρ(X − f(X)) subject to 0 6 f(X) 6 X, γE[f(X)] 6 y0,

which belongs to (8) by choosing g(x) = x − f(x), w(x) = x, v(x) = 0, and x0 = γE[X] − y0.

9Using our sign convention, by holding a risky position g(X), one receives the monetary amount E[γ(X)g(X)].
Equivalently, one pays −E[γ(X)g(X)] 6 −x0, thus the usual budget constraint.
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Some other requirements on the payment f may be further imposed; see e.g., Bernard et al.

(2015) and the references therein.

To study the robustness of risk measures for this problem, the main assumption on (G,Z, π)

and X is given below, which will be assumed in the next three sections. The assumption on

X is standard and satisfied by practically all financial models in which the assets prices have

densities.

Assumption G. G is given by (7) where E[γ(X)] < ∞ and G 6= ∅; the distribution measure

µX of X has a positive density on its support, which is a convex subset of Rn, and (Z, π) is

(L0
n, π

W
n ) or (Lqn, π

q
n), q ∈ [1,∞].

In general, it is difficult to obtain analytical solutions to (8); instead, we will obtain robust-

ness statements on various risk measures in the subsequent sections. Explicit optimizers can be

obtained for a particular case of (8) such that X is one-dimensional, v(x) = 0 and w(x) = x (see

e.g., Example 5); that is,

to minimize: ρ(g(X)) subject to 0 6 g(X) 6 X, E[γ(X)g(X)] > x0. (9)

4 Robustness of Value-at-Risk

The main task of this section is to establish the (non-)robustness of VaR for the optimization

problem (8) in Section 3. We will make the following assumption on γ, v and w, as well as the

minimum value of the risk measure ρ = VaRp for p ∈ (0, 1). Recall that ρ(X;G) = inf{ρ(g(X)) :

g ∈ G}.

Assumption V. ess-sup(v) < ρ(X;G) < ρ(w(X)) and γ is bounded from above.

Assumption V is quite general and weak. The condition ess-sup(v) < ρ(X;G), meaning that

the lower bound v is not too large, is primarily used to guarantee that the budget constraint

is binding. The condition ρ(X;G) < ρ(w(X)) simply says that the optimization problem is not

solved by trivially choosing the largest possible position g = w. The boundedness condition on

γ may be significantly relaxed as we only need boundedness in a neighbourhood of one specific

point. An explanation and a technical discussion on these conditions are put in Remark 3 in

Appendix A.2.

Theorem 1. For p ∈ (0, 1), under Assumptions G and V, ρ = VaRp is not robust against

optimization at X for (G,Z, π).
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Theorem 1 implies that, for the optimization problem (8) and all choices of commonly used

(pseudo-)metrics, VaRp is not robust against optimization, and this result holds for a general

continuously distributed random vector X. As a consequence, VaRp has the poorest possible

robustness in our setup. The main reason behind this phenomenon is quite intuitive: as a key

point in the proof of Theorem 1, any optimizing function gX always has a jump at the p-quantile

of gX(X), making it most vulnerable to model uncertainty.

In practice, one may considers a subset G′ of G which contains only continuous functions,

so that robustness holds by Proposition 2. We emphasize that the optimization for VaR is still

problematic in this setting: One needs to search for functions in G′ which closely approximate

the discontinuous function gX , and hence its stability is still weak.

Next, we consider the one-dimensional setting (9), which corresponds to v(x) = 0 and

w(x) = x. Denote by q := VaRp(X;G) the minimum value of (9) with ρ = VaRp, and we have

q > 0 by Assumption V. The next proposition gives an explicit solution to (9), under a further

minor condition that (X − q)γ(X) has a unique p-quantile.

Proposition 3. Let p ∈ (0, 1), ρ = VaRp and Y = (X − q)γ(X). Suppose that Assumptions G

and V hold, E[γ(X)X] < ∞, and P(Y 6 VaRp(Y )) = p. Problem (9) admits a µX-a.s. unique

solution that is of the form

gX(x) = x1{(x−q)γ(x)>c} + (x ∧ q)1{(x−q)γ(x)6c}, (10)

where c = VaRp(Y ). Moreover,

pES1−p(−Y+) = x0 − E[γ(X)X]. (11)

Since Y+ = γ(X)(X − q)+, the left-hand side of (11) is an increasing function of q, and

hence the value q can be numerically computed by solving (11). Section 7 contains simulation

studies for the problem setting in Proposition 3.

5 Robustness of two classes of convex risk measures

In this section, we obtain positive robustness results for two important classes of convex risk

measures, the divergence risk measures and the utility-based shortfall risk measures. The first

class of risk measures, which are sometimes also called optimized certainty equivalents, contains

Expected Shortfall as an important special case. The second class comprises the expectiles. Both

classes intersect at the entropic risk measure, which can also be treated within the setting of our

subsequent Section 6, where we will analyze the robustness of expected utility/expected loss.
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We continue to study the optimization problem (8). The following simple regularity condi-

tions on γ, v and w are made to establish results in this section.

Assumption P. The price density γ : Rn → (0,∞) is µX -a.e. continuous and γ(X) has a

continuous density.

Assumption R. The functions v and w are µX -a.e. continuous. Moreover, −∞ 6 E[γ(X)v(X)] 6

x0 6 E[γ(X)w(X)] 6 E[|γ(X)w(X)|] <∞.

We consider a convex risk measure, i.e., a functional ρ : L1 → R ∪ {+∞} satisfying mono-

tonicity, cash invariance, and convexity (see, e.g., Chapter 4 in Föllmer and Schied (2016)). Let

ϕ : R → [0,+∞] be a proper closed convex function whose effective domain is an interval with

endpoints a < b. We assume moreover that a < 1 < b and that 0 = ϕ(1) = minx ϕ(x). Then the

ϕ-divergence of a probability measure Q with respect to P is

Iϕ(Q|P) :=


∫
ϕ
(dQ

dP

)
dP if Q� P,

+∞ otherwise.

(12)

The corresponding divergence risk measure is defined as

ρ(Y ) := sup
Q�P

(
EQ[Y ]− Iϕ(Q|P)

)
, Y ∈ L∞. (13)

If ϕ(x) = x log x−x+1, then Iϕ(Q|P) is the relative entropy, or the Kullback–Leibler divergence,

of Q with respect to P and ρ is an entropic risk measure. If ϕ =∞·1[1/(1−p),∞) for some p ∈ [0, 1),

then ρ is the Expected Shortfall, ESp.

Theorem 2. In addition to Assumptions G, P, and R we assume that v and w are bounded.

Then the divergence risk measure ρ is robust against optimization at X ∈ L0
n for (G, L0

n, π
W
n ).

The proof of Theorem 2 relies on the duality formula from Ben-Tal and Teboulle (1987,

2007), which for general divergence risk measures has only been established on L∞. This is one

of the reasons for assuming the boundedness of v and w in Theorem 2. It is possible, however, to

relax their boundedness by imposing a suitable growth condition, given that the aforementioned

duality formula extends to Lp (or, more generally, to a certain Orlicz space). An important

special case for which this is possible is Expected Shortfall, ESp. Recall that the Expected

Shortfall has the following representation (e.g., McNeil et al. (2015, Theorem 8.14)) for Y ∈ L1,

ESp(Y ) =
1

1− p

∫ 1

p

F−1Y (s)ds = sup
{
EQ[Y ] : Q� P and

dQ
dP

6
1

1− p

}
. (14)
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Note that the right-hand representation coincides with (13) if Y ∈ L∞ and ϕ =∞·1[1/(1−p),∞).

We will say that a function f : Rk → R has growth index q ∈ [0,∞], if f is locally bounded for

q =∞ and if for q <∞ there exists a constant c such that |f(x)| 6 c(1 + |x|q) for x ∈ Rk.

Corollary 1. In addition to Assumptions G, P, and R, we assume that both v and w have growth

index q ∈ [1,∞]. Then Expected Shortfall, ESp, with p ∈ (0, 1), is robust against optimization at

X ∈ Lqn for (G, Lqn, πqn).

Comparing Theorem 1 and Corollary 1, we see that ES has clear advantages over VaR in

terms of robustness against optimization. Note that Assumptions G and V in Section 4 and

Assumptions P and R in this section are simple regularity conditions, and they are realistic for

practical models. Therefore, we safely can say that for Problem (8), VaR is generally not robust

against optimization, and ES is generally robust against optimization.

In Theorems 1-2 and Corollary 1, we assumed that w is finite, and thus the admissible

positions in the optimization problem (8) has an upper bound. A similar comparison on the

robustness of VaR and ES is obtained for the unbounded problem (w =∞ and v = −∞), which

is presented in Appendix A.6.

Now we turn to an analysis of the robustness of utility-based shortfall risk measures as

introduced in Föllmer and Schied (2002). To this end, let ` : R→ R be a nonconstant, increasing,

and convex loss function and x0 be an interior point in the range of `. The corresponding utility-

based shortfall risk measure is given by

ρ(Y ) = inf
{
m ∈ R : E[ `(Y −m)] 6 x0

}
, Y ∈ L∞.

