IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 36, NO. 1, JANUARY 1991 25

Robustness in the Presence of Mlxed
Parametric Uncertainty and
Unmodeled Dynamics

Michael K. H. Fan, Member, IEEE, André L. Tits, Member, IEEE, and John C. Doyle

Abstract—It is shown that, in the case of mixed real parametric and
complex uncertainty, the structured singular value can be obtained as
the solution of a smooth constrained optimization problem. While this
probiem may have local maxima, an improved computable upper bound
to the structured singular value is derived, leading to a sufficient condi-
tion for robust stability and performance.

INTRODUCTION

N inherent tradeoff in modeling is between fidelity and

simplicity. It is desirable to have models which closely
match reality, yet are still easy to analyze. This tradeoff arises in
modeling uncertainty. For example, a single norm bounded
perturbation simplifies analysis but may be too conservative.
Introducing more structure may improve the model fidelity but
typically complicates the analysis. It is often very natural to
model uncertainty with real perturbations when, for exmaple,
the real coefficients of a differential equation model are uncer-
tain. It is important, however, to remember that such parametric
variations are in a model, not in the physical system being
modeled. Models with real parametric undertainty are used
because, in principle, they allow more accurate representation of
some systems.

The structured singular value (SSV or p) was introduced to
study structured uncertainty in linear models [1]-[3]. It is
defined in such a way as to give a precise characterization of
robust stability and performance, in an H_, sense, for a rich
variety of uncertainty descriptions (Small x Theorem [2]). There
is a large literature on robustness, particularly for unstructured
uncertainty, and connections with H_, theory. A brief historical
review of the literature most directly influencing the develop-
ment of p-based methods will be given after the notation is
introduced.

Much of the subsequent research on p has focused on compu-
tational schemes, with reasonable success for problems involv-
ing only complex uncertainty. Complex perturbations are typi-
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cally used to represent uncertainty due to unmodeled dynamics,
or to “‘cover’’ the variations produced by several real parame-
ters. In the u framework, complex uncertain blocks also arise
for problems of robust performance, and thus practical applica-
tions of p always involve at least one complex block. Although
there are important outstanding issues to be resolved in computa-
tion of p for complex perturbations, substantial progress has
been made and p is being applied routinely to large engineering
problems. This paper focuses on the computation of p for mixed
real parametric and complex uncertainty, which is fundamentally
more difficult than for complex perturbations.

The major issues in computing g, or its equivalent, are the
generality of the problem description, the exactness of analysis,
and the ease of computation. Existing methods for real perturba-
tions emphasize just two of these three issues. A general and, in
principle, exact method is a brute force global search using a
grid of parameter values (e.g., [4], [5]). This inevitably involves
an exponential growth in computation as a function of the
number of parameters, and taking fewer grid points to avoid this
gives up exactness. This ‘‘exponential explosion’” limits the
usefulness of exhaustive global search methods, although simple
search in some form will always play an important role in
practical control design.

Tentatively, a reasonable requirement on a computational
scheme would seem to be that the typical time to compute
solutions scales in some polynomial way with the size of the
problem. This is compatible with the conventional view in
computational linear algebra, where, for example, the QZ itera-
tion for computing singular values is considered an acceptable
approach. From this point of view, progress is being made in
reducing the computational burden of exact methods [6]-[8], but
no general, exact, polynomial-time algorithms are available.
Nevertheless, this work suggests some promising research direc-
tions, and these will be discussed in the final section.

An approach to obtaining exact results with more modest
computation is to restrict the problem description. The best
example is Kharitonov’s celebrated result for polynomials with
coefficients in intervals [9]. While few models with engineering
motivation fit the allowable problem description, Kharitonov’s
theorem inspired a great deal of research. Progress is being
made in this direction by allowing more general uncertainty
descriptions at the expense of more computation (e.g.,
[10]-[12]). Unfortunately, the results so far indicate that even a
modest departure from the interval polynomial problem leads to
exponential explosion.

The approach taken in this paper could be characterized as
being very general and computationally attractive, but poten-
tially inexact. Following the methods developed for p in the case
of complex perturbations, the main idea is to get upper and
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lower bounds using local search methods which are computa-
tionally inexpensive, but may fail to find global solutions. One
then seeks to prove that the local methods yield global solutions,
or that the bounds one gets are tight enough to be of value in
problems of interest. The strategy taken in this paper has been
very successful in the case when all perturbations are complex
and appears to have promise for the general case as well,
although it is clear that the latter is much more challenging. In
the final section, some speculations will be presented on how the
results in this paper might be combined with the work in [6]-[8]
to obtain an approach which is general, efficient, and exact.

The balance of the paper is organized as follows. In Section I,
the SSV framework is introduced and a brief historical review of
the literature most influencing the development of p-based meth-
ods is given. In Section II, it is shown that x can be obtained as
the optimal value of a smooth constrained optimization problem.
Geometric interpretation of this result is discussed in Section III.
The framework of Sections II and III is used in Section IV to
derive a new computable upper bound on . In Section V, the
new bound is shown to be mathematically equivalent to that
given in [3] for the case of nonrepeated real scalar blocks. A
serious and valid criticism of the literature on p is the lack of
tutorial material, thus limiting the readership primarily to ex-
perts. While it is beyond the scope of this paper to correct this
deficiency, Section VI contains some simple examples and nu-
merical experiments which should both motivate and illustrate
the use of the theory. Also, the next section give some historical
background. Finally, Section VII offers some speculation about
the future directions for research in this area. All proofs are
given in Appendix A. Appendix B contains data used in the
experiments of Section VI.

Many of the results of this paper have appeared, without
proof, in [13].

1. PRELIMINARIES
A. Framework

Throughout the paper, given any square complex matrix M,
we denote by (M) its largest singular value, by o(M) its
smallest singular value, by M its complex conjugate, and by
MH its complex conjugate transpose, and we let pgx(M) =
max {| \|: X is a real eigenvalue of M} , with px(M) = 0 if
M has no real eigenvalue. If M is Hermitian, we denote by
NM) its largest eigenvalue. Given any complex vector x, xf
indicates its complex conjugate transpose and || x|} its Euclidean
norm. The empty set will be denoted by (7. Finally, while j
(italics) will be used as a running index, j (bold italic) will
denote v — 1.

Given an n X n complex matrix M and three nonnegative
integers m,, m., and me, with m :==m, + m,+ mg<n, a
block structure x of dimensions (m,, m,, my) associated
with M is an m-tuple of positive integers.

kmr+mc+l" T km)

(1.1)
such that Z;":]k ¢g=n Given a block structure ¥, consider the
family of block-diagonal n X n matrices

= {block diag (8{1,, -+,

= (kl"“ ’ km,-; km,-+17” i kmr+mc;

’"rIkm s OF Ikm +10 T

8 WAE

me kmp+mg

C
AI,...

