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A multilevel problem concerns a population with a hierarchical
structure. A sample from such a population can be described as a
multistage sample. First, a sample of higher level units is drawn (e.g.
schools or organizations), and next a sample of the sub-units from the
available units (e.g. pupils in schools or employees in organizations).
In such samples, the individual observations are in general not
completely independent. Multilevel analysis software accounts for
this dependence and in recent years these programs have been
widely accepted. Two problems that occur in the practice of multilevel
modeling will be discussed. The first problem is the choice of the
sample sizes at the different levels. What are sufficient sample sizes
for accurate estimation? The second problem is the normality
assumption of the level-2 error distribution. When one wants to
conduct tests of significance, the errors need to be normally
distributed. What happens when this is not the case? In this paper,
simulation studies are used to answer both questions. With respect to
the first question, the results show that a small sample size at level
two (meaning a sample of 50 or less) leads to biased estimates of the
second-level standard errors. The answer to the second question is
that only the standard errors for the random effects at the second
level are highly inaccurate if the distributional assumptions concern-
ing the level-2 errors are not fulfilled. Robust standard errors turn out
to be more reliable than the asymptotic standard errors based on
maximum likelihood.
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1 Introduction

Social research questions often relate to hierarchical systems. For instance, in

educational research the achievements of the students are frequently modeled as the

result of a combination of individual characteristics, such as intelligence and

behavior, and school characteristics, such as the number of students in a group and
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the expertise of the teachers. In the educational system, the students constitute the

lower level and the schools the higher level. Other examples are organizational

research with individuals nested within organizations and longitudinal research with

repeated observations nested within individuals. Standard multivariate models are

not appropriate for the analysis of such hierarchical systems, even if the analysis

includes only variables at the lowest (individual) level, because the individual

observations are in general not independent. This results in a violation of the

standard assumption of independent and identically distributed (i.i.d.) errors. The

consequences of using uni-level analysis methods on multilevel data are well-known:

the parameter estimates are unbiased but inefficient, and the standard errors are

negatively biased, which results in spuriously ‘significant’ effects (cf. DE LEEUW and

KREFT, 1986; SNIJDERS and BOSKER, 1999; HOX, 1998, 2002). Multilevel analysis

techniques have been developed for regression models (BRYK and RAUDENBUSH,

1992; GOLDSTEIN, 1995), and specialized software is widely available (e.g.,

Raudenbush et al., 2000; RASBASH et al., 2000).

The maximum likelihood estimation methods used commonly in multilevel

analysis are asymptotic, which translates to the assumption that the sample size is

large. This raises questions about the accuracy of the various estimation methods

with relatively small sample sizes. This especially concerns the higher level(s),

because the sample size at the highest level (the sample of groups) is by definition

smaller than the sample size at the lowest level. Simulations by VAN DER LEEDEN

and BUSING (1994) and VAN DER LEEDEN et al. (1997) suggest that when

assumptions of normality and large samples are not met, the standard errors have

a downward bias. In addition, the group level variance components tend to be

underestimated. Simulation studies by BUSING (1993) and VAN DER LEEDEN and

BUSING (1994) indicate that for highly accurate group level variance estimates

many groups (more than 100) are needed (cf. AFSHARTOUS, 1995). In contrast,

BROWNE and DRAPER (2000) report that with as few as six to twelve groups,

Restricted ML (RML) estimation provides reasonable variance estimates and, with

48 groups, both RML and Full Information ML (FML) estimation produce

reasonable variance estimates. The simulations by VAN DER LEEDEN et al. (1997)

show that the standard errors of the variance components are generally estimated

too small, with RML again being more accurate than FML. Symmetric confidence

intervals around the estimated value also do not perform well. BROWNE and

DRAPER (2000) report similar results. Typically, with 24–30 groups, Browne and

Draper report an operating alpha level of about 9%, and with 48–50 groups about

8%. Again, in general, a large number of groups appears more important than a

large number of individuals per group. Although the results of the available

simulation studies are not completely in agreement with each other, they all

conclude that the regression coefficients are estimated without bias while their

standard errors tend to be biased downward with small sample sizes at the group

level. Variance components are more susceptible to bias; they tend to be estimated

too small with standard errors that may also be strongly biased downward with
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small sample sizes at the group level (cf. VERBEEK, 2000). The various reports

diverge as to the conclusion at precisely which point the group sample size becomes

‘too small’.