Theorem 3. In addition to Assumptions G, P, and R we assume that v and w are bounded.

Then the utility-based shortfall risk measure ρ is robust against optimization at X ∈ L0
n for

(G, L0
n, π

W
n ).

A notable special case of a utility-based shortfall risk measure is the expectile of Y ∈ L1 at

level τ ∈ [0, 1], defined as the unique solution to the equation

τE[ (Y − z)+ ] = (1− τ)E[ (Y − z)− ].

Expectiles were introduced by Newey and Powell (1987) and have recently gained attention in

the context of the discussion on backtesting risk estimates. As stated10 in Exercise 4.9.2.(b) of

Föllmer and Schied (2016), for Y ∈ L∞ and τ ∈ (1/2, 1], the expectile is equal to the utility-

based shortfall risk for the loss function `(x) = τx+ − (1 − τ)x−. For the special case of an

10Note the differing sign convention in Föllmer and Schied (2016).
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expectile, the following corollary relaxes the boundedness condition by a more general growth

condition, just as we did for Expected Shortfall in Corollary 1.

Corollary 2. In addition to Assumptions G, P, and R, we assume that both v and w have

growth index q ∈ [1,∞]. Then the expectile at level τ ∈ (1/2, 1] is robust against optimization at

X ∈ Lqn for (G, Lqn, πqn).

Remark 1. The results presented in this section rely on obtaining concrete solutions to the

problem of minimizing ρ(g(X)) over g ∈ G. For constant constraint functions, v and w, and

a coherent risk measure ρ, this problem can be formulated as a composite hypothesis testing

problem, and there exists a significant amount of corresponding literature; see, e.g., Sections 3.5,

8.3 and the corresponding bibliographical notes in Föllmer and Schied (2016) for a summary.

Much fewer results were obtained for the case of nonconstant constraint functions, and those

that are available often lack some concreteness. A notable exception is Sekine (2004) in a one-

dimensional setting which solves (9); see Proposition 4 below. It is therefore worth pointing

out that our proofs also provide structure results for the solutions of our optimization problems.

Specifically, in the context of Corollary 1, our proof yields that there exists a minimizer gX that

has one of the following two forms, where z∗ ∈ R and c > 0 are suitable constants:

gX(x) =

(v(x) ∨ z∗ ∧ w(x))1{0<cγ(x)<1} or

(v(x) ∨ z∗ ∧ w(x))1{cγ(x)>1} + v(x)1{cγ(x)61}

Moreover, in the settings of Theorem 2 and of Theorem 3, there exists a constant z∗ such that

a minimizer gX is also a minimizer of the expected loss E[`(g(X) − z∗)] over g ∈ G, where

`(x) := supy>0(xy−ϕ(y)) for Theorem 2. The problem of minimizing this expected loss and its

robustness properties will be discussed in the subsequent Section 6.

Finally, we consider the special setting (9), which corresponds to v(x) = 0 and w(x) = x,

for ρ = ESp, p ∈ (0, 1). This problem has an explicit solution based on Theorem 8.26 of Föllmer

and Schied (2016), which is a slight generalization of a result by Sekine (2004).

Proposition 4. Let p ∈ (0, 1) and ρ = ESp. Suppose that Assumption P holds and 0 6 x0 <

E[γ(X)X]. There exist constants d > 0 and r > 0 such that the function

gX(x) = x1{γ(x)>d} + (x ∧ r)1{γ(x)6d}, x ∈ R, (15)

solves Problem (9). Moreover, r is a p-quantile of gX(X).

For given X, γ, and r, one can compute d as a function of r by numerically solving the equa-

tion E[γ(X)gX(X)] = x0. Subsequently, one can find the optimal r by numerically minimizing
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the expression ESp(gX(X)); see Section 7 for its implementation in simulation studies.

6 Robustness of expected utility and loss functions

An expected loss ρ` is a mapping

Y 7→ ρ`(Y ) = E[`(Y )],

where ` : R→ R is a nonconstant, nondecreasing, and convex function. Up to a sign change and

a constant shift, minimizing an expected loss is equivalent to maximizing an expected utility,

via the relation `(x) = −u(b − x), where u is a concave utility function, and b is the constant

wealth level of the decision maker. As in Section 5, we consider the set G in (7). The problem of

minimizing an expected loss—or, equivalently, of maximizing expected utility—under a budget

constraint has a long history; see, e.g., Ekeland and Temam (1976) or, within a financial context,

Section 3.3 in Föllmer and Schied (2016). In the existing results, the loss function is typically

assumed to be continuously differentiable and often required to be strictly convex and to satisfy

the Inada conditions (e.g., Föllmer and Schied (2016, p.160)). Let us point out that none of these

assumptions is imposed here. This level of generality is crucial for us, because our subsequent

Theorem 4 forms the basis for the proofs of the results in Section 5. For instance, in Corollary

1, it will be applied to the loss function `(x) = x+ = 0 ∨ x, which clearly satisfies none of the

classical requirements. In what follows, `+ and `− are the positive and negative parts of `,

respectively.

Theorem 4. Suppose that Assumptions G, P, and R hold. Let `+ have growth index q+ ∈ [1,∞]

and suppose that w has growth index p ∈ [1,∞]. If, moreover, ` is not bounded from below, let

`− have growth index q− ∈ [0, 1] and suppose that the growth index r of v satisfies r < ∞ if

q− = 0 and r 6 pq+/q− otherwise. Then the expected loss ρ` is robust against optimization at

X ∈ Lpq+n for (G, Lpq+n , πpq
+

n ).

If ` is bounded from below, our assumptions allow us to take v ≡ −∞, in which case the

lower bound is immaterial. If, on the other hand, both v and w are bounded, then the expected

loss ρ` will be robust at X ∈ L0
n for (G, L0

n, π
W
n ).

Theorem 4 implies that the optimization of expected loss or expected utility is also generally

robust under mild regularity conditions. This is similar to the optimization of convex risk

measures (Theorems 2 and 3), and in sharp contrast to that of VaR (Theorem 1).
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7 Simulation results

In this section, we illustrate the robustness and non-robustness of ES and VaR against

optimization by means of numerical simulations based on the formulas obtained in Propositions

3 and 4 for Problem (9). In our setup, the true risk factor Z is either exponentially or Pareto

distributed with an unknown parameter θ.11 The investor obtains an estimate θ̂ for θ and

considers a corresponding model X. Then the investor minimizes ρ(g(X)) within the class of

all measurable functions g satisfying the inequality 0 6 g(x) 6 x and the budget constraint

E[γ(X)X] > x0. We consider both ρ = VaR0.99 and ρ = ES0.975, where the respective levels 0.99

and 0.975 are chosen according to Basel III regulation (BCBS (2016)). To keep things simple,

we let γ(x) = x; this choice allows us to compute several auxiliary quantities in closed form,

thus reducing the possible impact of numerical errors.

In Figure 1, we have seen that, in the case of Pareto-distributed risks, the true risk

VaR0.99(gX(Z)) is substantially larger than the modeled risk VaR0.99(gX(X)), as soon as the

model distribution underestimates the tail risk probabilities for Z. Figure 2 establishes the same

effect for exponentially distributed risks, thus showing that the issue persists for light-tailed risks.

Taking θ̂ = 1, we observe specifically that VaR0.99(gX(X)) = 0.7720 but VaR0.99(gX(Z)) =

4.6098 if Z ∼ Exp(0.999). Note that a 0.1% estimation error in the parameter θ̂ leads here to an

increase of almost 500% for the assessed risk. As a matter of fact, Figure 2 also shows that any

benefits from optimizing VaR disappear as soon as θ < θ̂, because then VaR0.99(gX(Z)) becomes

equal to the risk of the unoptimized position, VaR0.99(Z). In sharp contrast, ES0.975(gX(Z))

ranges within the narrow interval [1.14619, 1.15216] for θ ∈ [0.1, 1.5]. That is, the true risk

ES0.975(gX(Z)) deviates from the model value ES0.975(gX(X)) by a mere 0.5% as long as the

true value θ is within ±50% of the estimates value θ̂. Throughout that entire interval of θ-values,

the optimized position gX(Z) provides a substantial and robust reduction of risk when compared

with the ES of the non-optimized position, ES0.975(X) = 4.6889.12

The robustness of risk measures becomes important when risk measurement is combined

with statistical estimation. This observation is at the core of the comparative discussion of the

robustness of various risk measures; see e.g., Cont et al. (2010). In the following numerical

experiment, we illustrate the impact of optimization on robustness. To this end, we refine

the preceding setup by allowing for the statistical estimation of the parameter θ. That is, we

generate n iid realizations of Z and compute the maximum likelihood estimate θ̂ from those

realizations. Based on the estimated value of θ̂, we compute the optimizing function gX and