6,eR, 8¢, A‘; € @"mr*mc*qx"Mr(-ma'q}
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where for any integer k, I, denotes the k X k identity matrix.
The ‘‘repeated real scalar blocks 671, correspond to paramet-
ric uncertainty, one ‘‘repeated complex scalar’” block 67 S
can be used to represent frequency (see [3] for details; several
blocks of the latter type are introduced here mostly for the sake
of uniformity) and the ““full complex’” blocks AC correspond to
unmodeled dynamics.!

Definition 1.1. [I1]: The structured singular value p (M)
of a complex n X n matrix M with respect to block-structure ¥
is 0 if there is no A in %', such that det(/ — AM) = 0, and

(1.2)

otherwise. 0
Directly from Definition 1.1, it is easily shown that

Pr(M) = p, (M) < G(M)
and that, forany U, Ve %,, De 9,
»(M) = p,(DUMVD™)

(gglx{&(A):det(l_ AM) =0})—1

(1.3)

(1.4)

where
Uy= {Ue 2, UUH = I}
and
Dy= {block diag (D,," - -, D, .m.
d Ikmr+mc+l’ B d"’CI"m):

— DH e @kgxk
0 < D, = D} e g*a> Q,dq>0}.
Combining these two sharpens (1.3) to?

MU) < M) < inf ¢(DMD™"). (1.5
max oa(MU) = 1, (M) = inf 5(DMD™). (1.5)

For the purely complex case (m, = 0), the py inequality is
always an equality and the o inequality is an equality when
2m.+ mc<3 [1], [14]. The p; expression typically has
nonglobal local maxima while every local minimum of the &
expression is global. Extensive computational experience has
suggested that it is easy to obtain Ue %, making pg(MU)
close to the latter, even when m- > 1. These bounds formed
the basis for early computational approaches to p for m, = 0,
because local search methods could be used to make the bounds
reasonably tight [1], [15], [16].

Unfortunately, when m, > 0 the bounds in (1.5) may be
arbitrarily far off, even for problems with engineering motiva-
tion. In [3], an improved upper bound was obtained but no
practical way to compute it was given. This paper provides an
alternative maximization to the pp expression which is equal to
py(M) at its global maximum. The new expression suggests a
geometric interpretation based on the concept of ‘‘multiform
numerical range.”” Also, an upper bound mathematically equiva-
lent to the one in [3] is obtained, but with much better computa-
tional properties.

!Note that nonrepeated complex scalars 8¢ can be viewed indifferently as
re ated comp]ex scalar blocks 8, with k = 1, or as full complex blocks
e@!>!

*Note that, if m, =0, pg can be equivalently replaced by the spectral
radius p.
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B. Historical Perspective

In this section, we will briefly review the ideas that most
influenced the original development of the p theory. These
remarks are essentially from earlier papers [1], [2], but are
repeated here for the convenience of the reader.

An obvious influence was the work in so-called robust multi-
variable control systems from the late 1970’s (see, for example,
[17]) which in turn drew heavily on earlier work in stability
analysis (e.g., [18]-[22]), particularly, small gain and circle
theorems. These theorems established sufficient conditions for
stability of nonlinear components connected in feedback. The
emphasis in the robustness work was on small gain type condi-
tions involving singular values that were both necessary and
sufficient for stability of sefs of linear systems involving a single
norm bounded but otherwise unconstrained perturbation. An-
other emphasis for much of the robustness theory was on using
singular value plots to generalize Bode magnitude plots to
multivariable systems.

While methods based on singular values were gaining in
popularity, it became evident that their assumption of unstruc-
tured uncertainty was too crude for many applications. Further-
more, the problem of robust performance was not adequately
treated. Freudenberg ef al. [23] studied these issues using
differential sensitivity and suggested that something more than
singular values was needed. It was a natural step to introduce
structured uncertainty of the type considered in this paper (see
[24] for an early treatment). The so-called conservativeness of
singular values rested on the fact that the bounds in (1.3) could
be arbitrarily far off, and research was begun to provide im-
proved estimates of u, with an initial focus on the nonrepeated,
complex case (m, = m, = 0).

It was obvious that the sharper bounds in (1.5) could help
alleviate the conservativeness somewhat. These bounds were
similar to the multiplier methods that were used in nonlinear
stability analysis to reduce the conservativeness of small gain
type methods [21], but the use of both upper and lower bounds,
and the questions of how close the bounds were and how to
efficiently compute them were new and open. That the lower
bound is equal to u is relatively straightforward and not surpris-
ing. What is remarkable, even in retrospect, is that the upper
bound is also an equality for m. =< 3 and close for m = 4.
The equality results were first proven in [1], while the m. = 4
case has only experimental evidence. Although by now that
evidence is extensive, it remains an important open question to
further characterize the exact nature of the upper bound for
me=4.

There was substantial numerical evidence for the upper bound
results some time before they were proven. Engineers at Honey-
well’s Systems and Research Center, particularly J. Wall, began

. routinely using a simple generalization of Osborne’s routine [25]
to approximate the upper bound in (1.5) and gradient search to
find a local maximum for the lower bound. Osborne’s algorithm
minimizes the Frobenius norm rather than the maximum singular
value, and the scalings produced can be used to approximate the
upper bound. The consistent closeness of the bounds, usually
within a few percent, suggested that there was a deeper connec-
tion between the bounds. Ironically, minimizing the Frobenius
norm remains the cheapest method of approximating the upper
bound. Safonov [26] suggested a somewhat less general approxi-
mation to the upper bound based on Perron eigenvectors which
is comparable to Osborne’s in speed and accuracy.

While the u framework arises naturally in studying robust
stability with structured uncertainty, it also can be used directly

to treat the problem of robust performance with structured
uncertainty [2]. This is a consequence of the intimate connection
between p and linear fractional transformations (LFT) {3], [14].
In retrospect, it is clear that Redheffer had developed the founda-
tion of this connection in his work on LFT in the late 1950’s
[27], [28]. In fact, Redheffer had even proven that the upper
bound in (1.5) was an equality for the case where m, = m, = 0
and mc = 2. While Redheffer’s results were not well known in
the control community until the u theory was already well
developed, the rediscovery of his work has since had an impor-
tant influence, not only on the further development of x but in
other areas as well (e.g., see [29]).

II. A SMOOTH OPTIMIZATION PROBLEM

Definition 1.1 suggests that one consider matrices A€ %,
such that, for some nonzero x

AMx = x. (2.1)
Without loss of generality, x has unit length, i.e., -
x€dB = {xe@": || x| = 1}.

In view of the structure of A, (2.1) imposes some constraints on
“‘subvectors”’ of x, corresonding to x being split according to
structure ¥. To help the reader’s intuition, we first consider the
case of uncertainty consisting of a single, possibly repeated,
uncertain real parameter and a single complex block.