Some simulations address the effect of violation of the assumption of normally

distributed residual errors. In general, the effect of violation of the assumption of

normal errors resembles the effect of small sample sizes: both with small sample

sizes and with non-normal errors, the regression coefficients and their standard

errors show little or no bias, but variance components and their standard errors

may be severely biased. We will present an investigation of the effect of non-normal

errors, and also investigate the efficacy of robust standard errors. One method of

obtaining better tests and confidence intervals when distributional assumptions do

not hold is to correct the asymptotic standard errors. One well-known correction

method to produce robust standard errors is the so-called Huber/White or

sandwich estimator (HUBER, 1967; WHITE, 1982), which is available in several of

the available multilevel analysis programs (e.g., RAUDENBUSH et al., 2000; RASBASH

et al., 2000).

In this paper simulation studies are used to determine the influence of different

sample sizes on the accuracy of the estimates (regression coefficients and variances)

and to determine the consequences of the violation of the assumption of normally

distributed errors at the second level of the multilevel regression model. A recent

simulation study on multilevel structural equation modeling (HOX and MAAS,

2001) suggests that the size of the intraclass correlation (ICC) also affects the

accuracy of the estimates, therefore this factor is also included in the simulation

design. The research questions are: (1) what group level sample size can be

considered adequate in general and more specific in the situation that the

assumption of normally distributed residuals is not met, and (2) how well does the

sandwich estimator perform when the assumption of normally distributed residuals

is not met.

2 The sandwich estimator

One method of obtaining better tests and confidence intervals is to correct the

asymptotic standard errors, using the so-called Huber/White or sandwich estimator

(HUBER, 1967; WHITE, 1982). In the maximum likelihood approach, the usual

estimator of the sampling variances and covariances is the inverse of the Information

matrix (Hessian matrix, cf. ELIASON, 1993). Using matrix notation, the asymptotic

variance-covariance matrix of the estimated regression coefficients can be written as

follows:

VAðb̂Þ ¼ H�1 ð1Þ

where VA is the asymptotic covariance matrix of the regression coefficients, and H is

the Hessian matrix. The Huber/White estimator is given as:
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VRðb̂Þ ¼ H�1CH�1 ð2Þ

where VR is the robust covariance matrix of the regression coefficients, and C is a

correction matrix. The correction matrix, which is ‘sandwiched’ between the two H)1

terms, is based on the observed raw residuals. Details of the Huber/White correction

for the multilevel model are given by GOLDSTEIN (1995) and RAUDENBUSH and BRYK

(2002). If the residuals follow a normal distribution, VA and VR are both consistent

estimators of the covariances of the regression coefficients, but the model-based

asymptotic covariance matrix, VA, is more efficient and the model-based standard

errors are in general smaller. However, when the residuals do not follow a normal

distribution, the model based asymptotic covariance matrix is both inaccurate and

inconsistent, while the observed residuals based sandwich estimator VR is still a

consistent estimator of the covariances of the regression coefficients. This makes

inference based on the robust standard errors less dependent on the assumption of

normality, at the cost of sacrificing some statistical power.