11The exponential(θ) distribution function F with parameter θ > 0 is specified as F (x) = 1− e−θx, x > 0.
12Since ES0.975(Z) ≈ VaR0.99(Z) for all θ > 0 as studied by Li and Wang (2019), we did not include the plot

of ES0.975(Z) in Figure 2.
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Figure 2: This plot shows ρ(gX(Z)) for ρ = VaR0.99 (solid) and ρ = ES0.975 (dashed), if Z is
exponentially distributed with parameter θ. We assume that X has an exponential distribution
with parameter θ̂ = 1. The dotted grey curve corresponds to the VaR of the unoptimized
position, VaR0.99(Z), which coincides with VaR0.99(gX(Z)) for θ < θ̂.

then compare the true risk value ρ(gX(Z)) to the perceived risk value ρ(gX(X)). For each n,

we repeat this procedure 10,000 times and compute the mean-squared error, i.e., the average

of |ρ(gX(Z)) − ρ(gX(X))|2, of all 10,000 sample points. As the number n of iid realizations of

Z increases, the estimate θ̂ becomes ever more accurate, and we may expect the mean-squared

error of the risk differences to decrease; this is indeed true for the case of ES, but not true for the

case of VaR, because VaR is not robust against optimization. Figure 3 shows the corresponding

mean-squared errors as a function of n for the case of Pareto-distributed risks. Figure 4 shows

the analogous computations for exponentially distributed risks. Both figures illustrate that ES

massively outperforms VaR.

8 Discussions and remarks

8.1 Implications of our results on regulatory risk measures

In both the banking and the insurance sectors, VaR and ES are competing regulatory risk

measures for solvency capital calculation; see, for instance, BCBS (2016) from the Basel Com-

mittee on Banking Supervision and IAIS (2014) from the International Association of Insurance

Supervisors. In this paper, with the new notion of robustness, we see that for the optimization

problem (8), VaR is generally not robust whereas ES is. This provides strong support for the

use of ES in optimization problems, in addition to its convexity which is very well recognized

in the literature. These results further support the transition from VaR to ES made by BCBS

(2016) from a novel theoretical perspective.

20



50 100 150 2001.0

1.1

1.2

1.3

1.4

1.5

1.6

50 100 150 200

0.1

0.2

0.3

0.4

Figure 3: Mean-squared errors of 10,000 independent sample points of ρ(gX(Z)) and ρ(gX(X)),

each with a maximum likelihood estimator θ̂ computed from n iid realizations of the Pareto(5)-
distributed risk factor Z. The horizontal axis shows the number n. The case ρ = VaR0.99 can be
found on the left, ρ = ES0.975 is on the right. The two top panels plot the mean-squared error
(original values), the bottom ones correspond to their log-transforms.

Our observations on the VaR vs. ES issue can be explained intuitively. From the proof

of Theorem 1, the VaR optimized positions always have a jump at the p-quantile level, and

the optimized position can roughly be interpreted as a portfolio exhibiting a large loss with a

small probability (e.g. selling a large volume of far out-of-the-money call options). This reflects

the fact that “VaR does not capture the tail risk” as indicated already by many academics

and regulators (see e.g. Dańıelsson et al. (2001), Embrechts et al. (2014), Emmer et al. (2015)

and BCBS (2016)). If there is model uncertainty around this p-quantile level, even if small, it

ruins completely the optimality of the position. This can explain the failure of the investment

strategies (based on beliefs in small probabilities of default) of many of the larger banks before

the 2008 financial crisis; see, for instance, the report by Acharya et. al. (2010) on this matter. We

note that the optimized positions for VaR and ES may have similar forms (Proposition 3 and 4).

By definition, however, ES does not ignore the values of the tail part of the optimal allocation

(in contrast to VaR), and this explains why the corresponding value of the risk measure is not

underestimated.

There are extensive discussions on the robustness of VaR and ES (although not in the

context of optimization of this paper), and it may be fair to keep a balanced view. One important

issue on the robustness of ES is the difficulty arising from perturbations which yield probability
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Figure 4: Mean-squared errors of 10,000 independent sample points of ρ(gX(Z)) and ρ(gX(X)),

each with a maximum-likelihood estimator θ̂ computed from n iid realizations of the Exp(1)-
distributed risk factor Z. The horizontal axis shows the number n. The case ρ = VaR0.99 can be
found on the left, ρ = ES0.975 is on the right. The two top panels plot the mean-squared error
(original values), the bottom ones correspond to their log-transforms

distributions that may have infinite first moment; this is why in Corollary 1, the robustness

of ES with respect to πqn requires a condition on the growth rate of v and w. Therefore, in

the minimization of ES from historical data, one needs to always make suitable integrability

assumptions, or otherwise minimizing ES may be as problematic as the case of VaR. Infinite

mean models are not of a purely academic nature in risk management; see for instance Nešlehová

et al. (2006) in the context of operational risk and Weitzman (2009) related to the economics of

climate change. For recent academic discussions on various issues related to the desirability of

VaR and ES in banking and insurance regulation, we refer to Kou and Peng (2016), Fissler and

Ziegel (2016), Embrechts et al. (2018), Armstrong and Brigo (2018) and the references therein.

8.2 Remarks on the formulation of robustness

In this section we supply some further remarks on the relations between our definition of

robustness and related notions in the literature on optimization and model uncertainty.

We start by considering the problem of solvency capital calculation of a firm as set forth in

the Basel III/IV and Solvency II agreements. Suppose that Z is the true (but unknown) model

and gZ ∈ GZ(ρ); see (2) with X = Z. In solvency capital calculation, the following quantities

have different physical meanings:
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(a) ρ(gX(X)): the perceived risk value (solvency capital requirement) optimized for X by the

firm;

(b) ρ(gZ(Z)): the idealistic risk value optimized for Z as if Z were known;

(c) ρ(gX(Z)): the actual risk value of the model Z, but the optimization is made for X.

Among the above quantities, the idealistic risk value ρ(gZ(Z)) represents what would be the

best-case if the true model were known. Since the true model is not known, this value is not

available and hence irrelevant for the solvency capital calculation. Therefore, for solvency risk

management purposes, we are interested in the solvency gap

ρ(gX(Z))︸ ︷︷ ︸
actual risk

− ρ(gX(X))︸ ︷︷ ︸
perceived risk

, (16)

not the optimality gap

ρ(gZ(Z))︸ ︷︷ ︸
idealistic optimum

− ρ(gX(Z))︸ ︷︷ ︸
actual risk

, (17)

nor the optimality shift

ρ(gZ(Z))︸ ︷︷ ︸
idealistic optimum

− ρ(gX(X)).︸ ︷︷ ︸
perceived optimum

(18)

Note that both (17) and (18) involve ρ(gZ(Z)) which is not relevant for solvency considerations.

In the optimization literature, the continuity of the set mapping Z 7→ GZ(ρ), as well as that of

the function Z 7→ ρ(gZ(Z)), is referred to as the problem of stability, i.e. how do the optimal

solutions and the optimality shift (18) change when the underlying model changes from X to Z;

see, e.g., Bonnans and Shapiro (2000) and the references therein.

Let us further illustrate our notion of robustness by means of the following two examples.

Example 6. Suppose that the model X leads to the unique optimal decision gX(x) = x0 ∈ R,

which means fully liquidating this asset or a perfect hedge. In this case, gX is a constant

function, and hence Z 7→ ρ(gX(Z)) is a constant mapping, thus always robust according to our

definition. In other words, the solvency gap (16) will be zero, no matter what the optimizer

for the true risk Z is. Hence, model uncertainty is irrelevant for the calculation of the solvency

capital. On the other hand, if the true model Z is not equal to X and liquidating the asset is

not optimal for Z, then we have ρ(gZ(Z)) < ρ(x0); thus the optimality shift (18) will be strictly

negative. Therefore, the solvency gap in (16) is the right notion to look at in this scenario, not

the optimality shift.

Example 7. Suppose that X and Z are similar in the sense that gX(X) and gZ(Z) are iden-

tically distributed, but gX(Z) and gX(X) are not identically distributed. In this case, we
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have ρ(gX(X)) = ρ(gZ(Z)) for any law-invariant risk measure ρ, such as VaRp or ESp, but

ρ(gX(Z)) > ρ(gZ(Z)) = ρ(gX(X)) since gX is generally not optimal for Z. Clearly, the solvency

gap (16) is strictly positive and the optimality shift (18) vanishes. In this situation, the regulator

is concerned about the insolvency issue regarding model uncertainty. Indeed, the true risk value

ρ(gX(Z)) is larger than the perceived risk value ρ(gX(X)), which means that the solvency capital

is insufficient. Note however that there is no gap between ρ(gZ(Z)) and ρ(gX(X)). Therefore,

also here, the solvency gap is the right notion to study rather than the optimality shift.

Remark 2. In the following few remarks, we provide various other interesting comments on our

formulation of robustness against optimization.13

1. Triangular inequality. Note the triangular inequality

|ρ(gX(Z))− ρ(gX(X))| 6 |ρ(gX(Z))− ρ(gZ(Z))|+ |ρ(gZ(Z))− ρ(gX(X))|.