A. Key Ideas in a Special Case
As a simple special case, consider the block structure
xH=(k,;; kc) (2.2)
and the corresponding family of matrices
%= {block diag (871, , A°): "€ R, A°€ G¥Cxkc},
Let Q, e R*"*", Qe R¥C*" be projection matrices defined by
e =[L o], ac=[0 1]
The constraints on x implied by (2.1) are
8'Q,Mx=Q,x
AQoMx = Qcx.

(2.3)
(2.4)

In order for (2.4) to be achieved for some A°, 6(A°) < b, for
given b = 0,it is necessary and sufficient that

b QcMx| = || Qcx|.

Similarly, for (2.3) to be achieved for some |87 = b, it is
necessary (but no more sufficient) that

bl Q, Mx| = || Q, x||.

Equation (2.1) now implies additional constraints, namely (if
x;#0,i=1,---,k,)

2.5)

x; X;

Lj=1-k  (2.6)
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(including the case i = j), as these are equivalent to the exis-
tence of {€ R such that
S(Mx);=x;,, i=1,k,.
Thus, p (M) = b, ', with b, the smallest b for which some x
exists that satisfies all these constraints. Letting 6 = b~ ' and

with
Sy (M)

_ mr
= {x€dB: x,(Mx); = X,(Mx);, (i, j) e |JJ,x J,;
g=1

mp+me
removing the assumption that x has nonzero components, one xi( Mx),» = xj( Mx),, (i, j) e U J,xJ,p. O
obtains the following results for structure (2.2), a special case of g=mp+1
Theorem 2.1 below:
(m)y = {° it 7,(M) = @
r | max {6: 10, Mx|| = 6)Q, x|, | QcMx|| = 8] Qcx| for some xe %, (M)} otherwise
with

Iy(M) = {xedB: x;(Mx),=x,(Mx),;, i,j=1,",k,}
(m,=mec=1, m =0).

Note that the constraint

*(Mx), = x,(Mx);, i, j=1,,k,
can be equivalently expressed as
xPMHPEYx = xHEUMx  i,j=1,---,k,

where E“/ is any n X n matrix whose only nonzero entry is in
position (i, j), or as
x"MH¥Gx = x¥'GMx  for all G e {block diag (Gy,,0)}
where G, ranges over the set of all k, x k, complex matrices
or equivalently over the set of all kK, X k, Hermitian matrices
(as any complex matrix M can be decomposed as M = M, +
JjM,, with M, M, Hermitian).

B. General Case

It is readily checked that repeated complex scalar blocks
(m_ > 0) imply constraints of the form (to be compared to (2.6)
above)

(Mx);, (Mx),

X; X;

with 7 and j ranging over indexes corresponding to the block
under consideration. With this in mind, extension to the case of
a general block structure presents mostly notational rather than
conceptual difficulty. Consider the projection matrices Q,, g =
1,-++, m, defined by

0, = block row
(quxkl" Tt quxkq-.» qu’ quxkqﬂ,' T quka)

where, for any positive integers k, k', O, is the k X k zero
matrix and O, is the k X k' zero matrix. Also, for ¢ =
1,---, m, + m_, consider the index set J, defined by

J, =

g-1 q-1 q

Dkt Xk, 2,0, Y k.

p=1 p=1 p=1

The result obtained in Section II-A is then generalized as follows

(see proof in Appendix A).
Theorem 2.1: For any matrix M and associated structure ¥

0
pe(M) = {

max {0: | Q,Mx| = 0] Qgx|, ¢ =1,

Formula (2.7) for p,(M) amounts to a constrained maxi-
mization over 6 and x in R X ©". It has some definite computa-
tional advantages over the formula defining u (M) in Defini-
tion 1.1. The number of variables is limited, the objective and
constraints are inexpensive to evaluate and, after squaring all the
norms, objective and constraints become smooth. However,
again, (2.7) may have local maxima which are not global and it
is not clear whether the global maximum can be easily obtained.

Remark 2.1: Finding a point x € &, (M) may not always be
simple. Yet, in the following two cases, such a point is readily
available: i) if m> 0 then xe ¥, (M) whenever || x| =1
and x; = O for all ieJq, q=1,"-,m.+ mgii) if M has a
real eigenvalue, then x € ¥, (M) with x any corresponding unit
length eigenvector.

Remark 2.2: It should be clear that in the purely real case,
i.e., when M is a real matrix matrix and m_ = m = 0, (2.7)
still holds if x is restricted to be real.

Remark 2.3: Some of the constraints defining %, (M) may
seem to be redundant. In fact, it can be shown that (2.7) is no
longer valid if any of these constraints is removed but that for a
generic matrix M (in particular, for one with no zero entries),
roughly 25% of the constraints are indeed redundant. O

Remark 2.4: Following [3], let us define the spectrum of M
with respect to ¥ as

spy (M) = {Ae 2, :det (M- A) =0}
and let

0 ifspy (M) =

sup  o(A)
Aesp y (M)

2% ( M ) = otherwise.

Then it is simple to check that

Yo (M) = sup {6:]Q,Mx| =10,]Q,x|

>0
81, +,0m=0

0,z20,g=1,---,m

for some xe %, (M)} (2.8a)
if the feasible set in (2.8a) is nonempty, and
Yo (M) =0 (2.8b)
it 7, (M) = @

,m  for some xe %, (M)} otherwise 27)
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otherwise, Clearly (2.8) is very similar to (2.7). Yet, as pointed
out in [3], while v, (M) = p (M) if m, = O (no parametric
uncertainty), equality does not hold in general, but rather

Ve (M) < py(M).

(2.9)
Od
In the case when m_ = 0, %, (M) can be expressed in a simple
form, to be used in the following sections.
Proposition 2.1: Let 9, be the family of Hermitian matri-
ces

9y = {block diag (Gy,"**, Gm,» Opyy 1> Oty
G, = Gl e @kaxka)
and let &, be any basis for ¢, . Then
Zx (M)

c {xedB: x*(MHG - GM)x=0 Vv Ge¥9,}
= {xedB: x*(M¥E - EM)x=0 Vv Eeé,}.
(2.10)

If m, =0, then ¥,(M) is equal to the right-hand side of
(2.10). O

III. INTERPRETATION IN TERMS OF THE MULTIFORM
NUMERICAL RANGE

Formula (2.7) leads to a characterization of the structured
singular value in terms of the multiform numerical range of
some matrices. The multiform numerical range (or t-form
numerical range) of a t-tuple of n X n Hermitian matrices
A, A, is the set

W(A,, -+, A) = {f(x): xedB}
where f: ©" — R’ has components
fx)=xPA,x, q=1,---,1.