3 Method

3.1 The simulation model and procedure

We use a simple two-level model, with one explanatory variable at the individual

level and one explanatory variable at the group level, conforming to equation (3):

Yij ¼ c00 þ c10Xij þ c01Zj þ c11XijZj þ u1jXij þ u0j þ eij ð3Þ

where Yij is the score of individual i in group j on the dependent variable; Xij is the

score of individual i in group j on the independent variable on the individual level; Zj

is the score of group j on the independent variable on the group level; c00 is the

general intercept; c10 is the regression coefficient of the direct effect of Xij on Yij; c01 is
the regression coefficient of the effect of Zj on Yij; c11 is the regression coefficient of

the effect of Zj on the influence of Xij on Yij; eij is the error term on the individual

level; u0j is the error term on the group level in the intercept and u1j is the error term

on the group level in the effect of Zj on the influence of Xij on Yij. The individual-

level residuals eij are assumed to have a normal distribution with mean zero and

variance r2
e . The group-level residuals u0j and u1j are assumed to have a multivariate

normal distribution with expectation zero, and to be independent from the residual

errors eij. The variance of the residual errors u0j is specified as r00, and the variance of

the residual errors u1j is specified as r11.

Three conditions are varied in the simulation: (1) Number of Groups (NG: three

conditions, NG¼ 30, 50, 100), (2) Group Size (GS: three conditions, GS¼ 5, 30, 50),

and (3) Intraclass Correlation (ICC: three conditions, ICC¼ 0.1, 0.2, 0.3). The sizes of

the conditions are partially based on literature and partially on practical experience.

The size of the highest and lowest number of groups is based on literature (VAN

DER LEEDEN et al., 1997; KREFT and DE LEEUW, 1998): 30 groups is mentioned as a
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minimum, while 100 groups is seen as sufficient. In practice, 50 groups is a frequently

occurring number. Similarly, for the highest group size, a size is chosen that should

be sufficient on the basis of the literature, while a group size of 30 is normal in

educational research, and a group size of five is normal in family research and in

longitudinal research. The Intraclass Correlations (ICC’s) are totally based on

practice. They span the customary level of intraclass correlation coefficients found in

multilevel studies.

There are 3 · 3 · 3 ¼ 27 conditions. For each condition, we generated 1000

simulated data sets, assuming normally distributed residuals. The multilevel

regression model, like its single-level counterpart, assumes that the explanatory

variables are fixed. Therefore, a set of X and Z values are generated from a standard

normal distribution to fulfill the requirements of the simulation condition with the

smallest total sample size. In the conditions with the larger sample sizes, these values

are repeated. This ensures that in all simulated conditions the joint distribution of X

and Z are the same. The regression coefficients are specified as follows: 1.00 for the

intercept, and 0.3 (a medium effect size, cf. COHEN, 1988) for all regression slopes.

The residual variance r2
e at the lowest level is 0.5. The residual variance r00 follows

from the specification of the ICC and r2
e , given formula (4).

ICC ¼ r00=ðr00 þ r2
eÞ: ð4Þ

BUSING (1993) shows that the effects for the intercept variance r00 and the slope

variance r11 are similar; hence, we chose to use the same value for r11 as for r00. To
simplify the simulation model, without loss of generality, the covariance between the

two u-terms is assumed equal to zero. Given the parameter values, the simulation

procedure generates the residual errors eij, u0j and u1j.

To investigate the influence of non-normally distributed errors we transformed the

second level residuals of the first simulation set to a v21 distribution, rescaled to have

the same mean and variance as the generated normal residuals. (We did not

investigate non-normality for the first level residuals. Because of the larger sample

size at this level, the influence of non-normality will be less than at the second level.)

Since a chi-square distribution with one degree of freedom is markedly skewed, we

consider this a large deviation of the assumption of having a multivariate normal

distribution for the second-level residuals.

Therefore the analysis is carried out twice, once with asymptotic maximum

likelihood based standard errors, and once with robust Huber/White standard

errors. The software MLwiN (RASBASH et al., 2000) was used for both simulation

and estimation. In this program the correction of the sandwich estimation is based

on the cross-product matrix of the residuals, taking the multilevel structure of the

data into account.