This inequality suggests that if both the optimality shift in (18) and the optimality gap in

(17) converges to 0 as Z → X in π, then we have the solvency gap converges to 0, and thus

robustness against optimization. However, the opposite does not hold, as illustrated by the

situation in Example 6, where robustness is always guaranteed, since the optimizer for X

is to fully liquidate the asset, although the optimality shift is non-zero. Hence, the study of

robustness against optimization is not equivalent to the combined study of the optimality

shift and stability. In other words, continuity in both optimality gap and optimality shift

is sufficient but not necessary for robustness against optimization.

2. Alternative ways to formulate robustness. There are some alternative ways to formu-

late the notion of robustness in Definition 2. We discuss them and explain the advantages

of our formulation.

(a) One may use uncertainty on the set of probability distributions instead of that on the

set of random vectors. There are a few advantages to consider the misspecification of

the random vector rather than its distribution. First, our framework is general in the

sense that there is no restriction to law-invariant risk measures or utility functions.

For the notion of robustness studied in this paper, a probability measure does not need

to be specified (non-law-invariant risk measures include e.g., the margin requirement

risk measure used by the Chicago Mercantile Exchange; see McNeil et al. (2015,

Section 2.3)). Second, our framework is flexible as we can easily incorporate the

13We thank an anonymous referee for discussions on these issues, and in particular, pointing out the relationship
of our notion and the classic ones via the triangular inequality.
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misspecification of distribution by using a metric on the set of distribution (which is

a pseudo-metric on the set of random variables). Third, in the proof of several results

in the paper on the robustness and non-robustness of risk measures in Sections 4 and

5, we need to obtain equalities in the almost sure sense (ω-wise equalities) to locate

the unique form of g.

(b) An alternative to Definition 2 would be to require all, instead of one, optimizing

functions gX to satisfy π-continuity of Z 7→ ρ(gX(Z)) at Z = X. This requirement

would be stronger than the current Definition 2. For our main result, Theorem 1,

stating VaR is generally not robust, the current formulation in Definition 2 gives a

stronger result. Moreover, requiring continuity of all optimizing functions may lead to

pathological statements. For instance, suppose that gX ∈ G is a continuous optimizing

function for ES (or any other risk measure) and X ∈ L1. If one modifies gX on a set

of µX -measure zero (such as the set of rational numbers), then the resulting function

is still optimal, but robustness fails, and rightly so.

3. Limitations. Robustness against optimization that we study in this paper is a desirable

notion of robustness, but it should be seen as a necessary, but generally not sufficient,

condition for being a good risk measure to use in the context of optimization. For instance,

even with the continuity of gX(Z) at Z = X, small-size perturbations in the model may

lead to enormous changes in the risk assessment in a practical example, as our notion does

not quantify sensitivity of the risk value, which will be a future research direction.

4. Optimization over stochastic processes. One can consider continuous-time models

where optimizers are chosen over a set of stochastic processes (e.g., admissible trading

strategies). Our framework and discussions can be extended to such problems, as long as

the optimizers are functions of the random source X, be it finite dimensional or infinite

dimensional. In fact, in many classic financial models, the continuous-time optimization

problem (such as the hedging example above) can be translated into a single-period opti-

mization problem via the martingale approach as we see Example 4.

9 A connection to distributionally robust optimization

We conclude this paper by discussing our notion of robustness in the context of distribu-

tionally robust optimization. Our results in Section 4 show that VaR is generally not robust

for (8). In a classic setting of distributionally robust optimization (e.g. Quaranta and Zaffaroni

(2008), Zhu and Fukushima (2009), Blanchet and Murthy (2019)), the objective functional itself
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is evaluated under the worst-case value over a set of possible models representing uncertainty.

By taking the worst-case value of the objective, model uncertainty is incorporated into the op-

timization problem. Some other relevant results on VaR and ES with the worst-case approach

can be found in Hu and Hong (2013) and Zymler et al. (2013). We wonder whether robustness

against optimization of risk measures would be improved by taking such an approach.

To formulate this consideration mathematically, let ρ be a compatible objective functional

for an uncertainty triplet (G,Z, π) and X ∈ Z. We look at the following optimization problem,

which is a robust version of (1),

to minimize: sup
π(Y,X)6ε

ρ(g(Y )) subject to g ∈ G, (19)

where ε > 0. Denote by GX(ρ, ε) the set of functions g ∈ G minimizing (19). Clearly, if we

allow ε = 0 in (19), then GX(ρ, 0) = GX(ρ) and we are back in the setting of Section 2. In the

problem (19), an investor is interested in the risk measure value ρ(g(Z)) of the risky position

g(Z), in which Z is the unknowable true model. Therefore, similarly to Definition 2, we say

that the objective functional ρ is robust against optimization for the setting (19) if there exists

gX ∈ GX(ρ, ε) such that the function Z 7→ ρ(gX(Z)) is π-continuous at Z = X.

Unfortunately, the minimax problem (19) is not easy to solve analytically, even for the

representative settings in Section 3 and in the cases of VaR and convex risk measures. Typically,

a linear programming approach has to be applied for such problems. As convex risk measures

are already shown to be generally robust in Section 5, its distributionally robust version is also

generally robust; we thus focus on the question of whether VaR becomes more robust in this

context. Our results in this section should be understood as exploratory rather than conclusive.

To obtain analytic results, we look at a simple one-dimensional case of (8), by letting

G = {g ∈ G1 : 0 6 g 6 m, E[γ(X)g(X)] > x0}, (20)

where x0 and m are two constants satisfying 0 6 x0 < mE[γ(X)]. We choose (Z, π) = (L∞, π∞1 )

and formulate the optimization problem

to minimize: sup
π∞1 (Y,X)6ε

VaRp(g(Y )) over g ∈ G. (21)

Similarly to Section 4, denote by q the minimum of (21), that is,

q = inf

{
sup

π∞1 (Y,X)6ε
VaRp(g(Y )) : 0 6 g 6 m, E[γ(X)g(X)] > x0

}
.
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We make the following stronger assumption.

Assumption D. q > 0, 1/2 6 p < 1, X has a decreasing density on its support and γ is an

increasing function of X.14

Fortunately, with Assumption D, we are able to obtain an explicit form of the solution to

Problem (21), allowing us to compare the corresponding robustness property with the results we

obtained in Section 4.

Proposition 5. For G in (20), under Assumption D, Problem (21) admits a solution of the

form

gX(x) = m1{x>c+ε} + q1{x6c+ε}, x ∈ R, where c = VaRp(X). (22)

With the solution gX in Proposition 5, the continuity of VaR mentioned in Section 3 im-

plies that the mapping Z 7→ VaRp(gX(Z)) is π∞1 -continuous at Z = X. As a consequence,

VaRp is robust against optimization for the setting (19). This observation is in sharp contrast

with Theorem 1, where we see that VaRp is not robust for (G, L∞, π∞1 ) under some very weak

assumptions (which does not conflict Assumption D). Therefore, at least for the special setting

(19), the modified optimization problem (21) improves the robustness of VaR. It is unclear how

this result can be generalized to other optimization problems, as analytic results for (19) are

rarely available.

Although VaRp becomes robust in the setting (21), its optimizing function takes a similar

form as in Proposition 3, that is, a distribution with a jump and a big loss with small probability.

Since the distribution of gX(X) in (22) has a jump at its (p+ε)-quantile, this type of optimizing

functions is highly undesirable and is subject to considerable model uncertainty if ε is small; see

the discussions in Section 8.

Acknowledgements. The authors thank Rama Cont, Xiaoxue Deng, Paul Glasserman, Liyuan

Lin, Marcel Nutz and Philip Protter for insightful comments on an early version of the paper. In

particular, the term “robustness against optimization” was suggested by Paul Glasserman. RW

acknowledges financial support from the Natural Sciences and Engineering Research Council of

Canada (NSERC, RGPIN-2018-03823, RGPAS-2018-522590) and from the Center of Actuarial

Excellence Research Grant from the Society of Actuaries.

14The monotonicity of γ as a function of X has a simple economic meaning. Recall that X represents the loss
of an asset. Hence, Assumption D requires that the pricing density is larger when the asset has a larger loss. This
requirement is satisfied by classic equilibrium models in the notion of Arrow-Debreu (Arrow and Debreu (1954)).
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A Proofs of theorems and propositions

A.1 Proofs in Section 2

Proof of Proposition 1. It suffices to show that the function Z 7→ ρ(g(Z)) is π-continuous. By

definition, for any X,Y ∈ Z, πg(Z)(g(X), g(Y )) = π(X,Y ). Thus the πg(Z)-continuity of ρ is

equivalent to the π-continuity of the function Z 7→ ρ(g(Z)).

Proof of Proposition 2. (i) It suffices to show that, as k → ∞, Xk → X in π∞n implies that

g(Xk) → g(X) in π∞1 . This is a direct consequence of the Heine-Cantor Theorem (see

Theorem 4.19 of Rudin (1976)).