First, suppoes that m, = m,. = 0. For « € R, let
A (e) = aQlQ, - MHQTQ M, g=1,---,m¢

(3.1)

and let W,(a) be the mform numerical range
W(A(a), -, Ap (). Then?

py(M) = inf {Va:0¢ W, (a) + RTC}
o=
(m,=m.=0) (3.2)
with
RYC= {veR™C:v,20,g=1,""", m¢}.

This follows rather directly if one rewrites the constraints in
2.7) as
xHA (02)x<0, g=1,-, me.

Suppose now that m, # 0. For g = 1, -, m (m = m, + m)
and ¢ eR, let

Aq(O‘) = O‘Q; q” MHQZ M

3A related result was obtained in [30].

and for i = 1,-++, T77 k2, let
Arn+q(°‘) =j(MHEq - EaM)

where the E_’s are the elements of a basis ¢, of ¢, taken in
some arbitrary order, and where the argument « is used for the
sake of uniformity of notation. Then A (a) = A (@), g =
1,---, s, with

mr
s=m+ Y k?
i=1

and p (M) = 0if ¥,(M) = ¢ and
pr(M) = max {Va: x4, (a)x=<0,qg=1,-, m}
xedB

az0

otherwise. Denoting by W, («a) the multiform numerical range
associated with A, («),***, A(a), i.e.,

Wy(a) = {veR*:3 xedBs.t. v, = x"4 (a)x,
= l,"',S}

we obtain the following result, to be compared to (3.2). Here,
the set &, C R? is defined by

Pu={veRv,20,g=1,--,m;

v,=0,g=m+1,--,s}.
Theorem 3.1:

be(M) = inf {Va:0¢Wy(a) + B} (m=0).

O
Let us now define, for any c € R

cy(a) = min {N(v): ve W,(a) + %,}

where N(-) is any given norm in RY satisfying N(e,) <1,
with {e,} the canonical basis, and let us consider the following
algoritghm.

Algorithm 3.1: (Computation of p, (M) when m, = 0).

Step 0: Set oy = 72(M) and k = 0.

Step 1: Set oy, = o — (o).

Step 2: Set k = k + 1 and go to Step 1. a

A key property of ¢, (-) (see [30], [31]) still holds here (see
proof in Appendix A).

Proposition 3.1: ¢, () is continuous and, for any 8 = 0 and
a€R, cy(a+ B) < cy(a)+ 8. d

The following convergence result follows (see [30]).

Theorem 3.2: The sequence {c,} generated by Algorithm
3.1 is monotone nonincreasing and

lim /o, = p(M).
k—o 0

Algorithm 3.1 can be implemented whenever W, (a) is con-
vex. Since the multiform numerical range of no more than 3
matrices is always convex (provided these matrices have size at
least 3 X 3) [32]-[34], this will always be the case when s < 3,
i.e., in the case of 3 or fewer complex blocks (m, = 0,m_, = 0,
me < 3) or 1 real scalar block and one or no complex block
(m,=1, k=1, m, =0, m-<1).

IV. A CompuTaBLE UpPER BOUND

Given any block structure ¥, the corresponding structured
singular value is no greater than the largest singular value, as the
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latter corresponds to the least restrictive structure X' = (;; n)
[see (1.3)]. The following proposition, a consequence of Theo-
rem 2.1 and Proposition 2.1 (see the proof in Appendix A),
provides two intermediate bounds.

Proposition 4.1: For any matrix M and associated block
structure X

b (M) = 1, (M) < v, (M) = 5(M)

(4.1)

where

if YJ(M) =

ny (M) = | Mx|| otherwise

max
xe% oy (M)

and

vy(M) = \/max {0, Giél;}[M”MH(GM— MHG)]} .

O
The following theorem is a direct consequence of (1.4) and
Proposition 4.1.
Theorem 4.1: For any matrix M and associated block struc-
ture X

uy(M) < inf 7,(DMD™')
Dedy

< inf DMD™!
0‘39/1( )
< inf d(DMD™Y). 4.
nf o ( ) (4.2)
o

Theorem 4.1 gives two upper bounds which are less con-
servative than infusgf d(DMD™'). However, since
max ¢y pmp-1 | PMD™'x| may have local maxima that
are not global, attempts to evaluate 7,(DMD™') may yield
strict lower bounds on this quantity and this may result in
underestimation of y , (M). Fortunately, the second upper bound
in (4.2) does not suffer from this shortcoming. Indeed, we can
write

inf »,(DMD"") = \/max {0, inf
DeZ2y

F(D,G)}
Dedy,Geby

(4.3)
where F: 2, % 9,— R is defined by
F(D,G) = N MMy, + j(GM, - MEG)]  (4.4)

with M, = DMD~'. Thus, for any De 2,,, Ge ¥, unless

F(D, G) < 0 (in which case p (M) = 0), \/F(D,G) is an
upper bound for u,(M). The same upper bound can be ob-
tained by means of a computationally simpler probiem as seen
next. For any aeR let &,: 2, X ¥,— R be defined by

¢.(D,G) = NM*DM + j(GM - MHG) - aD]. (4.5)
Proposition 4.2: i) For any De 9,,, Ge 9,
F(D,G) = max {a: @,(D?, DGD) = 0}
o

which is the only value « for which & (D? DGD) = 0. ii)

Moreover
inf F ( D, G) =
De2y,Ge%y

f max :d (D >
;/n » a. {a. 9( ,G)..O}.
‘:]

Notice that @, is the composition of a convex function (M and
an affine function, and thus is convex. It can be shown that any
local minimizer (D, G) for
inf max {a: &,(D,G) = 0}
Dedy,Ge9y o
is global and this problem can be solved by means of a simple
algorithm [35].

Finally, there are noteworthy instances where the new upper
bound is equal to the structured singular value. The next
proposition establishes a sufficient condition on ¢, for this to
hold.

Proposition 4.3: Let m, = 0. Let (D, G,) € 2,X% %, and
let

o, = max {a: &,(D,,G,) = 0}.

If ®, is differentiable at (D,, G,) with vanishing derivative,
then "

k(M) = min v, (DMD"") = v, (DY*DM; ")

De2y

\/max {0, F(DY?, D;'2G,D; ')}

where DY is the positive definite square root of D, and
D~ _is'its inverse. O
An important case where the conditions of Proposition 4.3
hold is as follows.
Theorem 4.2: Let m_. = 0. Suppose that infp_, "
Ge 9y F(D, G) is achieved, say at (D, G), and that the corre-
sponding largest eigenvalue in (4.4) is simple. Then

py(M) = inf v (DMD™') = v, (DMD™")
De2y

= y/max {0, F(D,G)} .