Two maximum likelihood functions are common in multilevel estimation: Full

ML (FML) and Restricted ML (RML). We use RML, since this is always at least as

good as FML, and sometimes better, especially in estimating variance components

(BROWNE, 1998).
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3.2 Analysis

To indicate the accuracy of the parameter estimates (regression coefficients and

residual variances) the percentage relative bias is used. Let ĥ be the estimate of the

population parameter h, then the percentage relative bias is given by ĥ=h. To assess

the accuracy of the standard errors, for each parameter in each simulated data set the

95% confidence interval was established using the asymptotic standard normal

distribution (cf. GOLDSTEIN, 1995; LONGFORD, 1993). For each parameter a non-

coverage indicator variable was set up that is equal to zero if its true value is in the

confidence interval, and equal to one if its true value is outside the confidence

interval. The effect of the different simulated conditions on the non-coverage was

analyzed using logistic regression on these indicator variables. Since the total sample

size for each analysis is 27 000 simulated conditions, the power is huge. As a result,

at the standard significance level of alpha ¼ 0.05, extremely small effects become

significant. Therefore, our criterion for significance is alpha ¼ 0.001 for the main

effects of the simulated conditions.

4 Results

4.1 Normal distributed level-2 errors

4.1.1 Parameter estimates

Both the fixed parameter estimates (the intercept and regression slopes) and the

random parameters (the variance components), have a negligible bias: less than

0.05%. The largest bias was found in the condition with the smallest sample sizes in

combination with the highest ICC: there the percentage relative bias was )0.3%.

4.1.2 Standard errors

The coverage of both fixed and random effects is significantly affected by the number

of groups and by the group size. Coverage is not sensitive to the Intraclass

Correlation. The effect of the number of groups on the coverage is presented in

Table 1, and the effect of the group size on coverage is presented in Table 2.

There are no effects of the number of groups on the standard errors of the fixed

regression coefficients. The effect of the number of groups on the standard errors of

the random variance components are shown in Table 1. With 30 groups, the

coverage rate for the second-level intercept variance is 91.0%, and the coverage rate

Table 1. Coverage of the 95% confidence interval by number of groups (0.9225 < C.I. < 0.9747,

* ¼ significant at 0.001).

E0 U0 U1

Number of groups 30 0.9428 0.9104* 0.9120*

50 0.9438 0.9261 0.9282

100 0.9514 0.9404 0.9426
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for the second-level slope variance is 91.2%. The amount of coverage here implies

that the standard errors for the second-level variance components are estimated

about 15% too small.

Table 2 shows that in the case of a group size of five the coverage rate for the

second-level slope variance is 92.1%. This amount implies that the standard errors

are estimated about 3.1% too small.

4.2 Non-normal distributed level-2 errors

4.2.1 Parameter estimates

For the 27 conditions the mean relative bias is calculated. The percentage relative

bias for the fixed and the random parameters is the same for the ML- and the robust

estimations, because we investigate the parameter estimates and not their standard

errors. Only the ‘‘worst’’ condition, only 30 groups with five individuals and an ICC

of 0.1 shows a statistically significant bias. However, from a practical perspective this

significant effect is totally irrelevant (variance estimated as 0.492 instead of 0.50).

4.2.2 Standard errors

Table 3 shows the coverage of the 95% confidence interval for the fixed effects,

without a breakdown in conditions. There are two statistically significant effects,

both refer to the level-1 regression coefficient.

The coverage of the fixed effects is significantly affected by the Number of Groups

and by the Group Size. With respect to the Number of Groups, the results are as

expected: more groups lead to a closer approximation of the nominal coverage (see

Table 4). With respect to the Group Size, this is not the case. Having larger groups

does not improve the situation.

Table 2. Coverage of the 95% confidence interval by group size (0.9265 < C.I. < 0.9735,

* ¼ significant at 0.001).