(ii) Xk → X w.r.t. πqn implies that {|Xk|q}k∈N is uniformly integrable and that Xk → X

in probability. It follows from the Continuous Mapping Theorem that g(Xk) → g(X) in

probability. Moreover, for sufficiently large c,

E
[
|g(Xk)|q1{|g(Xk)|>c}

]
6 CqE

[
|Xk|q1{|Xk|>c/C}

]
.

Therefore, (|g(Xk)|q) is uniformly integrable and, in turn, g(Xk)→ g(X) w.r.t. πq1.

(iii) It suffices to show that, as k → ∞, Xk → X in πWn implies that g(Xk) → g(X) in πW1 .

This is a direct consequence of the Continuous Mapping Theorem.

A.2 Proofs in Section 4

Since a rescaling of γ does not change the optimization problem (8), we will safely assume

E[γ(X)] = 1 in the proofs of all results in Sections 4-6.

Proof of Theorem 1. In what follows, equalities and inequalities on functions on Rn are under-

stood as almost surely with respect to µX , and essential suprema and expectations of these

functions are taken under µX (we use EX to emphasize the expectation with respect to µX).

There is nothing to show if the set GX(ρ) of minimizers is empty. Suppose that gX ∈ G is

a minimizer to the problem (1). We will show that Z 7→ ρ(gX(Z)) cannot be continuous at X,

which gives the statement in the theorem.

We first show that the budget constraint is always binding, that is,

EX [γg′X ] = x0 for any optimizer g′X to (1). (A.1)

Suppose EX [γg′X ] > x0 for contradiction. Denote by ε = EX [γg′X ] − x0, v0 = ess-sup(v), and

let g′′X = (g′X − ε) ∨ v. Since v 6 g′′X 6 w and EX [γg′′X ] > EX [γg′X ] − ε = x0, we have g′′X ∈ G.
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Moreover, since v0 < VaRp(g
′
X(X)) by Assumption V, we have

VaRp(g
′′
X(X)) 6 VaRp((g

′
X(X)− ε) ∨ v0)

= VaRp(g
′
X(X)− ε) ∨ v0

= (VaRp(g
′
X(X))− ε) ∨ v0 < VaRp(g

′
X(X)).

This contradicts the optimality of g′X . Hence, (A.1) holds.

Consider the probability space (Rn,B(Rn), µX), where B(Rn) is the Borel σ-field. Follow-

ing Wang and Zitikis (2020), a set A ∈ B(Rn) is called a p-tail event for a measurable function

h : Rn → R and p ∈ (0, 1), if µX(A) = 1−p and h(x) > h(x′) for µX -a.e. x ∈ A and x′ ∈ Ac. The

existence of the tail event in any atomless probability space is implied by Lemma A.3 of Wang

and Zitikis (2020), noting that Assumption G guarantees that (Rn,B(Rn), µX) is an atomless

probability space.

Let A be a p-tail event of gX so that P(X ∈ A) = µX(A) = 1 − p. By the definition of

VaRp, we have

VaRp(gX(X)) = ess-sup(gX |Ac), (A.2)

where ess-sup(gX |Ac) is the essential supremum (with respect to µX) of gX conditional on Ac.

Define the function ĝ = gX1Ac + w1A. It is clear that ĝ > gX . Moreover, since ĝ and gX only

differ on the tail event A, (A.2) implies that VaRp(ĝ(X)) = VaRp(gX(X)). Hence, ĝ is also a

minimizer to (1). Note that if ĝ 6= gX , then we have EX [γĝ] > EX [γgX ] = x0. By (A.1), the

budget constraint is always binding and we conclude that ĝ = gX . Thus, gX1A = w1A.

Next, suppose by way of contradiction that the quantile function of gX(X) is continuous at

p. If a p-tail event A′ of w is µX -a.s. equal to A, then we have, using gX1A = w1A = w1A′ ,

VaRp(w(X)) 6 lim
q↓p

VaRq(w(X)) = lim
q↓p

VaRq(gX(X)) = VaRp(gX(X)),

a contradiction to VaRp(gX(X)) < VaRp(w(X)) in Assumption V. Hence, any p-tail event A′ of

w satisfies A′ 6= A. Since both sets have the same probability, the set C := A′ \A must be such

that α := µX(C) ∈ (0, 1− p].

Write a = VaRp(gX(X)) and b = VaRp(w(X)). For each δ ∈ (0, α), let Cδ be a subset of

C such that µX(Cδ) = δ, Aδ be a (p + δ)-tail event of gX , and Bδ := A \ Aδ. Note that w > b

and gX 6 a on Cδ since C ⊂ A′ \A. Hence, w− gX > b− a > 0 on Cδ. Moreover, Cδ ∩Bδ = ∅.

Since γ > 0, µX(γ > ε)→ 1 as ε ↓ 0. As a consequence, we can freely choose Cδ such that γ is

bounded away from 0 on Cδ for each δ ∈ (0, α). Since γ is bounded from above, we can let `, u

be two constants such that 0 < ` < γ on Cα/2 and γ < u <∞ on Bα/2.
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Let gδ = a1Bδ +w1Cδ + gX(1− 1Bδ∪Cδ). In other words, gδ is obtained by decreasing the

value of gX to a on the set Bδ of probability δ, and increasing its value to w on the set Cδ also

of probability δ. Clearly, v 6 gδ 6 w. Note that gX 6 a on Ac, which implies gδ 6 a on Ac \Cδ.

Moreover, gδ 6 a on Bδ. Therefore,

P(gδ(X) 6 a) > µX(Bδ) + µX(Ac \ Cδ) = 1− p,

which gives VaRp(gδ(X)) 6 a. Since the quantile of gX(X) is continuous at p, there exists

δ0 ∈ (0, α/2) such that |gX − a| < (b− a)`/u on Bδ0 . Putting the above observations together,

we have

E[γgδ0 ]− E[γgX ] = E[γ(gδ0 − gX)1Cδ0 ]− E[γ(gX − gδ0)1Bδ0 ]

> (b− a)E[γ1Cδ0 ]− `

u
(b− a)E[γ1Bδ0 ]

> (b− a)`δ0 −
`

u
(b− a)uδ0 > 0.

The facts that VaRp(gδ0(X)) 6 a = VaRp(gX(X)) and EX [γgδ0 ] > EX [γgX ] = x0 further

guarantees that gδ0 is an optimizer to (1). However, this contradicts the fact that any optimizer

to (1) needs to satisfy (A.1). This contradiction shows the desired conclusion that the quantile

function of gX(X) has a jump at p.

For ε > 0, let Ãε = {x ∈ Rn : d(x,A) 6 ε}, where d is the Euclidean distance. For each

y ∈ Ãε, let fε(y) be a Borel function which maps y to one of its nearest point in A; see e.g.,

Jayne and Rogers (1985) for the existence of the Borel selector. Define the random variables Zε

by

Zε = fε(X)1{X∈Ãε} +X1{X∈Ãcε}
.

Note that π∞n (Zε, X) 6 ε. Hence, Zε → X as ε ↓ 0 in π∞n , which is the strongest metric π

that we consider. Moreover, by Assumption G, X has positive density over its support which

is a convex set, which implies P(Zε ∈ A) = P(X ∈ Ãε) > P(X ∈ A) = 1 − p. Also note that if

Zε ∈ A, then gX(Z) > limq↓p VaRq(gX(X)). Hence,

VaRp(gX(Zε)) > lim
q↓p

VaRq(gX(X)) > VaRp(gX(X)),

showing that Z 7→ ρ(gX(Z)) is not π-continuous at X.

Remark 3. The assumption ess-sup(v) < VaRp(X;G) in Assumption V is not essential. As we

see from the proof, this assumption is used to show two conditions. First, it is used to show

(A.1); i.e., the budget constraint is binding. Second, it is used to guarantee that v 6 gδ 6 w
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for δ small enough. These two conditions are both natural and quite weak. On the other hand,

the assumption that γ is bounded above is only used to guarantee that γ < u for some u > 0

on the set Bδ with probability δ ↓ 0. Note that if gX(X) is continuously distributed, then

the set Bδ is µX -a.s. equal to {x ∈ Rn : VaRp(gX(X)) < gX(x) < VaRp+δ(gX(X))}. Hence,

in this case it suffices to assume that γ is bounded from above in any small neighbourhood of

{x ∈ Rn : gX(x) = VaRp(gX(X))}. This assumption is practically always satisfied.

The following lemma is needed to show Proposition 3.

Lemma A.1. Under Assumptions G and V, Problem (9) admits at least one solution.

Proof of Lemma A.1. Define Q through dQ/dP = γ and let µ = Q ◦ X−1. The set G is then

a uniformly integrable subset of L1(µ). Let {gn}n∈N be a minimizing sequence for VaRp in G.