V. CORRESPONDENCE WITH THE LINEAR FRACTIONAL
TRANSFORMATION APPROACH

In [3], it is shown that in the case of nonrepeated real scalar
blocks (kq =1, g=1,"-+,m,), given a« >0, a sufficient
condition to ensure that p, (M) < « is that

nf nf 3| jC+ (1~ cz)'/zu(%)p-l] <1 (5.1)
where

Cy= {diag(cl,cz,---,c,,,r,O,---,O): ce(—1,1)}.
Using the bijection from (—1,1) to R

c
Vi-¢?

it is easily checked that condition (5.1) is equivalent to

cC—g=

. P My 172
inf inf ||D|—|D7'+jG|(I+ G?) <1.
De9y Ge9y [+

(5.2)
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The following proposition, which holds whether or not there are
repeated scalar blocks, connects (5.2) with (4.3).
Proposition 5.1: Let « > 0. Then (5.2) holds if and only if
inf inf F(D,G) = o’ (5.3)
De9y Ge%y
Moreover, the infimum is achieved in (5.2) if and only if it is
achieved in (5.3). O
Thus, (5.1) implies p,(M) < « in the general case, pro-
vided %, consists now of Hermitian block-diagonal matrices in
the place of the scalars, and the infimum of all positive a’s
satisfying (5.1) is identical to the second upper bound in (4.3).
The advantage of (4.3) is that it has much better computational
properties. The characterizations in (5.1) and (5.2) may still be
useful in the context of u-synthesis, which uses the upper bounds
and H_, optimal control to synthesize controllers, This is under
investigation.

V1. EXAMPLES

The main result of this paper is that obtained in Section IV of
a computable upper bound to the structured singular value with
respect to a structure involving both complex blocks and real
scalars. It was pointed out that the new bound is, in general,
sharper than that of formula (1.5) corresponding to the assump-
tion that all uncertainties are allowed to take on complex values.
The purpose of the numerical experiments reported here is to
illustrate this last statement.

We begin with an example that can be given some engineering
motivation. Although a complete tutorial on the use of p in
analyzing control systems is beyond the scope of this paper, this
example illustrates some of the key issues. Also, it is an example
where the correct answer for real perturbations is known, so we
can compare this to what is obtained using the methods of this
paper. We begin with the transfer function model

n

g(s) _ Z o;w;Ss

21 8242805 + 0¥ (1 +1;6;)

with a;, w;, r;, and {; all positive constants, and the &;
representing real perturbations which have been normalized such
that —1 < §; < 1.

Several different physical problems could motivate a model of
this type. A mechanical system consisting of an interconnection
of n masses and springs would be the simplest example. Uncer-
tainty in the value of the spring constants would lead naturally to
perturbations” entering in this way. A very similar problem
would be the first n modes of a flexible structure with uncer-
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tainty in the stiffness of the materials. In either case, the
numerator dynamics are consistent with the assumption that the
control input is a force and the output is a velocity measurement
at the same location as the force input. In the flexible structure
literature this is referred to as a collocated sensor and actuator.
If this were a model of a flexible structure to be used in control
design, we might want to consider uncertainty in the damping as
well, and would probably add additional perturbations to cover
unmodeled modes.

Another way that an uncertainty description like the one above
could naturally arise is when the §; do not represent any
particular known physical mechanism, but are used to capture
the regularities that might be found in input-output data. In any
case, it is important to recognize that, strictly speaking, parame-
ters and perturbations are mathematical objects that occur in our
models, not in the physical systems being modeled. We use
explicit representations of uncertainty because we want models
which are useful for control design, but coming up with such
models for actual physical systems can often be quite challeng-
ing. For this example, we will take n = 3, w; = 0.5, w, =1,
w3 =2, and {; =001, o; = 0.2, r; = 1 for all i. This would
correspond to a fairly lightly damped system.

Suppose we use a unity feedback system with a disturbance
occurring at the same location as the force input. Then denoting
the output by y, the input by u, and the disturbance by d, we

5 »(5) = &(s)(u(s) + d(s))
u(s) = —y(s).

Suppose we are interested in internal stability of this feedback
system as the §; vary. It is easily verified by examining the
Nyquist plot for g that:

i) The system is stable if, and only if 8, > —1 for all J; if for
any i, §; = —1 then the system has an open-loop pole-zero
cancellation at s = 0 and cannot be stabilized.

ii) The magnitude (in the H, sense) of the closed-loop
transfer function from d to y is less than 1 for all s = jw if
6;> —1 for all i.

To apply the methods in this paper it is necessary to obtain the
interconnection structure of Fig. 1 with

_ Hy(s) Hyp(s)
H(S)_[Hzl(s) Hy(s)

where H,(s), Hy(s), H,(s), and H,,(s) are 3 X 3,3 X 1,
1 X 3, and 1 X 1, respectively, and where

=C(sI-A)"'B

000 1.00 000 000 000 0.0
-025 -0.11 000 -020 0.00 —0.40
4-| 000 000 000 100 o000 0.0
0.00 -0.10 -1.00 -022 0.00 —0.40
000 000 000 000 000 1.00
0.00 -0.10 000 -020 -4.00 -0.44
0.00 000 000 0.00
-025 000 000 1.00
p—| 000 000 000 0.00
000 =-1.00 0.00 1.00
0.00 000 000 0.00
0.00 000 —4.00 1.00
1.00 0.00 0.00 0.00 0.00 0.00
Cc=|000 000 1.00 000 000 0.00
0.00 0.0 0.0 0.00 1.00 0.00]
0.00 0.10 0.00 020 0.0 0.40
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5

b3

H(s)

Fig. 1.

103 102 101 100 10! 102 - 103
Fig. 2. infpe,, vy (DH(jo)D™ ") with = (51,1, 1).

Computation of 4, B, and C is tedious but straightforward,
and easily done by computer. For a discussion of how to obtain
these interconnection structures for general problems, see, for
example [36].

Concerning the robust stability question, the Small p Theorem
[2] asserts that, for given & > 0, the system in Fig. 1 is stable
for all §; satisfying —8 < 6, < & if and only if

sup p (Hy(jw)) < 1/8

with the block structure = (1,1, 1;;). In view of i) in the
foregoing discussion, it follows that

(6.1)

Computation of inf e, vy (DH(jw)D™ ') using the algo-
rithm of [35] reveals that

sup I‘x(Hxl(j"’)) = 1.

: ; 1y _ 1, if w=0;
oot vx(DHu(jo)D )‘{o, if w# 0.

Theorem 4.1 together with (6.1) thus implies that

#y(Hn(jw)) = {(1):

(Note that the upper bound is thus exact at all frequencies.) This
example illustrates that if m, # 0, then p (M) is not necessar-
ily a continuous function of M. As seen in Fig. 2,* it also
illustrates that the *‘complex’” upper bound,’ corresponding to
the structure (;; 1,1, 1), can be quite poor an estimate of the
‘“‘real’’ structured singular value.