E0 U0 U1

Group size

5 0.9403 0.9259* 0.9213*

30 0.9489 0.9250* 0.9337

50 0.9488 0.9261* 0.9278

Table 3. Coverage of the 95% confidence interval for the main fixed effects (0.9260 < C.I. < 0.9740;

* ¼ sign., a ¼ 0.001).

ML-estimation Robust estimation

Intercept 0.9322 0.9291

X 0.9262 0.9229*

Z 0.9458 0.9402

XZ 0.9484 0.9365
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Table 5 shows the coverage of the random effects, without a breakdown in

conditions. Only the ML standard errors for the lowest level parameter are correct.

At this level, the robust standard error gives an overcorrection. Both the ML and the

robust estimated standard errors of the second level variances are incorrect. The

robust estimators are, however, better than the ML estimators.

The coverage of the random effects is significantly affected by the Number of

Groups, the Group Size and the Intraclass Correlation. The effect of the Number of

Groups on the coverage is presented in the first part of Table 6, the effect of the

Group Size in the second part, and the effect of the Intraclass Correlation in the third

Table 4. Coverage of the 95% confidence interval for the fixed effects by number of groups and group

size (0.9265 < C.I. < 0.9735; first the value for the ML-estimation; second for the robust estimation,

* ¼ significant at 0.05).

Intercept X Z

Number of groups

30 0.9271/0.9214* 0.9171*/0.9120* 0.9397/0.9306

50 0.9302 /0.9279 0.9246/0.9214* 0.9498/0.9439

100 0.9392/0.9379 0.9370/0.9353 0.9480/0.9462

Group size

5 0.9422/0.9390 0.9378/0.9328 0.9543/0.9440

30 0.9266/0.9236* 0.9247*/0.9221* 0.9414/0.9353

50 0.9278/0.9247* 0.9162*/0.9139* 0.9417/0.9413

Table 5. Coverage of the 95% confidence interval for the overall random effects (0.9265 < C.I. <

0.9727; * ¼ sign., a ¼ 0.001).

ML-estimation Robust estimation

E0 0.9520 0.9901*

U0 0.6632* 0.8693*

U1 0.6427* 0.8524*

Table 6. Coverage of the 95% confidence interval for the random effects by number of groups and

group size (0.9265 < C.I. < 0.9735; first the value for the ML-estimation; second for the robust

estimation, * ¼ significant at 0.05).

E0 U0 U1

Number of groups

30 0.9487/0.9866* 0.6537*/0.8128* 0.6501*/0.8007*

50 0.9539/0.9903* 0.6701*/0.8734* 0.6471*/0.8506*

100 0.9534/0.9933* 0.6659*/0.9217* 0.6308*/0.9059*

Group size

5 0.9373/0.9819* 0.7784*/0.9019* 0.7540*/0.8648*

30 0.9630/0.9937* 0.6219*/0.8582* 0.6032*/0.8500*

50 0.9557/0.9947* 0.5893*/0.8478* 0.5708*/0.8423*

ICC

0.10 0.9520/0.9899* 0.7123*/0.8786* 0.6913*/0.8669*

0.20 0.9521/0.9901* 0.6572*/0.8706* 0.6334*/0.8494*

0.30 0.9519/0.9902* 0.6201*/0.8588* 0.6032*/0.8408*
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part. In all three conditions, we observe an overcorrection of the standard error of

the lowest level variance by the robust method. At the second level, all effects are

significant. As expected, the ML-estimator gives worse results than the robust

estimations. As in Table 4, we observe that having larger groups does not improve

the situation. Robust standard errors are better than the asymptotic standard errors,

but the resulting confidence intervals only begin to approach their nominal coverage

at the largest sample of groups (NG¼ 100) used in this simulation.

5 Summary and discussion

In conclusion, with respect to the influence of the sample size in the case of normal

distributed errors, there turns out only to be a problem with the standard errors of

the second-level variances when the number of groups is substantially lower than 50

and when the group size is lower than 30. With 30 groups, the standard errors are

estimated about 15% too small. With a group size of five, the standard errors of the

second-level slope variance is estimated 3.1% too small.