By the Dunford-Pettis and Eberlein-Šmulian theorems (Theorems IV.8.9 and V.6.1 of Dunford

and Schwartz (1958)), there exists a subsequence {gnk}k∈N that converges weakly in L1(µ) to

some function gX ∈ L1(µ). Since G is convex and closed in L1(µ), we get gX ∈ G. Moreover,

weak convergence in L1(µ) implies clearly that the laws of gnk(X) converge weakly to the one

of gX(X). But VaRp is a left-hand quantile and hence lower semicontinuous with respect to

weak convergence (see, e.g., Exercise A.6.1 in Föllmer and Schied (2016)). This proves that gX

is optimal.

Proof of Proposition 3. It is straightforward to check that VaRp(gX(X)) 6 q. By Lemma A.1,

Problem (9) has at least one optimizer. Let g ∈ G be an optimizer to (9). Since VaRp(g(X)) = q

and g(X) 6 X, we have, in the sense of µX -a.s.,

g(X) 6 X1A + (X ∧ q)1Ac ,

where A is a p-tail event of g(X). Clearly, by taking an equality in the above inequality will

only increase EX [γg] while maintaining VaRp(g(X)) 6 q, and it does not affect the optimality

of g. Moreover, as we have seen in the proof of Theorem 1, the budget constraint is binding; this

implies that we cannot strictly increase EX [γg] while maintaining VaRp(g(X)) 6 q. Therefore,

it has to be g(X) = X1A + (X ∧ q)1Ac . Note that

E[γ(X)g(X)] = E[γ(X)X1A] + E[γ(X)(X ∧ q)1Ac ]

= E[γ(X)X]− E[γ(X)(X − q)+1Ac ] = E[γ(X)X]− E[Y+1Ac ]. (A.3)

Maximizing the above term over A satisfying P(A) = 1 − p, it is clear that the maximum of

E[γ(X)g(X)] is attained when Y+ takes its smallest values on Ac. In other words, A is a p-tail
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event of Y+. Moreover, we have q < VaRp(X) by Assumption V. Hence, Y = Y+ > 0 on A, and

A is also a p-tail event of Y . Using again the fact that the budget constraint is binding, any

function g′ that does not maximize EX [γg′] with fixed VaRp(g
′(X)) = q cannot be an optimizer.

Since the p-tail event of Y+ is unique by P(Y 6 VaRp(Y )) = p, we know that g = gX in (10)

is the unique g with VaRp(g(X)) = q such that EX [γg] = x0. As a consequence, g = gX is the

µX -a.s. unique solution to (9).

Finally, we show (11). Since A is a p-tail event of Y+, we know that Ac is a (1 − p)-tail

event of −Y+. Further, we have E[−Y+|Ac] = ES1−p(−Y+) by Lemma A.7 of Wang and Zitikis

(2020). Using the fact that the budget constraint is binding and (A.3), we obtain

x0 = E[γ(X)gX(X)]

= E[γ(X)X]− E[Y+1Ac ]

= E[γ(X)X] + pE[−Y+|Ac] = E[γ(X)X] + pES1−p(−Y+).

This gives the desired equality (11).

A.3 Proofs in Section 5

Proof of Theorem 2. In a first step, we show the existence of a minimizer in G. Clearly, G is

nonempty. Let {gn}n∈N be a sequence in G such that ρ(gn(X)) converges to λ := infg∈G ρ(g(X)).

Since gn takes values between v and w, a standard Komlós-type argument (e.g., Lemma 1.70 in

Föllmer and Schied (2016)), allows us to pass to a sequence {g̃n}n∈N of convex combinations of

the gn such that g̃n converges µX -a.s. to some function g0. Dominated convergence yields that

E[γ(X)g0(X)] = lim
n↑∞

E[γ(X)g̃n(X)] > lim inf
n↑∞

EX [γ(X)gn(X)] > x0. (A.4)

Hence, g0 belongs to G. The convexity of ρ implies that ρ(g̃n(X)) converges to the infi-

mum value λ. Moreover, since ρ enjoys the Fatou property due to (13), we have ρ(g0(X)) 6

lim infn ρ(g̃n(X)). Therefore gX := g0 is a minimizer in G.

Now we derive the structure of gX . To this end, consider `(x) := supy>0(xy − ϕ(y)). Then

` is convex, nondecreasing, nonconstant, and finite on R, because ϕ has superlinear growth.

Moreover, Theorem 4.2 in Ben-Tal and Teboulle (2007) (see also Lemma 1 in Ben-Tal and

Teboulle (1987)) provides the following dual representation,

ρ(Y ) = inf
z∈R

(
E[`(Y + z)]− z

)
, Y ∈ L∞. (A.5)
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We claim that the infimum in (A.5) is actually attained. To see why, note first that our assump-

tions on ϕ imply that there exists y0 > 1 such that ϕ(y0) <∞, which implies that the slope of

` is at least y0 for sufficiently large x. This yields an upper bound on the range of all z that

contribute to the infimum in (A.5). Second, there is y1 < 1 with ϕ(y1) <∞, which implies that

the slope of ` is at most y1 for sufficiently large negative x. This gives a lower bound on z. The

continuity of z 7→ E[`(Y + z)]− z now yields our claim.

Now let z∗ be such that ρ(gX(X)) = E[`(gX(X) + z∗)]− z∗. Then,

inf
g∈G

ρ(g(X)) 6 inf
g∈G

(
E[`(g(X) + z∗)]− z∗

)
6 E[`(gX(X) + z∗)]− z∗ = inf

g∈G
ρ(g(X)).

Hence, gX minimizes E[`(g(X) + z∗)] over g ∈ G. We are thus in the context of Theorem 4

(optimizing expected loss), whose proof yields the form of gX as the minimizer of E[`(g(X)+z∗)]

over g ∈ G. Now suppose that Zn ∈ L0
n are random variables whose laws converge to the one

of X. By Skorokhod embedding, we may assume without loss of generality that Zn → X holds

P-a.s. The robustness of ρ now follows as in the proof of Theorem 4 by using the fact that ρ

enjoys the so-called Lebesgue property, which in turn is a consequence of Exercises 4.2.3 and

4.3.4 in Föllmer and Schied (2016).

Proof of Corollary 1. First, by using the rightmost representation in (14), the existence of a

minimizer gX can be shown as in the proof of Theorem 2 when replacing (A.4) with the following,

more general argument. Our assumption that E[γ(X)|w(X)|] is finite yields with Fatou’s lemma

that

E[γ(X)g0(X)] > lim sup
n↑∞

E[γ(X)g̃n(X)] > lim inf
n↑∞

E[γ(X)gn(X)] > x0.

Next, we will use the identity

ESp(Y ) = min
z∈R

(
1

1− p
E[(Y + z)+]− z

)
, Y ∈ L1,

where the minimum is attained at z = F−1Y (1 − p); see, e.g., Proposition 4.51 in Föllmer and

Schied (2016) and note that the proof given there works without modification for Y ∈ L1 and

does not require the assumption Y ∈ L∞. Thus, we are in the setting of Theorem 2, and the

remainder of the present proof follows exactly as for that result. All one needs to note in addition

is that ESp is continuous on L1.

Proof of Theorem 3. Let `∗(y) := supx∈R(xy − `(x)) be the Fenchel–Legendre transform of `.
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The risk measure ρ can be represented in the form

ρ(Y ) = max
Q�P

(
EQ[Y ]− inf

λ>0

1

λ

(
x0 + E

[
`∗
(
λ
dQ
dP

) ]))
, Y ∈ L∞; (A.6)

see Theorem 4.115 in Föllmer and Schied (2016). Using this representation, the existence of a

minimizer gX ∈ G is established as in the proof of Theorem 2.

As shown at the beginning of the proof of Proposition 4.113 in Föllmer and Schied (2016),

z∗ := ρ(gX(X)) is the unique solution of the equation E[`(gX(X)−z)] = x0. It follows from here

that gX minimizes E[`(g(X)−z∗)] over g ∈ G. Indeed, suppose by way of contradiction that there

is g0 ∈ G for which E[`(g0(X)−z∗)] < E[`(gX(X)−z∗)]. Then the solution, z0 = ρ(g0(X)), of the

equation E[`(g0(X)− z)] = x0 will be strictly smaller than z∗, a contradiction to the optimality

of gX . The proof of Theorem 4 thus yields the structure of gX as a µX -a.e. continuous function.

The robustness of ρ now follows as in the proof of Theorem 4 by using the fact that ρ enjoys the

so-called Lebesgue property, which in turn is a consequence of Exercise 4.2.3 and Proposition

4.113 in Föllmer and Schied (2016).

Proof of Corollary 2. Let ρ(Y ) denote the expectile of Y ∈ L1 and ` the convex loss function

`(x) = τx+− (1− τ)x−. We have `∗(y) = 0 if 1− τ 6 y 6 τ and `∗(y) = +∞ otherwise. Hence,

letting

ρ̃(Y ) := sup
{
EQ[Y ] : Q� P and there exists λ > 0 s.t. 1− τ 6 λ

dQ
dP

6 τ
}
, Y ∈ L1, (A.7)

the identity (A.6) yields that ρ(Y ) = ρ̃(Y ) for Y ∈ L∞. For Y ∈ L1 and n ∈ N, we let

Yn := (−n) ∨ Y ∧ n. Then we have ρ(Yn) = ρ̃(Yn). It is easy to see that ρ(Yn) → ρ(Y ).