The Small u Theorem also gives a precise characterization of
robust performance. Namely, the system in Fig. 1 is stable for
all §; satisfying —6& < d; < 6 and the worst-case performance
(i.e., the worst-case H,, gain from d to y) is strictly less than &
if and only if

if w=0;
if w#0.

sup uy (H(jw)) <1/8

4Figs. 2-17 were plotted using MATLAB.
5Equal to the SSV in this three block case.

1

08r
0.6
0.4
0.2

1%-3 102 10 100 10! 102 103

Fig. 3. infpe,, v, (DH(jw)D™ ") with ¥ = (1,1, 1;; ).

6~

1%'3 — “1‘0'7 — 10"1 — l‘(‘)JO — 10! 102 103
Fig. 4. infp.g, v, (DH(jo)D ™YY with = (;;1,1,1,1).

2 T T T T T

101 100 10! 102 10%
Fig. 5.

-
QO
&

with the augmented block structure A= (1,1, 1;; 1). In view of
i) and ii) in the discussion above, it follows that

sup p 7 (H(jw)) = 1.

The results of computation of inf, 7 vy (DH( jw)D™Y for
w = 0 using the algorithm of [35] are plotted in Fig. 3. Again, it
is seen that the supremum over frequency of this upper bound is
identical to that of the structured singular value.® For compari-
son, a plot of the ‘‘complex’’ upper bound, corresponding to the
structure (;; 1, 1, 1, 1), is shown in Fig. 4.

The final examples involve square transfer matrices H(s) =
C(sI — A)" !B + E of dimension 2 X 2 and 5 X 5 and with
A, B, C, and E generated randomly. We computed the upper
bound to p , ( H( jw)) obtained in Section IV on a grid of values
of w (logarithmically spaced, with 20 points per decade) for the
following structures ., all consisting of scalar blocks only: i)
all scalars are allowed to take on complex values, ii) some of the
scalars are restricted to be real, and iii) all the scalars are
restricted to be real.In the 2 X 2 case (two scalar blocks), the
structured singular value in case iii) was also computed exactly
(it can be evaluated by finding the roots of a system of two
bilinear equations in two variables). A typical sample of the
results we obtained is displayed in Figs. 5-17. The four curves
in Figs. 5-14 correspond (top to bottom) to structures (;; 1, 1),
(1;; 1), and (1, 1; ;) (for the bottom two curves), respectively.7
In Figs. 15-17, the three curves correspond to structures
G;1,1,1,1,1), (1,1;;1,1,1), and (1,1,1,1,1;;), respec-
tively. For validation purposes, the matrices corresponding to
Figs. 5 and 15 are given in Appendix B.

6Computation of u¢(H(jw)) for all w was not attempted as it requires,
for each frequency, computation of the global maximum of a constrained
optimization problem of the form (2.7).

"In Fig. 7, the bottom two curves coincide.
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Fig. 11.

Clearly, in most cases, the upper bound derived in Section IV
is significantly less conservative than that obtained by assuming
possibly complex uncertainty. Note that in many cases (Figs. 5,
7, 8, 10, and 13) the maximum over frequency of the new upper
bound is essentially identical to the maximum over frequency of

the exact structured singular value.

Fig. 17.

VII. FUTURE RESEARCH

The main result of this paper is the computable upper bound
in (4.5) for p with structures having both real and complex
blocks. While this yields a tremendous improvement over the
upper bound in (1.5), it still does not give an exact method for
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computing x. A lower bound for y can be found from (2.7) by
local search,? but since (2.7) may have local maxima which are
not global this may not yield u. It would be reasonably inexpen-
sive to compute these two bounds and, obviously, u would be
between them. However, it is possible that the bounds could be
far apart.

What are the prospects for a general, exact, computationally
attractive method for computing p for real perturbations? One
promising possibility is suggested by a research direction initi-
ated by de Gaston [6]-[8]. This work begins with an upper and
lower bound which may also be far apart. The bounds are
refined, however, by partitioning the domain of the perturbations
and computing the bounds for subdomains. While the growth of
this tree of subdomains can be exponential, it is conjectured that
the number of subdomains can be kept manageable by standard
tree-pruning involving comparing the bounds of different do-
mains. Unfortunately, the bounds themselves have exponential
explosion. A promising research direction is to combine a
subdomain partitioning scheme with the bounds in this paper.
This would eliminate the exponential explosion in the computa-
tion of the bounds. Then the critical issue would be the growth
in the number of subdomains on which the bounds would be
computed. If a scheme could be found to keep this growth
manageable, it would lead to the desired efficient, general, exact
method of computing p. This idea is currently under investiga-
tion.

APPENDIX A

The following lemma is used in the proof of Theorem 2.1
below.

Lemma A: Let 6 >0, xe@”, and let ge{l,--+, m, +
m_}. Suppose that

1@ Mx|l = 61Q x|l (A.1)
Then i)
x(Mx); = x;(Mx),, i, jel, (A.2)
if and only if for some de[—1, 1]
8(Mx);=6x;, ieJ, (A3)
and ii)
x(Mx);=x;(Mx),, i, jel, (A.4)

if and only if (A.3) holds for some §€@, |§| < 1.

Proof: We prove the first equivalence (the second one
follows similarly). First, suppose (A.2) holds. If (Mx); = 0 for
all ieJ, then, in view of (A.1), x; = 0 for all i€ J,, so that
(A.3) holds with any é. Suppose now that (Mx);, # O for some
ige J, and let

5= i (A.5)
(Mx),

Let ieJ, If (Mx);=0, then it follows from (A.2) with
(i, j) = (i, iy) that x; = 0, so that (A.3) holds for i. If (Mx),;
# 0, then using (A.2) with (i, j) successively equal to (i, i)
and (i, iy), then (A.5) one gets
0x; 0%;, 0x;, s
(Mx);  (Mx),, (Mx);

8provided a feasible point is available.

so that, again, (A.3) holds for i. To prove the converse, suppose
now that (A.3) holds. Let ied,. If (Mx); =0, then (A.3)
implies that x; = 0, so that (A.2) holds for / and any JjeJ,
Finally, for any (i, j) such that (Mx); # 0 # (Mx);, (A.3)
yields, since 8 is real

0x; 5 0x; 0x;
(Mx), (Mx);  (Mx),;
so that (A.2) holds. Od

Proof of Theorem 2.1: Let p, (M) denote the right-hand
side in (2.7). We first show that p , (M) = & (M). If &,(M)
= (&, it holds trivially. Otherwise, the feasible set for (2.7) is
nonempty. Thus, let (8, x) be feasible for (2.7). We show that
uy(M) = 0, which establishes the claim. If § = 0, this holds
trivially. Thus, assume 6§ > 0. In view of Lemma A, there exists

S,el-1,1, g=1,",m, 8;€G, |65 =<1, q=
1,:-+, m, such that

8o(Mx), = 0x;, Vviel,
and, for g = 1,---, m,

85(Mx),=0x; vield, .,
i.e.,

8,0,Mx =6Q,x, qg=1,-,m,
6;Qm,+qu = 0Q,,,,+qX, g=1,"-, m..