These results differ to some extent from the simulation results reported by BUSING

(1993) and VAN DER LEEDEN and BUSING (1994). They concluded that, for small

sample sizes, the standard errors and corresponding statistical tests are badly biased.

However they used a different simulation design. BUSING (1993) used much higher

intraclass correlations, up to 0.80, which are unlikely to occur in actual data. In

addition, the simulated second-level sample sizes were much smaller, starting at a

sample of ten groups with five observations each. For these simulated conditions,

they reported biased standard statistical tests, especially for the variance compo-

nents. SNIJDERS and BOSKER (1999, p. 44) however, claim that multilevel modeling

becomes attractive when the number of groups is larger than ten. To resolve this

contradiction, we decided to do one more simulation with only ten groups of group

size five. In this simulation, the fixed regression coefficients and variance components

were still estimated without bias, except for the second-level variance components

when the ICC was low (0.10): there the bias is 25% upwards. The standard errors are

now all estimated too small. The non-coverage rates for the fixed effects in this case

range between 5.7% and 9.7%, and for the second-level variances they range

between 16.3% and 30.4%. Although the standard errors of the fixed effects are still

reasonable, the standard errors of the second-level variances are clearly unaccept-

able. It seems that having as few as ten groups is not enough. If one is interested only

in the fixed regression coefficients, it appears less problematic, but we would still

advise using bootstrapping or other simulation-based methods to assess the sampling

variability instead of ML or robust standard errors.

This leads us to the following rule of thumb: if one is only interested in the fixed

effects of the model, ten groups can lead to good estimates. If one is also interested in

contextual effects, 30 groups are needed. If one also wants correct estimates of the

standard errors, at least 50 groups are needed.
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To investigate the limits of our results, we carried out another simulation. We

increased the population values of the residual variances, which decreases the

proportion of explained variance in the population model. The results of this

simulation were very close to the results reported above. So, the proportion of

explained variance does not affect the accuracy of the estimates.

Non-normal distributed residual errors on the second (group) level of a multilevel

regression model have an effect on the estimates of the fixed effects. The more groups

there are, the better the estimates, but this does not hold for the group size. Having

larger groups does not improve the situation. The non-normal distributed level-2

residual errors do have more effect on the estimates of the random effects. The

estimates of the variances are unbiased, but the standard errors are not always

accurate. At the lowest level, the maximum likelihood standard errors are accurate,

while the robust standard errors are overcorrected. The standard errors for the

second-level variances are highly inaccurate, although the robust standard errors

tend to do better than the maximum likelihood standard errors. With maximum

likelihood standard errors, the coverage of the 95% confidence interval for the

random effects at the second-level is only 66% and 64%, compared with 87% and

85% for robust standard errors. These results mean that when the group level

variances are not normally distributed, neither the maximum likelihood nor the

robust estimation of the group level standard errors can be trusted. In the case of

robust estimation, this can be compensated for by having a very large number of

groups, at the expense of having overcorrected standard errors at the lowest level.

An attractive alternative is to use a non-parametric approach, as proposed by

Vermunt in this issue of Statistica Neerlandica.

RAUDENBUSH and BRYK (2002) suggest that comparing the asymptotic standard

errors calculated by the maximum likelihood method to the robust standard errors is

a way of appraising the possible effect of model misspecification. HOX (2002) extends

this suggestion to model misspecifications including violation of important

assumptions. Used in this way, robust standard errors become an indicator for

possible misspecification of the model or its assumptions. If the robust standard

errors differ considerably from the asymptotic standard errors, this should be

interpreted as a warning that certain important assumptions might be violated.

Clearly, the recommended action is not to rely simply on the robust standard errors

to deal with the misspecification. Our simulation indicates that, unless the number of

groups is very large, the robust standard errors are not up to that task. Rather, the

reasons for the discrepancy must be diagnosed and resolved.
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