Moreover, the set of densities of those probability measure Q � P for which there exists λ > 0

such that 1− τ 6 λdQ/dP 6 τ is bounded in L∞. Therefore, Theorem 4.2 in Cheridito and Li

(2009) implies that ρ̃ is norm continuous on L1. Consequently, ρ̃(Yn)→ ρ̃(Y ), and we conclude

that ρ̃(Y ) = ρ(Y ) for all Y ∈ L1. Using this identity and the norm continuity of ρ, the robustness

of ρ now follows as in the proof of Theorem 3.

Proof of Proposition 4. The result follows from Theorem 8.26 of Föllmer and Schied (2016). The

fact that r is a p-quantile of gX(X) is stated in the proof of Theorem 8.26 in Föllmer and Schied

(2016).
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A.4 Proofs in Section 6

Proof of Theorem 4. Consider the function

`∗(z, x) := sup
v(x)6y6w(x)

(
yz − `(y)

)
, (A.8)

defined for y ∈ R and x ∈ Rn. Let y∗(x, z) denote the largest maximizer. We must have

y∗(x, z) = v(x) ⇐⇒ `′−(y) > z for all y ∈
(
v(x), w(x)

]
,

y∗(x, z) = w(x) ⇐⇒ `′−(y) 6 z for all y ∈
(
v(x), w(x)

]
.

(A.9)

Moreover, `′−(y∗(x, z)) 6 z 6 `′+(y∗(x, z)) if y∗(x, z) ∈
(
v(x), w(x)

)
(see, e.g., Proposition A.9

(a) in Föllmer and Schied (2016)). Letting I(z) := inf{y : `′−(y) > z} = sup{y : `′−(y) 6 z}

denote the right-continuous generalized inverse function of `′−, we hence see that y∗(x, z) = I(z)

in the latter case. Altogether, we obtain that y∗(x, z) = v(x) ∨ I(z) ∧ w(x).

Let us define

g(c)(x) := v(x) ∨ I(cγ(x)) ∧ w(x), x ∈ Rn, c ∈ R. (A.10)

The function I is nondecreasing and hence has at most countably many jumps, which form a

µX ◦γ−1-nullset, due to our Assumption P. Due to our assumption E[γ(X)|w(X)|] <∞, we may

apply the monotone convergence theorem, which yields that the function c 7→ E[γ(X)g(c)(X)]

decreases continuously from E[γ(X)w(X)] > x0 to K := E[γ(X)(v(X) ∨ I(0) ∧ w(X))] as c

decreases from +∞ to 0. Let us first consider the case in which K < x0. In this case, there is

some c∗ > 0 for which E[γ(X)g(c
∗)(X)] = x0. We show now that gX := g(c

∗) is optimal. Indeed,

from (A.8) and our definition of gX , it is clear that for arbitrary g ∈ G,

c∗γ(X)gX(X)− `(gX(X)) = `∗(c∗γ(X), X) > c∗γ(X)g(X)− `(g(X)). (A.11)

Taking expectations on both sides of (A.11) and using that E[γ(X)g(X)] > x0 hence yields that

E[`(gX(X))] 6 E[`(g(X))], which is the desired optimality.

Let us now turn to the case in which K > x0. To this end, consider a := infy `
′
−(y) > 0

and b := supy `
′
−(y) ∈ [a,∞]. Then I(z) = −∞ for z < a and I(z) = +∞ for z > b. Moreover,

I(a) = limz↓a I(z) is finite if and only if ` is linear on (−∞, I(a)] with slope a. Since K > x0

can only occur if I(0) is finite and we clearly have I(0) 6 I(a), it follows that ` is linear on

(−∞, I(a)] and I(0) = I(a). On the other hand, the slope of ` on (I(a),∞) will be greater than

a. Therefore, any function g ∈ G taking values greater than v∨I(a) with positive µX -probability

35



must be suboptimal, provided that we can solve the following auxiliary problem:

minimize E[`(g(X))] over g ∈ Gn with v 6 g 6 v ∨ I(a) ∧ w and E[γ(X)g(X)] > x0. (A.12)

If a = 0, so that ` is flat on (−∞, I(a)], then every g satisfying the constraints in (A.12) will be

optimal. For instance, we can take

gX := f for f := v ∨ I(a) ∧ w. (A.13)

If a > 0, then we let h := f − v and replace g in (A.12) with f − g. Then (A.12) is equivalent

to the auxiliary problem,

maximize E[g(X)] over g ∈ Gn with 0 6 g 6 h and E[γ(X)g(X)] 6 K − x0. (A.14)

If K = x0, this problem has only the trivial solution g ≡ 0, and so (A.13) is clearly the µX -

a.s. unique solution to (A.12). For K > x0, we choose c0 > 0 such that E[γ(X)1{γ(X)6c0}h(X)] =

K−x0; this is possible, because, by way of the linearity of ` on (−∞, I(a)], our assumption that

both E[`(v(X))] and E[γ(X)|w(X)|] are finite implies that E[γ(X)1{γ(X)6c}h(X)] is a finite and

continuous function of c ∈ R. Now define g∗ := h1{γ6c0} and take any other g ∈ Gn satisfying

the constraints in (A.14). Then we have (γ − c0)(g − g∗) > 0 and hence

0 6 E[(γ(X)− c0)(g(X)− g∗(X))] 6 −c0
(
E[g(X)]− E[g∗(X)]

)
.

This shows that g∗ solves (A.14). It follows that

gX := f − g∗ = (v ∨ I(a) ∧ w)1{γ>c0} + v1{γ6c0} (A.15)

solves our original problem in case K > x0.

To summarize, our original optimization problem admits a solution gX that has one of

the forms (A.10), (A.13), or (A.15). With this minimizer at hand, we can now proceed to

prove the asserted robustness. So suppose that Zk → X in Lpq
+

n . Since the functions v, w,

and γ are continuous µX -a.e. and since I has at most countably many discontinuities, we have

`(gX(Zk))→ `(gX(X)) in L0. Moreover,

|`(gX(Zk))| 6 |`−(v(Zk))|+ |`+(w(Zk)))|

6 c1(1 + |Zk|rq
−

) + c2(1 + |Zk|pq
+

) 6 c3(1 + |Zk|pq
+

).
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It follows that the sequence |`(gX(Zk))| is uniformly integrable and so E[`(gX(Zk))]→ E[`(gX(X))].

This is the asserted robustness.

A.5 Proofs in Section 9

To prove Proposition 5, we need the following two lemmas. In what follows, we denote by

Aε = {x ∈ R : |x− y| 6 ε for some y ∈ A} for a set A ⊂ R and ε > 0.

Lemma A.2. If A ⊂ R is either compact or an interval, then Aε ∈ B(R) and

sup
π∞1 (Y,X)6ε

P(Y ∈ A) = P(X ∈ Aε).

Proof. If A is a compact set or an interval, then so is Aε, which proves Aε ∈ B(R). Next,

for any Y ∈ L∞ with π∞1 (Y,X) 6 ε, the condition Y ∈ A implies X ∈ Aε a.s. Therefore,

P(Y ∈ A) 6 P(X ∈ Aε), leading to supπ∞1 (Y,X)6ε P(Y ∈ A) 6 P(X ∈ Aε). To show the opposite

direction of the inequality, it suffices to take Y = fA(X)1{X∈Aε} + X1{X 6∈Aε}, where, for a

compact set A, fA(x) is a nearest point of x in A (to be precise, there can be two such nearest

points; by taking fA(x) to be the lower of the two, fA becomes lower semicontinuous and, hence,

measurable). In the case in which A is a nondegenerate interval, we fix a point a in the interior

of the interval and let

fA(x) =


a ∨ (x− ε) if x > supA,

a ∧ (x+ ε) if x 6 inf A,

x otherwise.

In both cases, |Y −X| 6 ε, and P(Y ∈ A) = P(X ∈ Aε), leading to the desired result.

Lemma A.3. Let ε > 0, p ∈ [1/2, 1), and suppose that X satisfies Assumption D. If A ⊂ R is

a compact set or an interval satisfying supπ∞1 (Y,X)6ε P(Y ∈ A) 6 1− p, then

P(X > VaRp(X) + ε) > P(X ∈ A).