Feasibility of (8, x) for (2.7) also implies that there exists
AGEe @ mr+me+qXkmr+me+q, F(AC) < 1, such that

C
AqQ’"r+mc+qu = 9Qm,+mc+qu q = 1,’ tt, M.
Thus, the matrix
1
A= 7 block diag (5{1‘,1,. .- 6:nrlkm,’ 5101km,+w' -
C ... AC
6";'clkm,+mc’ Al ’ > Amc)

is such that Ae &, 3(A) < 6~!, and AMx = x. The latter
implies that det(/ — AM) =0, so that u,(M)=6. Con-
versely, let us now show that p , (M) < i, (M). If u,, (M) =
0, it holds trivially. Thus, suppose p,(M)>0. Let & =
p3'(M). By definition of u,(M), there exists 8,eR, g=

l,---,m, 6;€6, qg=1,---,m., A€
@¥mr+me+q*kmy+me+a, g =1, me, with
(87l =1, gq=1,---,m, (A.6a)
85l <1, gq=1,---,m, (A.6b)
(ag) =1 g=1,,mc (A.6c)
such that
A = 6 block diag (8774, 8, L, > 85Ty 407"
ST mr 8557775 A5c) € 2,4 (8)

satisfies det (I — AM) = 0, i.e., for some xedB

AMx = x. (A7)
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We show that (57, x) is feasible for (2.7), thus completing the
proof. From (A.7) it follows that

1
B0Mx = 30,%,  g=1um,  (As)

1
84Qmy+qMx = Eer+qx’ g=1,+,m. (A.8b)
1
A((:]Qm,&mc-f-qu = Eer+mc+qx7 q=1, -, me.
(A.9)

In view of Lemma A, it follows from (A.8) that, for g =
1’ ceem

r

x,(Mx); = %,(Mx), Vi, JjelJ,
and, for g = 1,--, m,
xi(Mx)j = j(Mx)i v i’je‘]m,+q

and thus, x€ %, (M). Finally (A.6), (A.8), and (A.9) imply
that, forg=1,--, m

1
10, Mx1 = S11Q,x1.
O
Proof of Proposition 3.1: Defining ¢: 3B x R = R® by

ei(x,a) =xPA,(a)x i=1,,s

one has, for any real o
c(a) = min {N(p(x,a) +v): xedB,ve #,}.

Since, when o varies locally around any given & and x varies
over 3B, ¢(x, a) is bounded, it is clear that, for « around &, v
can be restricted to lie in some compact subset V(&) of #£,,.
Continuity of c(-) at & then follows from continuity of ¢ and
compactness of 3B X V(&). Now, let 8 = 0 and « € R. From
the definition of A(a), i = 1,*-+, s, it follows that, for any
xedB

o(x,a + B) = o(x, a) + BQ(x)
where Q(x) € R® is given by
Qi x1?

1Qmx1I?
0

o(x) =

Thus, we have
c(a + B) = xrxenarll’ N(<p(x, a+ ﬂ) + v)
vePm

= min N(o(x, ) +v+B8Q(x)).

vePm,
Using the triangle inequality we obtain, since 8 = 0
c(a+B) < min [N(e(x, @) +v) + BN(Q(x))].

vePm

Since the norm N satisfies N(e,) < 1, we have, for xe B

N(Q(x) = 3 N(1Q,xI%,) < 5° [Q,x]? = 1
g=1 g=1

and thus
c(a+B8) = min [N(e(x,a) +v) + 8] = c(a) + 8.
vEPm
a

Proof of Proposition 4.1: The first inequality holds triv-
ially if %, (M) = (. If not, suppose that (1 (M), x,) solves
(2.7). Then, for ¢ = 1, -, m, | Q,Mx,|| = p,(M)| Qxlls
so that

m m
| Mx,||* = 21 10, Mx,||? = iy (M) 21 Qg x4l
q= q=

= P?x(M)
Since x, € %,(M), this first inequality in (4.1) holds. The
second inequality also holds trivially if ¥,(M)= . If
Zy(M) # &, then, in view of Proposition 2.1, for any xe
Fy(M), GE 9,
| Mx||? = x¥MHMx = x¥[ MM + j(GM — M¥G)]x

= N[ M*M + j(GM - MHG)]

and thus
2 M) = M 2
(M) = max | M
< inf N M"M + j(GM - M¥G)]
Ge¥%y
< max {0, inf X[ M"M +j(GM - mc)|}
GeYy
= vf,(M )
Finally, the last inequality in (4.1) is clear since ¥, contains the
zero matrix and since a2(M) = NMHM). O

Proof of Proposition 4.2: First, (4.4) can be rewritten as
F(D,G) = max {a: N MM,

acR

+j(GMp — MEG) - al] = 0}

= max {a: N D™'M¥D>MD~!

aeR

+j(GDMD~' — D"'M*DG) - aI] = 0}.

Next, since every D € 9, is nonsingular, it follows that

F(D,G) = max {o: \\MHD*M
+j(DGDM - M¥DGD) - «D?] = 0}

= max {a: &,(D?, DGD) = 0}.
aelR

Also, for given (D, G)€ 92, X %,, since D > 0, ® (D, G)is
strictly decreasing as a function of o. Thus i) holds. Claim ii)
follows from the fact that the map 2, X %, 9,x 9, de-
fined by (D, G) = (D?, DGD) is a bijection. O

Proof of Proposition 4.3: From the fact that the deriva-
tive of ‘1’,,‘ at (D,, G,) exists and vanishes, it follows that, for
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any De 9, Ge 9,
d_
Td;x[M”(D* +ID)M + j(G M — MHG,)
—a*(D* + tD)] lt=0=0

and
d_
= NMPDM +j((G, + tG)M

-M*"(G, + 1G)) — a,D,] |, = 0.

Using a classical result on derivatives (or generalized gradient)
of eigenvalues of Hermitian matrices (see, e.g., [37]), we may
rewrite these two equalities as

d
xH, E[M”(D* + tD)M + j(G .M - MYG,)

—ay(Dy + tD)] | ox4 =0 (A.10)
and
x”*

7 [MHD.M +j((G, + 1G) M - M¥(G, + 1G))

—a,D,]|,20%, =0 (A.11)

where x, is any unit length eigenvector corresponding to the
largest eigenvalue of

M"D .M + j(GM — MPG,) - a,D,.

Equations (A.10) and (A.11) yield, respectively,

x" (M"DM - «,D)x, =0 (A.12)
and
xH (GM - M"G)x, = 0. (A.13)
Since D € 9, is arbitrary, (A.12) implies that
1QaMxyll® = eyl Qi @ =1,--,m (A.14)

and, since Ge€ 9, is also arbitrary, together with (A.13) this
implies that (x,, \/a, ) is feasible for (2.7) (note that (A.14)
implies that o, is nonnegative). Thus, |/, < u,(M). On the

other hand, in view of Proposition 4.2ii), the definition of «,
implies that

a, = inf F(D,G)
Dedy,Ge%y

and it follows from (4.2) and (4.3) that \/a, = p »(M). Thus
V% = py(M). The claim then follows from Proposition
4.2i). 0O

Proof of Theorem 4.2; Let (D, G) be a minimizer for
F(D, G) and let & = F(D, G). Since the largest eigenvalue of

(MEMp, + j(GMp — MEG)) is simple, we have
rank (MEMp + j(GMp — MEG) - &1) =n - 1.
Given D > 0, this implies that
rank (M#D*M + j(DGDM — MHDGD) — 6D*) = n - 1.
(A.15)

On the other hand, in view of Proposition 4.2i)

$,(D?*, DGD) = 0. (A.16)
It follows from (4.5), (A.15), and (A.16) that the largest eigen-
value of the matrix in (A.15) is simple and thus ®; is differen-
tiable at (D2, DGD). Since (D, G) minimizes F(D,G) it
follows from Proposition 4.2 i) that the derivative of ®; van-
ishes at (D?, DGD). The claim then follows from Proposition
4.3. O

Proof of Proposition 5.1: We show that (5.2) holds and
the infimum in (5.2) is achieved if and only if (5.3) holds and the
infimum in (5.3) is achieved. Extension to the case when the
infima are not achieved is left as a simple exercise. Specifically,
we show that, given De 9,, Ge 9,

_ M 1, . oy —1/2
| D{—|D7 ' +jG|(I+ G?) <1
a
if and only if

F(D, aG) = o?

(note that Ge ¥, if and only if aGe %,). This equivalence
follows from the following sequence of equivalent inequalities,
where the notation M, = DMD™" is used:

E[(D(%)Dﬁl +iG)(I+ Gz)~1/2] -1
[(D(AE{)D" +jG)(1+ Gz)m]"

[(D(%)D +J6)(1+ cz)-'”] <1
{2 oo s+
ot (o) ] -

%(M{,’MD +j((«G)Mp — ME(aG))) <1

NMEM, + j((aG)Mp - ME(aG))) < o
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APPENDIX B 31 J . C. Doyle, *‘Structured uncertai_ng in control system design,’’
The A, B, C, E matrices that were used to generated Figs. 5 glLPIr)O; f;g;fff %&"_’5{{59"“"’" Contr., Fort Landerdale,
and 15 are as follows. For Fig. 5 [4] O. Yaniv and I. M. Horowitz, ‘‘A quantative design method for
—8.0902 x 1072 1.2686 x 107! ~3.5762 x 10~ —4.8575 x 1072 —3.7808 x 107!
1.8962 x 10~! 4.1289 x 107! 6.1862 x 107! 1.0322 x 107! 7.7984 x 107!
A=|-48243x10"" 4.1642 x 107! 2.4450 x 10°1  —5.6185 x 10°' —4.8248 x 107!

—1.8448 x 10”2 24564 x 10-!  —6.5441 x 10”2 6.7149 x 10°!  —5.2801 x 107!
71872 x 1072 —3.3682 x 10~'  1.2945 x 107! 5.4038 x 10°!  —4.4566 x 1072

2.2105 x 10°2  —1.4448 x 10!
—43877 X 1072 4.2382 x 107!

B=]_-83498 x 10! 3.9127 x 10~!

—1.4370 x 10~1  2.4036 x 107!

1.8585 x 10°!  —1.7599 x 107!
_ [—5.0949 x 1072 23438 x 107> 6.4024 x 107" —1.8836 x 107" —1.3455 x 10~
—3.6293 x 10~ —-2.1268 x 107! —2.3698 X 10~! —6.4769 x 10~' —1.6309 x 10!

_[2.3845 x 107! -8.0438 x 107"
3.8387 x 107! 6.8429 x 107!

and for Fig. 15

—4.5509 x 10°'  5.3934 x 10!  —9.0161 x 1073  5.6126 x 10~' 2.4023 x 107!
—4.9641 X 102 —4.0575 x 10! —3.3601 X 10~! —5.8569 x 10~! —6.1047 x 107!
A=|_-28742%x10"2 -2.6343x 1072 2.1769 x 102 1.7907 x 107! 7.2380 x 107!
—1.5319 x 10-!  2.3885 x 10°!  —=2.7023 x 10”!  1.9057 x 10! 2.9318 x 107!
| 5.2573 x 107! 8.1813 x 107! 6.1384 x 107! 2.4381 x 1072 4.9339 x 10°! |
[ _2.6256 x 10~!  2.5961 x 10~} 8.8551 x 10~!  —6.4732 x 10~2  6.3857 x 10°2 |
5.1035 x 10! 4.8261 x 10~2 —1.5665 x 107! —4.1377 x 107! 2.4904 x 10!
B=|_87380x10"2 —1.3578 x 1072 —1.8021 x 10!  6.1830 x 107! 7.3116 x 107!
—3.7540 x 10°! -5.2973 x 10~!  3.7967 x 107! 3.1948 x 10°' —-3.4212 x 107!
| 1.5306 x 10°! —5.9548 x 10"!  5.1851 x 10! 3.0709 x 107! 1.0449 x 107! ]
—1.3036 X 10~! —6.6165 x 1072 4.3862 x 107! 6.6575 x 1072 9.5535 x 1072
—6.8446 X 10”1  —3.0868 x 10°'  1.3999 x 10~}  —4.5997 x 10~! 1.1329 x 107!
C=1| 43439 x 107! 3.1450 x 10~2  —2.2962 x 10! —-5.4526 x 10~! 2.3548 x 10!
3.9745 x 107! 4.0280 x 10-! —3.0315x 10"' 7.0834 x 10~!  5.4871 x 10™!
—1.0055 x 10!  4.0313 x 10~! —3.5256 x 10!  3.9585 x 10~2  4.4990 x 10~
3.4802 x 107! 7.9979 x 10~} 45178 x 10~ —1.5375 x 10°' —2.4380 x 107!
—2.8164 X 10”1 —1.2299 x 10~'  6.6314 x 10"}  —2.6890 x 10~! —1.1213 x 107!

E=| 27349 x 10~' -6.7474 x 10! —4.5236 x 10~' 3.7879 x 10!  —5.2324 x 10~}
—6.7545 % 10~ —3.5034 x 10~! 3.1562 x 10~!  -7.0583 x 10~!  3.4941 x 107!
24558 x 10~!  —1.9770 x 10! —1.8149 x 10~!  6.9694 x 10!  —2.2861 x 10~"
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