Proof. By letting A∗ = (VaRp(X)+ε,∞), the assertion can be rewritten as P(X ∈ A∗) > P(X ∈

A). By Lemma A.2, we have

1− p = P(X ∈ A∗ε) = sup
π∞1 (Y,X)6ε

P(Y ∈ A∗). (A.16)

If P(X ∈ Aε) < 1−p, we can enlarge A to obtain P(X ∈ Aε) = 1−p. Then x := inf(Aε) satisfies

x 6 VaRp(X) since P(X 6 x) 6 1− P(X ∈ Aε) = p.
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We consider two cases separately. First, we assume x > ess-infX. It is from the definition

of x that inf(A) = x+ ε. Hence, (x, x+ ε) ⊂ Aε \A. Also note that P(X ∈ (x, x+ ε)) > P(X ∈

(VaRp(X),VaRp(X) + ε)) since X has a decreasing density and x 6 VaRp(X). Therefore, we

have

P(X ∈ A) = P(X ∈ Aε)− P(X ∈ Aε \A)

6 1− p− P(X ∈ (x, x+ ε))

6 1− p− P(X ∈ (VaRp(X),VaRp(X) + ε)) = P(X ∈ A∗).

Next, we assume x 6 ess-infX. Since p ∈ [1/2, 1), we have P(X < VaRp(X) + ε)) > p > 1− p.

Because P(X ∈ Aε) = 1−p and x 6 ess-infX, there exists x0 ∈ (x,VaRp+ε) such that x0 6∈ Aε.

Let x1 = sup{y < x0 : y ∈ Aε}. By the definition of Aε and x1, we have x1 − ε > x and

(x1 − ε, x1) ⊂ Aε \A. Using a similar argument as in the first case, we have

P(X ∈ A) = P(X ∈ Aε)− P(X ∈ Aε \A)

6 1− p− P(X ∈ (x1 − ε, x1))

6 1− p− P(X ∈ (VaRp(X),VaRp(X) + ε)) = P(X ∈ A∗).

We conclude that, in both cases, P(X ∈ A∗) > P(X ∈ A).

Proof of Proposition 5. Recall that G is given by (20), and EX [h] means E[h(X)] for any function

h. Take an arbitrary g ∈ G. Denote by

a = sup
π∞1 (Y,X)6ε

VaRp(g(Y )),

and let h be given by

h(x) = m1{g(x)>a} + a1{g(x)6a}, x ∈ R. (A.17)

For all Y ∈ L∞ with π∞1 (Y,X) 6 ε, we have VaRp(g(Y )) 6 a. Therefore, P(g(Y ) > a) 6 1− p,

which implies VaRp(h(Y )) 6 a. Thus,

sup
π∞1 (Y,X)6ε

VaRp(h(Y )) = a.

Note that h ∈ G since m > h(x) > g(x) > 0, x ∈ R. Therefore, for any g ∈ G, we can find some
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h ∈ G of the form (A.17), such that

sup
π∞1 (Y,X)6ε

VaRp(h(Y )) = sup
π∞1 (Y,X)6ε

VaRp(g(Y )).

As a consequence, it suffices to search for optimizers h ∈ G of the form (A.17). Moreover, for

such an h, we have EX [γh] = mQ(g(X) > a) + aQ(g(X) 6 a), where Q is given by dQ/dP = γ.

Due to the inner regularity of the law Q ◦ X−1, we can find, for any a′ > a, a compact set

K ⊂ {g(X) > a} such that h′(x) = m1{x∈K} + a′1{x∈Kc} satisfies EX [γh′] > EX [γh] > x0.

Since P(Y ∈ K) 6 P(g(Y ) > a) 6 1− p for all Y ∈ L∞ with π∞1 (Y,X) 6 ε, we have

sup
π∞1 (Y,X)6ε

VaRp(h
′(Y )) = a′.

Let us denote by K the class of all compact set K ⊂ R satisfying P(Y ∈ K) 6 1 − p for all

Y ∈ L∞ with π∞1 (Y,X) 6 ε. The above argument shows that K is not empty. Define a function

hK(x) = m1{x∈K} + aK1{x∈Kc}, x ∈ R, (A.18)

where aK ∈ R is such that EX [γhK ] = x0. The existence of aK is guaranteed by P(X ∈ Kc) >

p > 0. Note that 0 < aK < m since x0 < m and q > 0.

The preceding argument shows that it is sufficient to construct a function h∗ such that

E[γh∗(X)] = x0 and

sup
π∞1 (Y,X)6ε

VaRp(h
∗(Y )) 6 sup

π∞1 (Y,X)6ε
VaRp(hK(Y )) = aK , (A.19)

for all K ∈ K . We define h∗ by

h∗(x) = m1{x>c+ε} + a∗1{x6c+ε}, x ∈ R,

where a∗ 6 m is such that EX [γh∗] = x0. Now let K ∈ K be given and hK of the form (A.18).

We take k ∈ R such that P(X > k) = P(X ∈ K). Lemma A.3 gives

P(X > c+ ε) > P(X ∈ K) = P(X > k)

and hence k > c + ε. Moreover, since γ is an increasing function of X, the upper Hardy–

Littlewood inequality, in the form of Föllmer and Schied (2016, Theorem A.28), yields

x0 6 EX [γhK ] 6 E[γ(X)(m1{X>k} + aK1{X6k})] 6 E[γ(X)(m1{X>c+ε} + aK1{X6c+ε})].

39



Our condition EX [γh∗] = x0 therefore yields aK > a∗. Since, moreover, by construction,

sup
π∞1 (Y,X)6ε

VaRp(h
∗(Y )) = a∗ and sup

π∞1 (Y,X)6ε
VaRp(hK(Y )) = aK ,

we conclude that (A.19) holds and that h∗ is hence a solution to Problem (21).

A.6 Robustness of VaR and ES in an unbounded setting

For ρ = VaRp or ρ = ESp, we consider the unbounded optimization problem

to minimize: ρ(g(X)) subject to g ∈ Gn, E[γ(X)g(X)] > x0, (A.20)

where γ : Rn → (0,∞) and x0 ∈ R. Problem (A.20) corresponds to (8) with w = ∞ and

v = −∞.

Proposition A.1. Assume that X is continuously distributed, E[γ(X)] <∞, and p ∈ (0, 1).

(i) For ρ = VaRp, Problem (A.20) has no solution.

(ii) For ρ = ESp, Problem (A.20) admits a solution if and only if

ess-supγ(X) 6
1

1− p
. (A.21)

Moreover, if (A.21) holds, a solution to (A.20) is given by the constant function gX(·) = x0.

Proof. Denote by

Gub = {g ∈ Gn : E[γ(X)g(X)] > x0}.

(i) Let A be a set such that P(X ∈ A) = 1 − p. Write λ = E[γ(X)1{X∈A}] > 0. For d < x0,

define the function

gd(x) = d+
x0 − d
λ

1{x∈A}, x ∈ Rn.

Clearly, gd(X) ∈ Gub because E[γ(X)gd(X)] = d+ x0−d
λ E[γ(X)1{X∈A}] = x0. On the other

hand, VaRp(gd(X)) = d. Letting d→ −∞,

VaRp(X;Gub) = inf{ρ(VaRp(g(X)) : g ∈ Gub} = −∞,

and hence (A.20) does not have an optimizer.

(ii) By the dual representation of ESp in (14), we have

ESp(Y ) = sup
B∈Bp

E[BY ] for all Y ∈ L1,
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where Bp = {B ∈ L∞ : E[B] = 1, 0 6 B 6 1
1−p}. If ess-supγ(X) 6 1

1−p , then γ(X) ∈ Bp,

and hence for any g ∈ Gub, ESp(g(X)) > E[γ(X)g(X)] > x0. Clearly, taking the constant

function gX(·) = x0 we have gX ∈ Gub and ESp(gX(X)) = x0. Therefore, gX is a solution

to Problem (A.20).

Next, assume ess-supγ(X) > 1
1−p . Denote by y = E[γ(X)1{γ(X)> 1

1−p}
] > 0 and k =

ESp(1{γ(X)> 1
1−p}

). Note that k 6 y because

ESp

(
1{γ(X)> 1

1−p}

)
= sup
B∈Bp

E[B1{γ(X)> 1
1−p}

]

6
1

1− p
E[1{γ(X)> 1

1−p}
] < E[γ(X)1{γ(X)> 1

1−p}
].

For λ > 0, take gλ(x) = λ1{γ(x)> 1
1−p}

− λy + x0, x ∈ Rn. It is clear that E[γ(X)gλ(X)] =

λy − λy + x0 = x0, and hence gλ ∈ Gub. We can calculate

ESp(gλ(X))− E[γ(X)gλ(X)] = λ
(

ESp

(
1{γ(X)> 1

1−p}

)
− y
)

= λ(k − y).

Letting λ→∞, we get

inf{ESp(g(X)) : g ∈ Gub} = −∞,

and hence there is no solution to Problem (A.20).

As a direct consequence of Proposition A.1, for any choice of (Z, π), VaRp is not robust

against optimization for (Gub,Z, π), and if (A.21) holds, then ESp is robust against optimization

for (Gub,Z, π). Clear from the proof, the assumption that X has a continuous distribution is

only used in part (i), and it can be relaxed to requiring P(X ∈ A) ∈ (0, 1− p) for some event A.
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